Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.084
Filter
1.
Water Environ Res ; 96(5): e11033, 2024.
Article in English | MEDLINE | ID: mdl-38720414

ABSTRACT

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Subject(s)
Bathing Beaches , Environmental Monitoring , Geologic Sediments , Microplastics , India , Microplastics/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Plastics/chemistry , Plastics/analysis
2.
Anal Bioanal Chem ; 416(14): 3459-3471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727737

ABSTRACT

Concerns regarding microplastic (MP) contamination in aquatic ecosystems and its impact on seafood require a better understanding of human dietary MP exposure including extensive monitoring. While conventional techniques for MP analysis like infrared or Raman microspectroscopy provide detailed particle information, they are limited by low sample throughput, particularly when dealing with high particle numbers in seafood due to matrix-related residues. Consequently, more rapid techniques need to be developed to meet the requirements of large-scale monitoring. This study focused on semi-automated fluorescence imaging analysis after Nile red staining for rapid MP screening in seafood. By implementing RGB-based fluorescence threshold values, the need for high operator expertise to prevent misclassification was addressed. Food-relevant MP was identified with over 95% probability and differentiated from natural polymers with a 1% error rate. Comparison with laser direct infrared imaging (LDIR), a state-of-the-art method for rapid MP analysis, showed similar particle counts, indicating plausible results. However, highly variable recovery rates attributed to inhomogeneous particle spiking experiments highlight the need for future development of certified reference material including sample preparation. The proposed method demonstrated suitability of high throughput analysis for seafood samples, requiring 0.02-0.06 h/cm2 filter surface compared to 4.5-14.7 h/cm with LDIR analysis. Overall, the method holds promise as a screening tool for more accurate yet resource-intensive MP analysis methods such as spectroscopic or thermoanalytical techniques.


Subject(s)
Oxazines , Seafood , Seafood/analysis , Oxazines/analysis , Food Contamination/analysis , Microplastics/analysis , Animals , Water Pollutants, Chemical/analysis , Staining and Labeling/methods , Plastics/analysis , Humans , Fluorescent Dyes/chemistry
3.
Environ Monit Assess ; 196(6): 554, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760486

ABSTRACT

This comprehensive review delves into the complex issue of plastic pollution, focusing on the emergence of biodegradable plastics (BDPs) as a potential alternative to traditional plastics. While BDPs seem promising, recent findings reveal that a large number of BDPs do not fully degrade in certain natural conditions, and they often break down into microplastics (MPs) even faster than conventional plastics. Surprisingly, research suggests that biodegradable microplastics (BDMPs) could have more significant and long-lasting effects than petroleum-based MPs in certain environments. Thus, it is crucial to carefully assess the ecological consequences of BDPs before widely adopting them commercially. This review thoroughly examines the formation of MPs from prominent BDPs, their impacts on the environment, and adsorption capacities. Additionally, it explores how BDMPs affect different species, such as plants and animals within a particular ecosystem. Overall, these discussions highlight potential ecological threats posed by BDMPs and emphasize the need for further scientific investigation before considering BDPs as a perfect solution to plastic pollution.


Subject(s)
Environmental Monitoring , Microplastics , Microplastics/analysis , Biodegradable Plastics , Environmental Pollution/statistics & numerical data , Plastics/analysis , Ecosystem , Biodegradation, Environmental , Environmental Pollutants/analysis
4.
Environ Monit Assess ; 196(6): 556, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760609

ABSTRACT

Research on the occurrence of microplastics in invertebrates of the Thoothukudi region is limited. Capitellids are non-selective suspension feeders and are usually used as bioindicator of water pollution. Hence, an investigation was carried out to identify the microplastic occurrence in the capitellids (Capitella capitata) (Fabricius, 1780) collected from the Vellapatti and Spic Nagar sites of the Thoothukudi region. Result from this investigation showed the occurrence of 0.21 ± 0.17 items/indiv and a mean abundance of 13.33% in Thoothukudi coast. The mean microplastic abundance in the capitellids was significantly higher in the Spic Nagar (0.26 ± 0.19 MPs/indiv), probably due to the dumping of plastic waste, fishing and recreational activities. However, no significant difference was observed between seasons. Only fragments (Vellapatti 66.66% and Spic Nagar 33.33%) and fibre-shaped microplastics (Vellapatti 50% and Spic Nagar 50%) were identified. The size and colour of the microplastics dominant in both sites were 1-2 mm (Vellapatti 77.77% and Spic Nagar 75%) and blue (Vellapatti 88.88% and Spic Nagar 87.5%), respectively. The results of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) analysis revealed the presence of polyethylene (PE) and polypropylene (PP) polymers in the capitellids. PE polymer is one of the most common sources of microplastics contamination globally and it is also frequently found in the coastal waters of Thoothukudi. This accounted for the high occurrence of PE polymers in the capitellids with the occurrence rate of 77% in Vellapatti and 58.52% in Spic Nagar. The present study provides baseline data on the occurrence, characterization (shapes, sizes and colours) and qualitative analysis of the microplastics in the capitellids, and their presence was influenced by their non-selective feeding habits. Further, future studies have to be conducted to identify the levels of microplastics in different polychaetes and other invertebrates to better understand the effects of microplastic pollution in invertebrate communities.


