Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 548
Filter
1.
Cells ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891061

ABSTRACT

Through the shikimate pathway, a massive metabolic flux connects the central carbon metabolism with the synthesis of chorismate, the common precursor of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, as well as other compounds, including salicylate or folate. The alternative metabolic channeling of chorismate involves a key branch-point, finely regulated by aromatic amino acid levels. Chorismate mutase catalyzes the conversion of chorismate to prephenate, a precursor of phenylalanine and tyrosine and thus a vast repertoire of fundamental derived compounds, such as flavonoids or lignin. The regulation of this enzyme has been addressed in several plant species, but no study has included conifers or other gymnosperms, despite the importance of the phenolic metabolism for these plants in processes such as lignification and wood formation. Here, we show that maritime pine (Pinus pinaster Aiton) has two genes that encode for chorismate mutase, PpCM1 and PpCM2. Our investigations reveal that these genes encode plastidial isoenzymes displaying activities enhanced by tryptophan and repressed by phenylalanine and tyrosine. Using phylogenetic studies, we have provided new insights into the possible evolutionary origin of the cytosolic chorismate mutases in angiosperms involved in the synthesis of phenylalanine outside the plastid. Studies based on different platforms of gene expression and co-expression analysis have allowed us to propose that PpCM2 plays a central role in the phenylalanine synthesis pathway associated with lignification.


Subject(s)
Chorismate Mutase , Phylogeny , Pinus , Chorismate Mutase/metabolism , Chorismate Mutase/genetics , Pinus/enzymology , Pinus/genetics , Pinus/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Phenylalanine/metabolism , Plastids/metabolism , Plastids/enzymology , Tryptophan/metabolism
2.
Physiol Plant ; 176(3): e14340, 2024.
Article in English | MEDLINE | ID: mdl-38741259

ABSTRACT

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Subject(s)
Arabidopsis , Cysteine , Malate Dehydrogenase , Oxidation-Reduction , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cysteine/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , NAD/metabolism , Plastids/metabolism , Plastids/enzymology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
3.
Plant J ; 119(1): 460-477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678554

ABSTRACT

Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.


Subject(s)
Germination , Homeostasis , Oxidation-Reduction , Plant Proteins , Plastids , Seeds , Zea mays , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , Germination/genetics , Plastids/metabolism , Plastids/genetics , Plastids/enzymology , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Zea mays/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Gene Expression Regulation, Plant , Carotenoids/metabolism
4.
Plant Physiol Biochem ; 210: 108654, 2024 May.
Article in English | MEDLINE | ID: mdl-38663264

ABSTRACT

Fatty acid de novo biosynthesis in plant plastids is initiated from acetyl-CoA and catalyzed by a series of enzymes, which is required for the vegetative growth, reproductive growth, seed development, stress response, chloroplast development and other biological processes. In this review, we systematically summarized the fatty acid de novo biosynthesis-related genes/enzymes and their critical roles in various plant developmental processes. Based on bioinformatic analysis, we identified fatty acid synthase encoding genes and predicted their potential functions in maize growth and development, especially in anther and pollen development. Finally, we highlighted the potential applications of these fatty acid synthases in male-sterility hybrid breeding, seed oil content improvement, herbicide and abiotic stress resistance, which provides new insights into future molecular crop breeding.


Subject(s)
Fatty Acids , Plastids , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Plastids/metabolism , Plastids/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Reproduction , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Pollen/enzymology , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/genetics , Zea mays/genetics , Zea mays/metabolism , Zea mays/enzymology , Plants/metabolism , Plants/genetics , Plants/enzymology
5.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428393

ABSTRACT

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Subject(s)
DNA-Directed RNA Polymerases , Plastids , Chloroplasts/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/genetics , Nicotiana/genetics , Photosynthesis , Plastids/enzymology
6.
Cell ; 187(5): 1145-1159.e21, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428394

ABSTRACT

Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.


Subject(s)
DNA-Directed RNA Polymerases , Plastids , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/chemistry , Gene Expression Regulation, Plant , Plant Proteins/chemistry , Plastids/enzymology , Transcription, Genetic
7.
Cell ; 187(5): 1106-1108, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428392

ABSTRACT

RNA polymerases (RNAPs) control the first step of gene expression in all forms of life by transferring genetic information from DNA to RNA, a process known as transcription. In this issue of Cell, Webster et al. and Wu et al. report three-dimensional structures of RNAP complexes from chloroplasts.


