Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112.792
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829124

ABSTRACT

Functional genomics screening offers a powerful approach to probe gene function and relies on the construction of genome-wide plasmid libraries. Conventional approaches for plasmid library construction are time-consuming and laborious. Therefore, we recently developed a simple and efficient method, CRISPR-based modular assembly (CRISPRmass), for high-throughput construction of a genome-wide upstream activating sequence-complementary DNA/open reading frame (UAS-cDNA/ORF) plasmid library. Here, we present a protocol for CRISPRmass, taking as an example the construction of a GAL4/UAS-based UAS-cDNA/ORF plasmid library. The protocol includes massively parallel two-step test tube reactions followed by bacterial transformation. The first step is to linearize the existing complementary DNA (cDNA) or open reading frame (ORF) cDNA or ORF library plasmids by cutting the shared upstream vector sequences adjacent to the 5' end of cDNAs or ORFs using CRISPR/Cas9 together with single guide RNA (sgRNA), and the second step is to insert a UAS module into the linearized cDNA or ORF plasmids using a single step reaction. CRISPRmass allows the simple, fast, efficient, and cost-effective construction of various plasmid libraries. The UAS-cDNA/ORF plasmid library can be utilized for gain-of-function screening in cultured cells and for constructing a genome-wide transgenic UAS-cDNA/ORF library in Drosophila.


Subject(s)
CRISPR-Cas Systems , Gene Library , Open Reading Frames , Plasmids , Plasmids/genetics , Animals , CRISPR-Cas Systems/genetics , Open Reading Frames/genetics , DNA, Complementary/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drosophila melanogaster/genetics
2.
Antonie Van Leeuwenhoek ; 117(1): 86, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829455

ABSTRACT

Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.


Subject(s)
Genome, Bacterial , Phylogeny , Virulence Factors , Yersinia , Yersinia/genetics , Yersinia/classification , Yersinia/pathogenicity , Yersinia/isolation & purification , Virulence Factors/genetics , Brazil , Yersinia Infections/microbiology , Yersinia Infections/veterinary , Humans , Genomics , Prophages/genetics , Plasmids/genetics , Multilocus Sequence Typing , Virulence/genetics
3.
Biochemistry (Mosc) ; 89(4): 653-662, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831502

ABSTRACT

Chromosome conformation capture techniques have revolutionized our understanding of chromatin architecture and dynamics at the genome-wide scale. In recent years, these methods have been applied to a diverse array of species, revealing fundamental principles of chromosomal organization. However, structural organization of the extrachromosomal entities, like viral genomes or plasmids, and their interactions with the host genome, remain relatively underexplored. In this work, we introduce an enhanced 4C-protocol tailored for probing plasmid DNA interactions. We design specific plasmid vector and optimize protocol to allow high detection rate of contacts between the plasmid and host DNA.


Subject(s)
Plasmids , Plasmids/metabolism , Plasmids/genetics , DNA/chemistry , DNA/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin/chemistry , Genome
4.
PLoS One ; 19(6): e0304599, 2024.
Article in English | MEDLINE | ID: mdl-38829840