Subject(s)
Environmental Monitoring , Microplastics , Polychaeta , Water Pollutants, Chemical , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Plastics/analysis
5.
Sci Total Environ ; 932: 173031, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723961

ABSTRACT

The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , Particulate Matter , Plastics , Polymers , Microplastics/analysis , Polymers/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollutants/analysis , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Humans , Flame Retardants/analysis , Dust/analysis
6.
Chemosphere ; 359: 142366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768782

ABSTRACT

A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.


Subject(s)
Aptamers, Nucleotide , Endocrine Disruptors , Esters , Phthalic Acids , Water Pollutants, Chemical , Phthalic Acids/analysis , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis , Esters/analysis , Aptamers, Nucleotide/chemistry , Plastics/analysis , Plastics/chemistry , Reproducibility of Results
7.
Environ Pollut ; 352: 124098, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729512

ABSTRACT

Despite a recent ambitious plan to improve waste management in Thailand, few studies have monitored the impact of these policies on beached marine litter. Here, we assessed weekly the amounts and composition of stranded macro-litter (≥2.5 cm) on five beaches from an uninhabited island in Thailand during one year. A total of 24,407 items (391.86 kg) yielded a mean abundance of 3.18 ± 11.39 items m-2 (52.75 ± 204.68 g m-2), with plastic being the most abundant marine litter (48% of the total number). The overall Clean Coast Index (30.1) classified the beaches as 'extremely dirty', with a Plastic Abundance Index of 9.8 ('very high abundance' of plastics). When assessing the seasonal rates of accumulation, we found a higher flux pre-monsoon (0.05 items m-2 d-1; 0.66 g m-2 d-1) than post-monsoon (0.01 items m-2 d-1; 0.35 g m-2 d-1). Using modeling of the local hydrodynamic conditions, we explored the potential sources of the pollution, and surprisingly found that the closest river appeared not to be the source. Our results denote that the distribution and typology of marine litter were representatives of household and fishing activities, which in turn highlights the need for better regional litter management measures.


Subject(s)
Environmental Monitoring , Thailand , Environmental Monitoring/methods , Islands , Plastics/analysis , Water Pollutants, Chemical/analysis , Spatio-Temporal Analysis , Seasons
8.
Environ Pollut ; 351: 124092, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701964

ABSTRACT

Plastic pollution has spread through all parts of the marine environment, representing a significant threat to species and ecosystems. This study investigates the role of copepods as widespread microplastic reservoirs in the marine environment, by performing, a systematic review, meta-analysis, and semiquantitative analysis of scientific articles focusing on the interaction between copepods and microplastics under field conditions. Our findings indicate that despite uniformly low ingestion of microplastics across different marine layers and geographical areas, with a slight uptake in neustonic copepods, copepods might constitute one of the largest marine microplastic reservoirs. This phenomenon is attributed more to their vast abundance than to average microplastic ingestion values. In this article, a framework for data analysis and reporting is proposed to facilitate future large-scale evaluations and modelling of their extent and impact on plastic and carbon cycles. These insights place copepods at the forefront of the marine plastic cycle, possibly affecting plastic distribution, and bioavailability, thereby opening new pathways for understanding the complex dynamics of microplastics in marine ecosystems.