Subject(s)
DNA-Directed RNA Polymerases , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Transcription, Genetic , Plastids/enzymology
8.
Mol Plant Microbe Interact ; 35(7): 627-637, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35345887

ABSTRACT

Chloroplasts serve as cold priming hubs modulating the transcriptional response of Arabidopsis thaliana to a second cold stimulus for several days by postcold accumulation of thylakoid ascorbate peroxidases (tAPX). In an attempt to investigate cross-priming effects of cold on plant pathogen protection, we show here that such a single 24-h cold treatment at 4°C decreased the susceptibility of Arabidopsis to virulent Pseudomonas syringae pv. tomato DC3000 but did not alter resistance against the avirulent P. syringae pv. tomato avRPM1 and P. syringae pv. tomato avrRPS4 strains or the effector-deficient P. syringae pv. tomato strain hrcC-. The effect of cold priming against P. syringae pv. tomato was active immediately after cold exposure and memorized for at least 5 days. The priming benefit was established independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) or activation of the immune-related genes NHL10, FRK1, ICS1 and PR1 but required thylakoid-bound as well as stromal ascorbate peroxidase activities because the effect was absent or weak in corresponding knock-out-lines. Suppression of tAPX postcold regulation in a conditional-inducible tAPX-RNAi line led to increased bacterial growth numbers. This highlights that the plant immune system benefits from postcold regeneration of the protective chloroplast peroxidase system.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cold Temperature , Plant Diseases , Arabidopsis/enzymology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Disease Resistance , Gene Expression Regulation, Plant , Peroxidases/genetics , Peroxidases/metabolism , Plant Diseases/microbiology , Plastids/enzymology , Plastids/genetics , Pseudomonas syringae/pathogenicity
10.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638789

ABSTRACT

Starch phosphorylase is a member of the GT35-glycogen-phosphorylase superfamily. Glycogen phosphorylases have been researched in animals thoroughly when compared to plants. Genetic evidence signifies the integral role of plastidial starch phosphorylase (PHO1) in starch biosynthesis in model plants. The counterpart of PHO1 is PHO2, which specifically resides in cytosol and is reported to lack L80 peptide in the middle region of proteins as seen in animal and maltodextrin forms of phosphorylases. The function of this extra peptide varies among species and ranges from the substrate of proteasomes to modulate the degradation of PHO1 in Solanum tuberosum to a non-significant effect on biochemical activity in Oryza sativa and Hordeum vulgare. Various regulatory functions, e.g., phosphorylation, protein-protein interactions, and redox modulation, have been reported to affect the starch phosphorylase functions in higher plants. This review outlines the current findings on the regulation of starch phosphorylase genes and proteins with their possible role in the starch biosynthesis pathway. We highlight the gaps in present studies and elaborate on the molecular mechanisms of phosphorylase in starch metabolism. Moreover, we explore the possible role of PHO1 in crop improvement.


Subject(s)
Magnoliopsida/enzymology , Plastids/enzymology , Starch Phosphorylase/metabolism , Magnoliopsida/metabolism , Starch/metabolism
11.
Plant J ; 106(5): 1247-1259, 2021 06.
Article in English | MEDLINE | ID: mdl-33725374

ABSTRACT

The unicellular marine diatom Phaeodactylum tricornutum accumulates up to 35% eicosapentaenoic acid (EPA, 20:5n3) and has been used as a model organism to study long chain polyunsaturated fatty acids (LC-PUFA) biosynthesis due to an excellent annotated genome sequence and established transformation system. In P. tricornutum, the majority of EPA accumulates in polar lipids, particularly in galactolipids such as mono- and di-galactosyldiacylglycerol. LC-PUFA biosynthesis is considered to start from oleic acid (18:1n9). EPA can be synthesized via a series of desaturation and elongation steps occurring at the endoplasmic reticulum and newly synthesized EPA is then imported into the plastids for incorporation into galactolipids via an unknown route. The basis for the flux of EPA is fundamental to understanding LC-PUFA biosynthesis in diatoms. We used P. tricornutum to study acyl modifying activities, upstream of 18:1n9, on subsequent LC-PUFA biosynthesis. We identified the gene coding for the plastidial acyl carrier protein Δ9-desaturase, a key enzyme in fatty acid modification and analyzed the impact of overexpression and knock out of this gene on glycerolipid metabolism. This revealed a previously unknown role of this soluble desaturase in EPA synthesis and production of triacylglycerol. This study provides further insight into the distinctive nature of lipid metabolism in the marine diatom P. tricornutum and suggests additional approaches for tailoring oil composition in microalgae.