ABSTRACT

Extended-spectrum beta-lactamase (ESBL) Escherichia coli (E. coli) is an emerging pathogen of high concern given its resistance to extended-spectrum cephalosporins. Broiler chicken, which is the number one consumed meat in the United States and worldwide, can be a reservoir of ESBL E. coli. Backyard poultry ownership is on the rise in the United States, yet there is little research investigating prevalence of ESBL E. coli in this setting. This study aims to identify the prevalence and antimicrobial resistance profiles (phenotypically and genotypically) of ESBL E. coli in some backyard and commercial broiler farms in the U.S. For this study ten backyard and ten commercial farms were visited at three time-points across flock production. Fecal (n = 10), litter/compost (n = 5), soil (n = 5), and swabs of feeders and waterers (n = 6) were collected at each visit and processed for E. coli. Assessment of ESBL phenotype was determined through using disk diffusion with 3rd generation cephalosporins, cefotaxime and ceftazidime, and that with clavulanic acid. Broth microdilution and whole genome sequencing were used to investigate both phenotypic and genotypic resistance profiles, respectively. ESBL E. coli was more prevalent in backyard farms with 12.95% of samples testing positive whereas 0.77% of commercial farm samples were positive. All isolates contained a blaCTX-M gene, the dominant variant being blaCTX-M-1, and its presence was entirely due to plasmids. Our study confirms concerns of growing resistance to fourth generation cephalosporin, cefepime, as roughly half (51.4%) of all isolates were found to be susceptible dose-dependent and few were resistant. Resistance to non-beta lactams, gentamicin and ciprofloxacin, was also detected in our samples. Our study identifies prevalence of blaCTX-M type ESBL E. coli in U.S. backyard broiler farms, emphasizing the need for interventions for food and production safety.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Plasmids , beta-Lactamases , Animals , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Chickens/microbiology , United States/epidemiology , Plasmids/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Prevalence , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Microbial Sensitivity Tests , Feces/microbiology , Escherichia coli Proteins/genetics , Farms
5.
Nat Commun ; 15(1): 4731, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830889

ABSTRACT

Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, ß-lactam resistance genes -encoding ß-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the ß-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile ß-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that ß-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of ß-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Drug Collateral Sensitivity/genetics , Plasmids/genetics , Azithromycin/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactam Resistance/genetics
6.
Rev Med Suisse ; 20(872): 866-871, 2024 May 01.
Article in French | MEDLINE | ID: mdl-38693798

ABSTRACT

Multi-resistant Enterobacterales (MRE) are on the increase worldwide, with the main mechanism of resistance acquisition being horizontal transfer of plasmids coding for extended-spectrum betalactamase and/or carbapenemase. Low- and middle-income countries are the most affected, but surveillance in low-endemicity countries, such as Switzerland, is essential. International travel is one of the sources of MRE dissemination in the community, with the main risk factors for acquiring MRE being a stay in South or Southeast Asia and the use of antibiotics during travel. Other factors, notably animal and environmental, also explain this increase. Measures encompassing a One Health approach are therefore needed to address this issue.


Les entérobactéries multirésistantes (EMR) sont en augmentation dans le monde, avec comme mécanisme principal d'acquisition de résistance le transfert horizontal de plasmides codant pour une bêtalactamase à spectre étendu et/ou une carbapénèmase. Les pays à bas et moyens revenus sont les plus touchés, mais une surveillance dans les pays à faible endémicité, comme la Suisse, est essentielle. Les voyages internationaux sont l'une des sources de dissémination d'EMR dans la communauté, avec comme facteurs de risque principaux d'acquisition d'EMR un séjour en Asie du Sud ou du Sud-Est et l'utilisation d'antibiotiques durant le voyage. D'autres facteurs, notamment animaliers et environnementaux, expliquent aussi cette augmentation. Ainsi, il est nécessaire que des mesures englobant une approche « One Health ¼ répondent à cette problématique.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Travel , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Risk Factors , Animals , One Health , Plasmids , beta-Lactamases/genetics
7.
Amino Acids ; 56(1): 34, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691208

ABSTRACT

Breast cancer is the most common cancer among women worldwide, and marine creatures are the most abundant reservoir of anticancer medicines. Tachyplesin peptides have shown antibacterial capabilities, but their potential to inhibit cancer growth and trigger cancer cell death has not been investigated. A synthetic tachyplesin nucleotide sequence was generated and inserted into the pcDNA3.1( +) Mammalian Expression Vector. PCR analysis and enzyme digesting procedures were used to evaluate the vectors' accuracy. The transfection efficiency of MCF-7 and MCF10-A cells was 57% and 65%, respectively. The proliferation of MCF-7 cancer cells was markedly suppressed. Administration of plasmid DNA (pDNA) combined with tachyplesin to mice with tumors did not cause any discernible morbidity or mortality throughout treatment. The final body weight curves revealed a significant reduction in weight among mice treated with pDNA/tachyplesin and tachyplesin at a dose of 100 µg/ml (18.4 ± 0.24 gr, P < 0.05; 11.4 ± 0.24 gr P < 0.01) compared to the control group treated with PBS (22 ± 0.31 gr). Animals treated with pDNA/tachyplesin and tachyplesin exhibited a higher percentage of CD4 + Foxp3 + Tregs, CD8 + Foxp3 + Tregs, and CD4 + and CD8 + T cell populations expressing CTLA-4 in their lymph nodes and spleen compared to the PBS group. The groups that received pDNA/tachyplesin exhibited a substantial upregulation in the expression levels of caspase-3, caspase-8, BAX, PI3K, STAT3, and JAK genes. The results offer new possibilities for treating cancer by targeting malignancies using pDNA/tachyplesin and activating the mTOR and NFκB signaling pathways.