Subject(s)
Copepoda , Ecosystem , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Environmental Monitoring/methods , Plastics/analysis
9.
Sci Total Environ ; 934: 173072, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734093

ABSTRACT

The pollution of deep-sea microplastics has received increasing attention. As a special ecosystem in the deep sea, the cold seep area is of great significance for studying the distribution of microplastics in the deep sea. In this work, the distribution and characteristics of microplastics in seawater, sediments, and shellfish in the Haima cold seep area and the correlation between the characteristics of microplastics in different media and the type of media were studied. Microplastics were found in all three media. The abundance of microplastics in different samples from the Haima cold seep area ranged 1.8-3.8 items/L for the seawater, 11.47-96.8 items/kg (d.w.) for the surface sediments, and 0-5 items/individual (0-0.714 items/g) for the shellfish. The amount of microplastics ingested by shellfish varied among different species. The microplastics in these three media were mainly fibrous, dark-colored, small-sized rayon, polyethylene terephthalate (PET), and polyethylene (PE). In the correlation analysis of microplastic characteristics among the three media, it was found that the characteristics of microplastics in different media in the same area were closely related, and each pair of variables showed a significant positive correlation (P ≤ 0.05). The distinctive geographical conditions would accelerate the interchange of microplastics among various media. Principal component analysis showed that habitat contribute to microplastic feature differences in shellfish. Differences in correlation were observed between the characteristics of shellfish microplastics in different regions and the characteristics of microplastics in surrounding seawater and sediments.


Subject(s)
Environmental Monitoring , Microplastics , Seawater , Water Pollutants, Chemical , Microplastics/analysis , China , Water Pollutants, Chemical/analysis , Seawater/chemistry , Geologic Sediments/chemistry , Shellfish/analysis , Animals , Plastics/analysis
10.
Bull Environ Contam Toxicol ; 112(5): 73, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691196

ABSTRACT

Southeast Asia (SEA) faces significant environmental challenges due to rapid population growth and economic activity. Rivers in the region are major sources of plastic waste in oceans. Concerns about their contribution have grown, but knowledge of microplastics in the area is still limited. This article compares microplastic levels in sediment and water from urban zones of three major rivers in SEA: Chao Phraya River (Thailand), Saigon River (Vietnam), and Citarum River (Indonesia). The study reveals that in all three rivers, microplastics were found, with the highest concentrations in Chao Phraya's water (80 ± 60 items/m3) and Saigon's sediment (9167 ± 4559 items/kg). The variations in microplastic sizes and concentrations among these rivers may be attributed to environmental factors and the exposure duration of plastic to the environment. Since these rivers are important water supply sources, rigorous land-use regulations and raising public awareness are crucial to mitigate plastic and microplastic pollution.


Subject(s)
Environmental Monitoring , Microplastics , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Microplastics/analysis , Population Density , Asia, Southeastern , Thailand , Vietnam , Water Pollution, Chemical/statistics & numerical data , Plastics/analysis , Indonesia , Geologic Sediments/chemistry
11.
Bull Environ Contam Toxicol ; 112(5): 75, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733395

ABSTRACT

This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑13PBDEs) in soils ranged from 14.6 to 278.4 ng/g dry weight (dw), and in plants ranged from 11.5 to 176 ng/g dw. Both soil and plant samples showed that BDE-209 was the most important congener, the pollution level in soil and plant was similar, and the composition of PBDEs congener was similar. In the soil column (50 cm), the radial migration of PBDEs was mainly concentrated in the 0-30 cm section. Except for BDE-66, which was mainly located in the 20-30 cm soil layer, the concentration of PBDEs was the highest in the 0-10 cm region. Furthermore, the environmental risks of PBDEs in soil and plants were evaluated by hazard quotient method, and the HQ values were all < 1, which did not exhibit any ecological risk. The evaluation results also showed that the ecological risk of PBDEs in soil was higher than that of plants, especially penta-BDE, which should be paid more attention.


Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Plastics , Soil Pollutants , Soil , Halogenated Diphenyl Ethers/analysis , Soil Pollutants/analysis , Risk Assessment , Soil/chemistry , Plastics/analysis , Plants , China
12.
Mar Pollut Bull ; 203: 116468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744048

ABSTRACT

Detection of small plastic particles in environmental water samples has been a topic of increasing interest in recent years. A multitude of techniques, such as variants of Raman spectroscopy, have been employed to facilitate their analysis in such complex sample matrices. However, these studies are often conducted for a limited number of plastic types in matrices with relatively little additional materials. Thus, much remains unknown about what parameters influence the detection limits of Raman spectroscopy for more environmentally relevant samples. To address this, this study utilizes Raman spectroscopy to detect six plastic particle types; 161 and 33 nm polystyrene, < 450 nm and 36 nm poly(ethylene terephthalate), 121 nm polypropylene, and 126 nm polyethylene; spiked into artificial saltwater, artificial freshwater, North Sea, Thames River, and Elbe River water. Overall, factors such as plastic particle properties, water matrix composition, and experimental setup were shown to influence the final limits of detection.