Subject(s)
Acyl Carrier Protein/metabolism , Diatoms/metabolism , Eicosapentaenoic Acid/biosynthesis , Fatty Acid Desaturases/metabolism , Lipid Metabolism , Triglycerides/metabolism , Acyl Carrier Protein/genetics , Biosynthetic Pathways , Diatoms/genetics , Fatty Acid Desaturases/genetics , Gene Knockout Techniques , Microalgae , Plastids/enzymology
12.
J Biol Chem ; 296: 100338, 2021.
Article in English | MEDLINE | ID: mdl-33497624

ABSTRACT

ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.


Subject(s)
Apicoplasts/enzymology , Cyanobacteria/enzymology , Endopeptidase Clp/metabolism , Plastids/enzymology , Endopeptidase Clp/chemistry , Plasmodium falciparum/enzymology , Proteomics , Proteostasis , Signal Transduction , Substrate Specificity
13.
Plant Cell Environ ; 44(2): 548-558, 2021 02.
Article in English | MEDLINE | ID: mdl-33131061

ABSTRACT

In Arabidopsis, two leaf-type ferredoxin-NADP+ oxidoreductase (LFNR) isoforms function in photosynthetic electron flow in reduction of NADP+ , while two root-type FNR (RFNR) isoforms catalyse reduction of ferredoxin in non-photosynthetic plastids. As the key to understanding, the function of RFNRs might lie in their spatial and temporal distribution in different plant tissues and cell types, we examined expression of RFNR1 and RFNR2 genes using ß-glucuronidase (GUS) reporter lines and investigated accumulation of distinct RFNR isoforms using a GFP approach and Western blotting upon various stresses. We show that while RFNR1 promoter is active in leaf veins, root tips and in the stele of roots, RFNR2 promoter activity is present in leaf tips and root stele, epidermis and cortex. RFNR1 protein accumulates as a soluble protein within the plastids of root stele cells, while RFNR2 is mainly present in the outer root layers. Ozone treatment of plants enhanced accumulation of RFNR1, whereas low temperature treatment specifically affected RFNR2 accumulation in roots. We further discuss the physiological roles of RFNR1 and RFNR2 based on characterization of rfnr1 and rfnr2 knock-out plants and show that although the function of these proteins is partly redundant, the RFNR proteins are essential for plant development and survival.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Ferredoxin-NADP Reductase/metabolism , Oxidoreductases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cold Temperature , Electron Transport , Ferredoxin-NADP Reductase/genetics , Oxidoreductases/metabolism , Photosynthesis , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plastids/enzymology , Protein Isoforms , Stress, Physiological
14.
J Biol Chem ; 295(44): 14906-14915, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32848019

ABSTRACT

Thiol-based redox regulation is a post-translational protein modification for controlling enzyme activity by switching oxidation/reduction states of Cys residues. In plant cells, numerous proteins involved in a wide range of biological systems have been suggested as the target of redox regulation; however, our knowledge on this issue is still incomplete. Here we report that 3-phosphoglycerate dehydrogenase (PGDH) is a novel redox-regulated protein. PGDH catalyzes the first committed step of Ser biosynthetic pathway in plastids. Using an affinity chromatography-based method, we found that PGDH physically interacts with thioredoxin (Trx), a key factor of redox regulation. The in vitro studies using recombinant proteins from Arabidopsis thaliana showed that a specific PGDH isoform, PGDH1, forms the intramolecular disulfide bond under nonreducing conditions, which lowers PGDH enzyme activity. MS and site-directed mutagenesis analyses allowed us to identify the redox-active Cys pair that is mainly involved in disulfide bond formation in PGDH1; this Cys pair is uniquely found in land plant PGDH. Furthermore, we revealed that some plastidial Trx subtypes support the reductive activation of PGDH1. The present data show previously uncharacterized regulatory mechanisms of PGDH and expand our understanding of the Trx-mediated redox-regulatory network in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Isoenzymes/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Plastids/enzymology , Arabidopsis Proteins/chemistry , Disulfides/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Isoenzymes/genetics , Mutagenesis, Site-Directed , Oxidation-Reduction , Phosphoglycerate Dehydrogenase/chemistry , Phosphoglycerate Dehydrogenase/genetics , Protein Binding , Thioredoxins/metabolism
15.
Dokl Biochem Biophys ; 492(1): 124-129, 2020 May.
Article in English | MEDLINE | ID: mdl-32632588