Subject(s)
Antimicrobial Cationic Peptides , Apoptosis , DNA-Binding Proteins , Peptides, Cyclic , Plasmids , Animals , Apoptosis/drug effects , Humans , Mice , Female , Antimicrobial Cationic Peptides/pharmacology , Peptides, Cyclic/pharmacology , MCF-7 Cells , Cell Proliferation/drug effects , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , DNA , Mice, Inbred BALB C
8.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717818

ABSTRACT

Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.


Subject(s)
Plasmids , Salmonella enterica , Serogroup , Plasmids/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Salmonella Infections/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Salmonella Phages/genetics , Salmonella Phages/classification , Humans , Phylogeny , Gene Transfer, Horizontal , Retrospective Studies
9.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
10.
BMC Microbiol ; 24(1): 174, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769479

ABSTRACT

BACKGROUND: Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS: This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 µg/mL), while broth microdilution identified 48 (MIC = 32-128 µg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION: The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Colistin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , India , beta-Lactamases/genetics , Plasmids/genetics
11.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793642

ABSTRACT

Mouse adenoviruses (MAdV) play important roles in studying host-adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson assembly. A fragment was excised from pKRMAV1 by restriction digestion and used to generate intermediate plasmid pKMAV1-ER, which contained E3, fiber, E4, and E1 regions of MAdV-1. CMV promoter-controlled GFP expression cassette was inserted downstream of the pIX gene in pKMAV1-ER and then transferred to pKRMAV1 to generate adenoviral plasmid pKMAV1-IXCG. Replacement of transgene could be conveniently carried out between dual BstZ17I sites in pKMAV1-IXCG by restriction-assembly, and a series of adenoviral plasmids were generated. Recombinant viruses were rescued after transfecting linearized adenoviral plasmids to mouse NIH/3T3 cells. MAdV-1 viruses carrying GFP or firefly luciferase genes were characterized in gene transduction, plaque-forming, and replication in vitro or in vivo by observing the expression of reporter genes. The results indicated that replication-competent vectors presented relevant properties of wild-type MAdV-1 very well. By constructing viruses bearing exogenous fragments with increasing size, it was found that MAdV-1 could tolerate an insertion up to 3.3 kb. Collectively, a replication-competent MAdV-1 vector system was established, which simplified procedures for the change of transgene or modification of E1, fiber, E3, or E4 genes.


Subject(s)
Genetic Vectors , Plasmids , Virus Replication , Animals , Mice , Genetic Vectors/genetics , Plasmids/genetics , Adenoviridae/genetics , NIH 3T3 Cells , Cloning, Molecular , Genes, Reporter
12.
Methods Mol Biol ; 2775: 91-106, 2024.
Article in English | MEDLINE | ID: mdl-38758313

ABSTRACT

RNA interference (RNAi) is a molecular biology technique for silencing specific eukaryotic genes without altering the DNA sequence in the genome. The silencing effect occurs because of decreased levels of mRNA that then result in decreased protein levels for the gene. The specificity of the silencing is dependent upon the presence of sequence-specific double-stranded RNA (dsRNA) that activates the cellular RNAi machinery. This chapter describes the process of silencing a specific target gene in Cryptococcus using a dual promoter vector. The plasmid, pIBB103, was designed with two convergent GAL7 promoters flanking a ura5 fragment that acts as a reporter for efficient RNAi. The target gene fragment is inserted between the promoters to be transcribed from both directions leading to the production of dsRNA in cells that activate the RNAi pathway.


Subject(s)
Cryptococcus , Promoter Regions, Genetic , RNA Interference , Cryptococcus/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Genetic Vectors/genetics , Plasmids/genetics , Gene Silencing
13.
Front Cell Infect Microbiol ; 14: 1368622, 2024.
Article in English | MEDLINE | ID: mdl-38741889

ABSTRACT

There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Gene Transfer, Horizontal , Plasmids , beta-Lactamases , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Humans , Escherichia coli Infections/microbiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Conjugation, Genetic , Escherichia coli Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Latin America , Drug Resistance, Bacterial/genetics
14.
Environ Microbiol ; 26(5): e16638, 2024 May.
Article in English | MEDLINE | ID: mdl-38733104

ABSTRACT

Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.


Subject(s)
Gene Transfer, Horizontal , Plasmids , Plasmids/genetics , Bacteria/genetics , Bacteria/classification , Bacterial Proteins/genetics , Conjugation, Genetic , Phylogeny , Planctomycetales/genetics , Evolution, Molecular , Replication Origin/genetics
15.
Nat Commun ; 15(1): 4093, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750030

ABSTRACT

Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.


Subject(s)
Escherichia coli , Plasmids , beta-Lactamases , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Chromosomes, Bacterial/genetics
16.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1559-1570, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783816

ABSTRACT

To develop an accurate and efficient protocol for multi-fragment assembly and multi-site mutagenesis, we integrated and optimized the common multi-fragment assembly methods and validated the established method by using fructose-1,6-diphosphatase 1 (FBP1) with 4 mutant sites. The fragments containing mutations were assembled by introducing mutant sites and Bsa I recognition sequences. After digestion/ligation, the ligated fragment was amplified with the primers containing overlap region to the linearized vector. The amplified fragment was ligated to the linearized vector and the ligation product was transformed into Escherichia coli. After screening and sequencing, the recombinant plasmid with 4 mutant sites was obtained. This protocol overcame the major defects of Gibson assembly and Golden Gate assembly, serving as an efficient solution for multi-fragment assembly and multi-site mutagenesis.


Subject(s)
Escherichia coli , Fructose-Bisphosphatase , Homologous Recombination , Escherichia coli/genetics , Escherichia coli/metabolism , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Plasmids/genetics , Genetic Vectors/metabolism , DNA/genetics , Mutation , Mutagenesis, Site-Directed , Cloning, Molecular
17.
West Afr J Med ; 41(3): 301-310, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38788127

ABSTRACT

INTRODUCTION: According to the World Health Organization, antimicrobial resistance (AMR) is a silent global pandemic that plagues everyone. It makes therapy of infectious diseases more difficult and eventually increases morbidity and mortality. AIM: The purpose of this work is to examine existing data on plasmid-mediated quinolone resistance (PMQR), to assess the prevalence of PMQR genes in Enterobacterales, and to determine any knowledge gaps from sub-Saharan Africa. METHODOLOGY: The Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) standard was followed when conducting this systematic review. The main internet databases examined for pertinent publications were PubMed, Google Scholar, and Ajol. A set of qualifying criteria were used to evaluate the qualified articles. Using the eligibility criteria, 56 full-text articles were chosen for screening. RESULT: Thirty-two (32) articles with the majority originating from West and North Africa and only one article reporting a study carried out in Central Africa were selected for this review. Escherichia coli and Ciprofloxacin were the most reported Enterobacterales and Quinolone respectively. The PMQR genes include qnr (qnrA,qnrB, qnrC, qnrD, and qnrS), aac (6') Ib, aac (6') Ib-cr, oqxAB and qepA gene. The most prevalent PMQR gene is the aac (6') Ib-cr gene (32%) followed by qnrS (26%). CONCLUSION: This study highlighted the requirement for an efficient antimicrobial resistance surveillance system in the continent and revealed a significant incidence of PMQR genes.


INTRODUCTION: Selon l'Organisation mondiale de la santé, la résistance aux antimicrobiens (RAM) est une pandémie mondiale silencieuse qui touche tout le monde. Elle rend le traitement des maladies infectieuses plus difficile et finit par augmenter la morbidité et la mortalité. OBJECTIF: L'objectif de ce travail est d'examiner les données existantes sur la résistance plasmidique aux quinolones (PMQR), d'évaluer la prévalence des gènes PMQR chez les Enterobacterales et de déterminer d'éventuelles lacunes de connaissances en Afrique subsaharienne. MÉTHODOLOGIE: La norme Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) a été suivie lors de la réalisation de cette revue systématique. Les principales bases de données Internet examinées pour des publications pertinentes étaient PubMed, Google Scholar et Ajol. Un ensemble de critères d'admissibilité a été utilisé pour évaluer les articles qualifiés. En utilisant les critères d'éligibilité, 56 articles en texte intégral ont été choisis pour le dépistage. RÉSULTAT: Trente-deux (32) articles, dont la majorité provient d'Afrique de l'Ouest et du Nord, et un seul article rapportant une étude menée en Afrique centrale, ont été sélectionnés pour cette revue. Escherichia coli et la ciprofloxacine étaient les Enterobacterales et les quinolones les plus signalées respectivement. Les gènes PMQR comprennent les gènes qnr (qnrA, qnrB, qnrC, qnrD et qnrS), aac (6 ') Ib, aac (6 ') Ib-cr, oqxAB et qepA. Le gène PMQR le plus prévalent est le gène aac (6 ') Ib-cr (32 %), suivi de qnrS (26 %). CONCLUSION: Cette étude a souligné la nécessité d'un système efficace de surveillance de la résistance aux antimicrobiens sur le continen`t et a révélé une incidence significative des gènes PMQR. MOTS-CLÉS: Enterobacterales, Escherichia coli, Quinolone, Ciprofloxacine, PMQR, "aac(6')-Ib", "aac(6')-Ib-cr", "qnr", "qepA", "oqxAB", "résistance aux antibiotiques".


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Fluoroquinolones , Plasmids , Humans , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Africa/epidemiology
18.
J Dent Res ; 103(6): 622-630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715225

ABSTRACT

microRNA-200a (miR-200a) targets multiple signaling pathways that are involved in osteogenic differentiation and bone development. However, its therapeutic function in osteogenesis and bone regeneration remains unknown. In this study, we use in vitro and in vivo models to investigate the molecular function of miR-200a overexpression and miR-200a inhibition using a plasmid-based miR inhibitor system (PMIS) on osteogenic differentiation and bone regeneration. Inhibition of miR-200a using PMIS-miR-200a significantly increased osteogenic biomarkers of human embryonic palatal mesenchyme cells and promoted bone regeneration in rat tooth socket defects. In rat maxillary M1 molar extractions, the supporting tooth structures were removed with an implant drill to yield a 3-mm defect in the alveolar bone. A collagen sponge was inserted into the open alveolar defect and PMIS-miR-200a plasmid DNA was added to the sponge and the wound sutured to protect the sponge and close the defect. It was important to remove the existing tooth supporting structure, which can influence alveolar bone regeneration. The alveolar bone was regenerated in 4 wk. The collagen sponge acts to stabilize and deliver the PMIS-miR-200a DNA to cells entering the sponge in the bone defect. We show that mesenchymal stem cells expressing CD90 and Stro-1 enter the sponges, take up the DNA, and express PMIS-miR-200a. PMIS-miR-200a initiates a bone regeneration program in transformed cells in vivo. In vitro inhibition of miR-200a was found to upregulate Wnt and BMP signaling activity as well as Runx2, OCN, Lef-1, Msx2, and Dlx5 associated with osteogenesis. Liver and blood toxicity testing of PMIS-miR-200a-treated rats showed no increase in several biomarkers of liver disease. These results demonstrate the therapeutic function of PMIS-miR-200a for rapid bone regeneration. Furthermore, the studies were designed to demonstrate the ease of use of PMIS-miR-200a in solution and applied using a syringe in the clinic through a simple one-time application.


Subject(s)
Bone Regeneration , MicroRNAs , Osteogenesis , Tooth Socket , Animals , Rats , Humans , Osteogenesis/physiology , Tooth Socket/surgery , Mesenchymal Stem Cells , Cell Differentiation , Rats, Sprague-Dawley , Male , Tooth Extraction , Alveolar Process , Plasmids , Alveolar Bone Loss/therapy , Collagen
19.
Appl Microbiol Biotechnol ; 108(1): 340, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777914

ABSTRACT

Horizontal gene transfer occurs frequently in bacteria, but the mechanism driving activation and optimization of the expression of horizontally transferred genes (HTGs) in new recipient strains is not clear. Our previous study found that spontaneous tandem DNA duplication resulted in rapid activation of HTGs. Here, we took advantage of this finding to develop a novel technique for tandem gene duplication, named tandem gene duplication selected by activation of horizontally transferred gene in bacteria (TDAH), in which tandem duplication was selected by the activation of horizontally transferred selectable marker gene. TDAH construction does not contain any reported functional elements based on homologous or site-specific recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection and 9-bp-microhomology border sequences for precise illegitimate recombination. One transformation and 3 days were enough to produce a high-copy strain, so its procedure is simple and fast. Without subsequent knockout of the endogenous recombination system, TDAH could also generate the relatively stable high-copy tandem duplication for plasmid-carried and genome-integrated DNA. TDAH also showed an excellent capacity for increase gene expression and worked well in different industrial bacteria. We also applied TDAH to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5 times and remained stable even after 12 subcultures. TDAH is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. KEY POINTS: • We develop a novel and efficient technique (TDAH) for tandem gene duplication in bacterium. TDAH is based on the mechanism of HTG rapid activation. TDAH does not contain any reported functional elements based on homologous recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection, so its construction and procedure are very simple and fast. • TDAH is the first reported selected and stable tandem-gene-duplication technique in which the selected high-copy plasmid-carried and genome-integrated DNA could remain stable without the subsequent knockout of recombination system. • TDAH showed an excellent capacity for regulating gene expression and worked well in different industrial bacteria, indicating it is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. • TDAH was applied to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5-fold and remained stable even after 12 subcultures.


Subject(s)
Escherichia coli , Gene Duplication , Gene Transfer, Horizontal , Plasmids , Escherichia coli/genetics , Escherichia coli/metabolism , Plasmids/genetics , Bacteria/genetics , Bacteria/metabolism , Gene Dosage , Recombination, Genetic
20.
PLoS One ; 19(5): e0303999, 2024.
Article in English | MEDLINE | ID: mdl-38781126

ABSTRACT

Serine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms. To help expand the number of Ints available for the assembly of more complex multifunctional circuits in eukaryotic cells, this protocol describes a platform for the assembly and functional screening of serine-integrase-based genetic switches designed to control gene expression by directional inversions of DNA sequence orientation. The system consists of two sets of plasmids, an effector module and a reporter module, both sets assembled with regulatory components (as promoter and terminator regions) appropriate for expression in mammals, including humans, and plants. The complete method involves plasmid design, DNA delivery, testing and both molecular and phenotypical assessment of results. This platform presents a suitable workflow for the identification and functional validation of new tools for the genetic regulation and reprogramming of organisms with importance in different fields, from medical applications to crop enhancement, as shown by the initial results obtained. This protocol can be completed in 4 weeks for mammalian cells or up to 8 weeks for plant cells, considering cell culture or plant growth time.


Subject(s)
Eukaryotic Cells , Integrases , Integrases/metabolism , Integrases/genetics , Humans , Eukaryotic Cells/metabolism , Plasmids/genetics , Serine/metabolism , Gene Editing/methods
SELECTION OF CITATIONS
SEARCH DETAIL