Subject(s)
Environmental Monitoring , Fresh Water , Plastics , Spectrum Analysis, Raman , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Plastics/analysis , Fresh Water/chemistry , Seawater/chemistry , Rivers/chemistry , Microplastics/analysis
13.
Mar Pollut Bull ; 203: 116467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744047

ABSTRACT

The issue of plastic pollution has dramatically intensified in the recent years. Our study investigates extensive plastic contamination of a sandy beach on a small Adriatic island. The beach was sampled on three occasions, in 2013, 2020 and 2022, using 1 m2 quadrats placed along the lower and upper strandlines, resulting in average litter concentrations of 385 ± 106, 1095 ± 522 and 129 ± 37 item m-2, respectively. The lower size limit of collected litter was 1 mm, thus including large microplastics. Plastic fragments (49-74 %) and plastic pellets (15 %-37 %) were predominant litter categories. The proportion of fragments is significantly higher during the tourist season with a more intensive cleaning regime (April-October), as opposed to the off-season (November-March). Fisheries and aquaculture litter was identified as a relevant source of pollution. More research is needed in the future into the microplastics smaller than 1 mm.


Subject(s)
Bathing Beaches , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical , Plastics/analysis , Bathing Beaches/statistics & numerical data , Microplastics/analysis , Water Pollutants, Chemical/analysis , Islands
14.
Mar Pollut Bull ; 203: 116485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754319

ABSTRACT

In this study, the accumulation rate of plastic litter was investigated by sampling quadrats placed on the North Island of Qilianyu, and the composition was analyzed and identified to determine its source. The results showed that the annual average accumulation rate of plastic litter on North Island was 0.64 ± 0.32 pieces·m-2·month-1, with a mass accumulation rate of 11.30 ± 7.73 g·m-2·month-1. The accumulation rate of plastic litter was mainly influenced by wind speed and direction, with higher accumulation rates occurring during the southwest monsoon season and tropical cyclones. ATR-FTIR analysis indicated that polyethylene (44 %) and polypropylene (41 %) were the most abundant types of polymers. This study reveals the current status of plastic litter pollution in green turtle nesting grounds on North Island in Qilianyu, which can be used as a reference for management strategies that mitigate plastic litter pollution.


Subject(s)
Environmental Monitoring , Plastics , Turtles , Animals , Plastics/analysis , China , Water Pollutants, Chemical/analysis , Islands , Nesting Behavior
15.
Mar Pollut Bull ; 203: 116505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772172

ABSTRACT

Marine litter pollution poses a significant threat to offshore ecosystems, eliciting widespread concern. We investigated seafloor litter patterns in the Pearl River Estuary and adjacent coastal waters of China in 2023 via bottom trawl survey. Average number and weight densities were found to be 154.34 ± 30.95 n/km2 and 2384.63 ± 923.98 g/km2, respectively. Plastic was the most abundant material by number density (79.07 %), and rubber the highest by weight density (22.93 %). Overall number density varied from 40.50 ± 22.50 to 221.13 ± 52.44 n/km2, with the highest in Daya Bay and the lowest in Guanghai Bay. Weight density varied from 189.93 ± 71.94 to 5386.70 ± 3050.30 g/km2, with the highest in Qiao Island and the lowest in Honghai Bay. The main source was plastic bags and wrappers. The Pearl River Delta and Daya Bay were identified as seafloor litter distribution hotspots. Controlling plastic waste input is crucial for reducing seafloor litter in the Pearl River Estuary.


Subject(s)
Environmental Monitoring , Estuaries , Plastics , Rivers , China , Plastics/analysis , Ecosystem
16.
Mar Pollut Bull ; 203: 116486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781801

ABSTRACT

In recent years, plastic pollution in the environment has also increased due to the increasing production and consumption of plastics worldwide. The presence of microplastics (MPs) in the environment from different sources is observed almost everywhere, especially in aquatic environments. A standard method for sampling, identification, and quantification of MPs in wastewater has not yet been established. In this study, it was aimed to determine the MPs and their characteristics in the effluent of an advanced biological domestic wastewater treatment plant. The seasonal changes of MPs in a year were revealed. Pre-treatments suitable for the studied wastewater were developed for visual determination of MPs. Fibers are the dominant type of MPs, with numbers ranging between 32.0 and 95.5 particle/L. MPs in five different polymer structures were determined by FTIR analysis. These are Polyethylene, Polypropylene, Polyester, Polyurethane and Polyethylene terephthalate. The results were evaluated according to QA/QC and determined to meet the standards.


Subject(s)
Environmental Monitoring , Microplastics , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Plastics/analysis
17.
Mar Pollut Bull ; 203: 116476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781799

ABSTRACT

Remote islands are disproportionately affected by plastic pollution, often originating from elsewhere, so it is important to understand its origins, to stop debris entering the ocean at their source. We investigated the origins of beached plastic drink bottles in the Chagos Archipelago, a large remote Marine Protected Area (MPA) in the Indian Ocean. We recorded the brands, countries of manufacture, types of drink, and ages of plastic bottles and their lids. The prevalent type of drink was water, with items mostly manufactured in Indonesia, China, and the Maldives. The main brands were Danone and the Coca-Cola Company. We deduced that 10 % of the items originated from ships passing the archipelago, including all the items manufactured in China. The identification of the brands creating plastic pollution in remote MPAs with high biodiversity supports extended producer responsibility, one of the proposed policy development areas of the Global Plastics Treaty.


Subject(s)
Islands , Plastics , Plastics/analysis , Environmental Monitoring , China , Indian Ocean
18.
Mar Pollut Bull ; 203: 116497, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796930

ABSTRACT

Marine litter poses a significant environmental challenge in the Saronikos Gulf, Greece. Employing an integrated approach, data from both beach and underwater sites were analyzed. The average litter density on beaches was 2.61 items m-2, with plastic being the most common material, notably small polystyrene fragments and cigarette butts. The western part of the Gulf exhibited higher litter density, mainly due to surface circulation patterns. Most beaches fell short of meeting Good Environmental Status criteria for marine litter. Higher litter densities were observed in autumn. Benthic litter density decreased with depth, being 23 times higher in shallower waters, with plastic being the predominant type. This extensive study offers crucial insights into the pollution status and litter distribution in the Saronikos Gulf, contributing significantly to the global understanding of marine litter distribution on coastal ecosystems. Such information is crucial for raising awareness, informing policy decisions, and driving environmental actions.


Subject(s)
Environmental Monitoring , Plastics , Greece , Plastics/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Mediterranean Sea
19.
Mar Pollut Bull ; 203: 116407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701605

ABSTRACT

Cagarras Islands Archipelago, a no-take MPA in Southeast Brazil, was designated as Natural Monument (MONA Cagarras) and, more recently, recognized as Hope Spot for biodiversity conservation. This study aimed to assess plastic contamination by analyzing marine litter and microplastics in MONA Cagarras and surrounding waters. Marine litter (34.12 kg) was caught by artisanal fishermen in MONA Cagarras proximities, and plastics represented ∼79 %. Personal hygiene items and strains of hair were found, suggesting sewage-derived contamination from Ipanema SSO. Microplastics were detected in MONA Cagarras surface waters. Fragments and black particle were the most frequently found microplastic shape and color, respectively. µ-FTIR analysis identified, in descending order of occurrence, polystyrene-PS, polyethylene-PE, polyvinyl chloride-PVC, polypropylene-P, and polyamide-PA. Our integrated results of macro and microplastic contamination highlight an issue of effective conservation and health of marine biodiversity in MONA Cagarras and surrounding waters and a concern for better management of Brazilian MPAs.


Subject(s)
Biodiversity , Environmental Monitoring , Plastics , Sewage , Water Pollutants, Chemical , Brazil , Plastics/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Microplastics/analysis , Islands , Conservation of Natural Resources
20.
Mar Pollut Bull ; 203: 116442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718547

ABSTRACT

Plastic nurdles pose a significant environmental threat due to recurrent accidental spills into marine ecosystems. This report examines the nurdle pollution over the 1498 km of the Galician coastline (Spain) following the spill of 25 t of nurdles into the Northwest Atlantic after the loss of six containers from the Toconao vessel in December 2023. This accident highlights the urgent need for proactive, effective measures in maritime transport to prevent and mitigate such environmental catastrophes. The complexity of nurdle dispersion challenges the evaluation of their fate at sea, and the potential long-term consequences on the marine ecosystem and food web remain uncertain and yet to be investigated. This report also presents the VIEIRA collaborative and underscores the critical role of citizen-led initiatives in responding to such environmental disasters, and advocates for efficient policy reforms, involving cross-border collaboration. Furthermore, we call for greater international cooperation to underpin effective regulatory frameworks to address the growing hazard of plastic nurdle pollution worldwide.


Subject(s)
Plastics , Water Pollutants, Chemical , Spain , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Ships , Atlantic Ocean
SELECTION OF CITATIONS
SEARCH DETAIL