ABSTRACT

HY5 (ELONGATED HYPOCOTYL5), a bZIP transcription factor, is one of the main regulators of light and hormonal signaling. Among the targets of this gene, the genes for the transcriptional complex of chloroplasts whose coordinated expression ensures the initial stages of photomorphogenesis are particularly significant. In this study, we showed that, during de-etiolation, HY5 functions as a positive CK-dependent regulator of the expression of genes encoding proteins associated with plastid RNA polymerase (PAP), which functions below the primary chain of sensing the cytokinin signal. The absence of blocking effect of mutations of the CRY1, CRY2, PHYA, and PHYB photoreceptor genes on the CK-dependent content of PAP gene transcripts indicates the parallel action of the hormone and light in their regulation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Bacteria/enzymology , Basic-Leucine Zipper Transcription Factors/genetics , Cytokinins/metabolism , DNA-Directed RNA Polymerases/genetics , Etiolation , Plastids/enzymology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Chloroplasts/metabolism , Cytokinins/genetics , Gene Expression Regulation, Plant , Signal Transduction
16.
Mol Syst Biol ; 16(7): e9464, 2020 07.
Article in English | MEDLINE | ID: mdl-32633465

ABSTRACT

Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.


Subject(s)
Arabidopsis/metabolism , Lysine/chemistry , N-Terminal Acetyltransferases/metabolism , Plant Proteins/metabolism , Plastids/genetics , Plastids/metabolism , Acetylation , Arabidopsis/enzymology , Arabidopsis/genetics , Chloroplasts/enzymology , Chloroplasts/metabolism , Chromatography, High Pressure Liquid , Chromatography, Liquid , Epigenome , Escherichia/genetics , Escherichia/metabolism , Gene Knockout Techniques , Genome, Plant , In Vitro Techniques , N-Terminal Acetyltransferases/chemistry , N-Terminal Acetyltransferases/genetics , Peptides/chemistry , Peptides/genetics , Phylogeny , Plant Proteins/genetics , Plastids/enzymology , Recombinant Proteins , Tandem Mass Spectrometry
17.
Plant Physiol Biochem ; 151: 608-620, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32335384

ABSTRACT

Glutamine synthetases (GS) play an essential role in Nitrogen assimilation. Nonetheless, information respecting the molecular functions of GS in drought tolerance (DT) is limited. Here we show that overexpressing cytosolic GS1 or plastidic GS2 gene in tobacco enhanced DT of both root and leaf tissues of the two transgenic seedlings (named as GS1-TR and GS2-TR). RNA-seq analysis on root tissues showed that 83 aquaporin (AQP) genes were identified. Among them, 37 differential expression genes (DEGs) were found in the GS1-TR roots under normal condition, and all were down-regulated; no any DEGs in the GS2-TR roots were found. Contrastingly, under drought, 28 and 32 DEGs of AQP were up-regulated in GS1-TR and GS2-TR roots, respectively. GC-MS analysis on leaf tissues showed that glutamine (Gln) concentrations were negatively correlated AQP expressions in the all four conditions, which suggests that Gln, as a signal molecule, can negatively regulate many AQP expressions. Prestress accumulation of sucrose and proline (Pro) and chlorophyll, and had higher activities of ROS scavengers also contribute the plant DT in both of the two transgenic plants under drought. In addition, 5-aminolevulinic acid (ALA) was up-accumulated in GS2-TR leaves solely under normal condition, which leads to its net photosynthetic rate higher than that in GS1-TR leaves. Last but not the less, the PYL-PP2C-SnRK2 core ABA-signaling pathway was uniquely activated in GS1-TR independent of drought stress (DS). Therefore, our results suggest a possible model reflecting how overexpression of wheat TaGS1 and TaGS2 regulate plant responses to drought.


Subject(s)
Droughts , Gene Expression , Glutamate-Ammonia Ligase , Nicotiana , Stress, Physiological , Triticum , Cytosol/enzymology , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamine , Plant Leaves/enzymology , Plant Leaves/genetics , Plastids/enzymology , Stress, Physiological/genetics , Nicotiana/genetics , Triticum/enzymology , Triticum/genetics
18.
Plant Physiol Biochem ; 151: 264-270, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32244096

ABSTRACT

Lipoic acid (LA) and its reduced form (dihydrolipoic acid, DHLA) have unique antioxidant properties among such molecules. Moreover, after a process termed lipoylation, LA is an essential prosthetic group covalently-attached to several key multi-subunit enzymatic complexes involved in primary metabolism, including E2 subunits of pyruvate dehydrogenase (PDH). The metabolic pathway of lipoylation has been extensively studied in Escherichia coli and Arabidopsis thaliana in which protein modification occurs via two routes: de novo synthesis and salvage. Common to both pathways, lipoyl synthase (LIP1 in plants, LipA in bacteria, EC 2.8.1.8) inserts sulphur atoms into the molecule in a final, activating step. However, despite the detection of LA and DHLA in other plant species, including tomato (Solanum lycopersicum), no plant LIP1s have been characterised to date from species other than Arabidopsis. In this work, we present the identification and characterisation of two LIPs from tomato, SlLIP1 and SlLIP1p. Consistent with in silico data, both are widely-expressed, particularly in reproductive organs. In line with bioinformatic predictions, we determine that yellow fluorescent protein tagged versions of SlLIP1 and SlLIP1p are mitochondrially- and plastidially-localised, respectively. Both possess the molecular hallmarks and domains of well-characterised bacterial LipAs. When heterologously-expressed in an E. coli lipA mutant, both are capable of complementing specific growth phenotypes and increasing lipoylation levels of E2 subunits of PDH in vivo, demonstrating that they do indeed function as lipoyl synthases.


Subject(s)
Acyltransferases , Lipoylation , Mitochondria , Plastids , Solanum lycopersicum , Acyltransferases/genetics , Acyltransferases/metabolism , Escherichia coli/genetics , Solanum lycopersicum/enzymology , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Plastids/enzymology , Thioctic Acid/metabolism
19.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396869

ABSTRACT

The leaf is an important photosynthetic organ and plays an essential role in the growth and development of plants. Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis. In this study, we identified an EMS-induced mutant, yl2.1, which exhibited yellow cotyledons and true leaves that did not turn green with leaf growth. The yl2.1 locus was controlled by a recessive nuclear gene. The CsYL2.1 was mapped to a 166.7-kb genomic region on chromosome 2, which contains 24 predicted genes. Only one non-synonymous single nucleotide polymorphism (SNP) was found between yl2.1 and wt-WD1 that was located in Exon 7 of Csa2G263900, resulting in an amino acid substitution. CsYL2.1 encodes a plastid isoform of triose phosphate isomerase (pdTPI), which catalyzes the reversible conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (GAP) in chloroplasts. CsYL2.1 was highly expressed in the cotyledons and leaves. The mesophyll cells of the yl2.1 leaves contained reduced chlorophyll and abnormal chloroplasts. Correspondingly, the photosynthetic efficiency of the yl2.1 leaves was impaired. Identification of CsYL2.1 is helpful in elucidating the function of ptTPI in the chlorophyll metabolism and chloroplast development and understanding the molecular mechanism of this leaf color variant in cucumber.


Subject(s)
Cucumis sativus/growth & development , Gene Expression Regulation, Plant , Mutation , Plant Leaves/growth & development , Plant Proteins/metabolism , Plastids/enzymology , Triose-Phosphate Isomerase/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Color , Cucumis sativus/enzymology , Cucumis sativus/genetics , Genes, Recessive , Isoenzymes , Phenotype , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Triose-Phosphate Isomerase/genetics
20.
Plant Sci ; 290: 110303, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31779913

ABSTRACT

The physiological roles of the plastidial phosphorylase in starch metabolism of higher plants have been debated for decades. While estimated physiological substrate levels favor a degradative role, genetic evidence indicates that the plastidial phosphorylase (Pho1) plays an essential role in starch initiation and maturation of the starch granule in developing rice grains. The plastidial enzyme contains a unique peptide domain, up to 82 residues in length depending on the plant species, not found in its cytosolic counterpart or glycogen phosphorylases. The role of this extra peptide domain is perplexing, as its complete removal does not significantly affect the in vitro catalytic or enzymatic regulatory properties of rice Pho1. This peptide domain may have a regulatory function as it contains potential phosphorylation sites and, in some plant Pho1s, a PEST motif, a substrate for proteasome-mediated degradation. We discuss the potential roles of Pho1 and its L80 domain in starch biosynthesis and photosynthesis.


Subject(s)
Phosphorylases/metabolism , Plant Proteins/metabolism , Plants/metabolism , Plastids/enzymology , Plants/enzymology , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL