Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.652
Filter
1.
Mol Plant Pathol ; 25(9): e70003, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235122

ABSTRACT

Sugarcane smut fungus Sporisorium scitamineum produces polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) to regulate sexual mating/filamentous growth critical for pathogenicity. Besides de novo biosynthesis, intracellular levels of polyamines could also be modulated by oxidation. In this study, we identified two annotated polyamine oxidation enzymes (SsPAO and SsCuAO1) in S. scitamineum. Compared to the wild type (MAT-1), the ss1paoΔ and ss1cuao1Δ mutants were defective in sporidia growth, sexual mating/filamentation, and pathogenicity. The addition of a low concentration of cAMP (0.1 mM) could partially or fully restore filamentation of ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ. cAMP biosynthesis and hydrolysis genes were differentially expressed in the ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ cultures, further supporting that SsPAO- or SsCuAO1-based polyamine homeostasis regulates S. scitamineum filamentation by affecting the cAMP/PKA signalling pathway. During early infection, PUT promotes, while SPD inhibits, the accumulation of reactive oxygen species (ROS) in sugarcane, therefore modulating redox homeostasis at the smut fungus-sugarcane interface. Autophagy induction was found to be enhanced in the ss1paoΔ mutant and reduced in the ss1cuao1Δ mutant. Exogenous addition of cAMP, PUT, SPD, or SPM at low concentration promoted autophagy activity under a non-inductive condition (rich medium), suggesting a cross-talk between polyamines and cAMP signalling in regulating autophagy in S. scitamineum. Overall, our work proves that SsPAO- and SsCuAO1-mediated intracellular polyamines affect intracellular redox balance and thus play a role in growth, sexual mating/filamentation, and pathogenicity of S. scitamineum.


Subject(s)
Oxidation-Reduction , Polyamines , Polyamines/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Cyclic AMP/metabolism , Saccharum/microbiology , Gene Expression Regulation, Fungal , Ustilaginales/pathogenicity , Autophagy
2.
Nutrients ; 16(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39275210

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Early detection and the modification of risk factors, such as diet, can reduce its incidence. Among food components, polyamines are important for maintaining gastrointestinal health and are metabolites of gut microbiota. Their disruption is linked to CRC, making polyamines a potential marker of the disease. This study analyzed the relationship between dietary components, including polyamines, and the presence of polyamines in feces to determine whether their presence could contribute to predicting the occurrence of colorectal lesions in patients. In total, 59 participants of both sexes (aged 50 to 70 years) who had undergone colonoscopy screening for CRC (18 without and 41 with colorectal lesions) participated in the study. A nutritional survey and determination of fecal polyamine content were performed. Specific dietary components and putrescine levels were higher in patients with colorectal lesions. The diet ratio of putrescine-spermidine and the fecal content of N-acetyl putrescine and cadaverine were elevated in patients with precancerous lesions and adenocarcinomas, showing a potential predictive value for the presence of colorectal lesions. These findings suggest that N-acetyl putrescine and cadaverine could be complementary markers for the diagnosis of suspected colorectal lesions.


Subject(s)
Cadaverine , Colorectal Neoplasms , Diet , Feces , Polyamines , Putrescine , Humans , Male , Middle Aged , Female , Feces/chemistry , Aged , Putrescine/analysis , Putrescine/metabolism , Cadaverine/analysis , Cadaverine/metabolism , Polyamines/analysis , Polyamines/metabolism , Colonoscopy , Early Detection of Cancer/methods
3.
Cells ; 13(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273047

ABSTRACT

Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs. Interestingly, however, according to our previous work, denuded sea urchin eggs devoid of the JC and VL do not fail to become fertilized by sperm. Instead, they are bound and penetratedby multiple sperm, raising the possibility that an alternative pathway independent of the VL-residing sperm receptor may be at work. In this research, we studied the roles of the JC and VL using intact and denuded eggs and the synthetic polyamine BPA-C8. BPA-C8 is known to bind to the negatively charged macromolecular complexes in the cells, such as the JC, VL, and the plasma membrane of echinoderm eggs, as well as to the actin filaments in fibroblasts. Our results showed that, when added to seawater, BPA-C8 significantly repressed the Ca2+ wave in the intact P. lividus eggs at fertilization. In eggs deprived of the VL and JC, BPA-C8 binds to the plasma membrane and increases fibrous structures connecting microvilli, thereby allowing the denuded eggs to revert towards monospermy at fertilization. However, the reduced Ca2+ signal in denuded eggs was nullified compared to the intact eggs because removing the JC and VL already decreased the Ca2+ wave. BPA-C8 does not cross the VL and the cell membrane of unfertilized sea urchin eggs to diffuse into the cytoplasm at variance with the fibroblasts. Indeed, the jasplakinolide-induced polymerization of subplasmalemmal actin filaments was inhibited in the eggs microinjected with BPA-C8, but not in the ones bath-incubated with the same dose of BPA-C8.


Subject(s)
Fertilization , Ovum , Sea Urchins , Animals , Fertilization/drug effects , Sea Urchins/drug effects , Sea Urchins/metabolism , Ovum/metabolism , Ovum/drug effects , Male , Polyamines/metabolism , Polyamines/pharmacology , Female , Spermatozoa/metabolism , Spermatozoa/drug effects , Calcium Signaling/drug effects , Sperm-Ovum Interactions/drug effects , Calcium/metabolism
4.
Theriogenology ; 229: 202-213, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217649

ABSTRACT

BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT: Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION: This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.


Subject(s)
Gonadotropin-Releasing Hormone , Sexual Maturation , Animals , Female , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Mice , Sexual Maturation/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Polyamines/metabolism , Aging , Ovary/drug effects , Ovary/metabolism , Gene Expression Regulation/drug effects
5.
PLoS One ; 19(8): e0307573, 2024.
Article in English | MEDLINE | ID: mdl-39110759

ABSTRACT

Streptococcus pneumoniae is a bacterium of great global importance, responsible for more than one million deaths per year. This bacterium is commonly acquired in the first years of life and colonizes the upper respiratory tract asymptomatically by forming biofilms that persist for extended times in the nasopharynx. However, under conditions that alter the bacterial environment, such as viral infections, pneumococci can escape from the biofilm and invade other niches, causing local and systemic disease of varying severity. The polyamine transporter PotABCD is required for optimal survival of the organism in the host. Immunization of mice with recombinant PotD can reduce subsequent bacterial colonization. PotD has also been suggested to be involved in pneumococcal biofilm development. Therefore, in this study we aimed to elucidate the role of PotABCD and polyamines in pneumococcal biofilm formation. First, the formation of biofilms was evaluated in the presence of exogenous polyamines-the substrate transported by PotABCD-added to culture medium. Next, a potABCD-negative strain was used to determine biofilm formation in different model systems using diverse levels of complexity from abiotic surface to cell substrate to in vivo animal models and was compared with its wild-type strain. The results showed that adding more polyamines to the medium stimulated biofilm formation, suggesting a direct correlation between polyamines and biofilm formation. Also, deletion of potABCD operon impaired biofilm formation in all models tested. Interestingly, more differences between wild-type and mutant strains were observed in the more complex model, which emphasizes the significance of employing more physiological models in studying biofilm formation.


Subject(s)
Biofilms , Streptococcus pneumoniae , Biofilms/growth & development , Streptococcus pneumoniae/physiology , Streptococcus pneumoniae/metabolism , Animals , Mice , Polyamines/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Pneumococcal Infections/microbiology , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Operon
6.
Theranostics ; 14(11): 4218-4239, 2024.
Article in English | MEDLINE | ID: mdl-39113799

ABSTRACT

Rationale: The aryl hydrocarbon receptor (AhR) functions in the regulation of intestinal inflammation, but knowledge of the underlying mechanisms in innate immune cells is limited. Here, we investigated the role of AhR in modulating the functions of macrophages in inflammatory bowel disease pathogenesis. Methods: The cellular composition of intestinal lamina propria CD45+ leukocytes in a dextran sulfate sodium (DSS)-induced mouse colitis model was determined by single-cell RNA sequencing. Macrophage pyroptosis was quantified by analysis of lactate dehydrogenase release, propidium iodide staining, enzyme-linked immunosorbent assay, western blot, and flow cytometry. Differentially expressed genes were confirmed by RNA-seq, RT-qPCR, luciferase assay, chromatin immunoprecipitation, and immunofluorescence staining. Results: AhR deficiency mediated dynamic remodeling of the cellular composition of intestinal lamina propria (LP) CD45+ immune cells in a colitis model, with a significant increase in monocyte-macrophage lineage. Mice with AhR deficiency in myeloid cells developed more severe dextran sulfate sodium induced colitis, with concomitant increased macrophage pyroptosis. Dietary supplementation with an AhR pre-ligand, indole-3-carbinol, conferred protection against colitis while protection failed in mice lacking AhR in myeloid cells. Mechanistically, AhR signaling inhibited macrophage pyroptosis by promoting ornithine decarboxylase 1 (Odc1) transcription, to enhance polyamine biosynthesis. The increased polyamine, particularly spermine, inhibited NLRP3 inflammasome assembly and subsequent pyroptosis by suppressing K+ efflux. AHR expression was positively correlated with ODC1 in intestinal mucosal biopsies from patients with ulcerative colitis. Conclusions: These findings suggest a functional role for the AhR/ODC1/polyamine axis in maintaining intestinal homeostasis, providing potential targets for treatment of inflammatory bowel disease.


Subject(s)
Colitis , Dextran Sulfate , Macrophages , Polyamines , Pyroptosis , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Colitis/metabolism , Colitis/chemically induced , Colitis/pathology , Humans , Polyamines/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Knockout , Inflammation/metabolism , Male , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Basic Helix-Loop-Helix Transcription Factors
7.
PLoS Biol ; 22(8): e3002731, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102375

ABSTRACT

Bacterial pathogens utilize the factors of their hosts to infect them, but which factors they exploit remain poorly defined. Here, we show that a pathogenic Salmonella enterica serovar Typhimurium (STm) exploits host polyamines for the functional expression of virulence factors. An STm mutant strain lacking principal genes required for polyamine synthesis and transport exhibited impaired infectivity in mice. A polyamine uptake-impaired strain of STm was unable to inject effectors of the type 3 secretion system into host cells due to a failure of needle assembly. STm infection stimulated host polyamine production by increasing arginase expression. The decline in polyamine levels caused by difluoromethylornithine, which inhibits host polyamine production, attenuated STm colonization, whereas polyamine supplementation augmented STm pathogenesis. Our work reveals that host polyamines are a key factor promoting STm infection, and therefore a promising therapeutic target for bacterial infection.


Subject(s)
Polyamines , Salmonella typhimurium , Type III Secretion Systems , Virulence Factors , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/genetics , Animals , Polyamines/metabolism , Mice , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Virulence Factors/metabolism , Virulence Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Host-Pathogen Interactions , Humans , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Female
8.
Sci Rep ; 14(1): 19202, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160181

ABSTRACT

Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.


Subject(s)
Droughts , Hordeum , Putrescine , Stress, Physiological , Hordeum/metabolism , Hordeum/genetics , Putrescine/metabolism , Malondialdehyde/metabolism , Cell Cycle , Antioxidants/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Polyamines/metabolism , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Gene Expression Regulation, Plant
9.
Sci Rep ; 14(1): 18094, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103474

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, and its pathogenesis remains unclear. Polyamine metabolic enzymes play a crucial role in UC. In this study, we aimed to identify pivotal polyamine-related genes (PRGs) and explore the underlying mechanism between PRGs and the disease status and therapeutic response of UC. We analyzed mRNA-sequencing data and clinical information of UC patients from the GEO database and identified NNMT, PTGS2, TRIM22, TGM2, and PPARG as key PRGs associated with active UC using differential expression analysis and weighted gene co-expression network analysis (WCGNA). Receiver operator characteristic curve (ROC) analysis confirmed the accuracy of these key genes in UC and colitis-associated colon cancer (CAC) diagnosis, and we validated their relationship with therapeutic response in external verification sets. Additionally, single-cell analysis revealed that the key PRGs were specific to certain immune cell types, emphasizing the vital role of intestinal tissue stem cells in active UC. The results were validated in vitro and in vivo experiments, including the colitis mice model and CAC mice model. In conclusion, these key PRGs effectively predict the progression of UC patients and could serve as new pharmacological biomarkers for the therapeutic response of UC.


Subject(s)
Biomarkers , Colitis, Ulcerative , Polyamines , Single-Cell Analysis , Colitis, Ulcerative/genetics , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/therapy , Animals , Humans , Mice , Biomarkers/metabolism , Single-Cell Analysis/methods , Polyamines/metabolism , Disease Models, Animal , Protein Glutamine gamma Glutamyltransferase 2 , Male , Female , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism
10.
Nat Commun ; 15(1): 7458, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198484

ABSTRACT

Cellular senescence is characterized by a permanent growth arrest and is associated with tissue aging and cancer. Senescent cells secrete a number of different cytokines referred to as the senescence-associated secretory phenotype (SASP), which impacts the surrounding tissue and immune response. Here, we find that senescent cells exhibit higher rates of protein synthesis compared to proliferating cells and identify eIF5A as a crucial regulator of this process. Polyamine metabolism and hypusination of eIF5A play a pivotal role in sustaining elevated levels of protein synthesis in senescent cells. Mechanistically, we identify a p53-dependent program in senescent cells that maintains hypusination levels of eIF5A. Finally, we demonstrate that functional eIF5A is required for synthesizing mitochondrial ribosomal proteins and monitoring the immune clearance of premalignant senescent cells in vivo. Our findings establish an important role of protein synthesis during cellular senescence and suggest a link between eIF5A, polyamine metabolism, and senescence immune surveillance.


Subject(s)
Cellular Senescence , Eukaryotic Translation Initiation Factor 5A , Mitochondria , Peptide Initiation Factors , Protein Biosynthesis , RNA-Binding Proteins , Tumor Suppressor Protein p53 , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Tumor Suppressor Protein p53/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Mitochondria/metabolism , Animals , Mice , Immunologic Surveillance , Polyamines/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Lysine/metabolism , Lysine/analogs & derivatives
11.
Commun Biol ; 7(1): 1031, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174732

ABSTRACT

Studies on the immune-regulatory roles played by the commensal microbes residing in the nasal mucosa consider the contribution of antiviral immune responses. Here, we sought to identify the nasal microbiome, Staphylococcus epidermidis-regulated antiviral immune responses and the alteration of polyamine metabolites in nasal epithelium. We found that polyamines were required for the life cycle of influenza A virus (IAV) and depletion of polyamines disturbed IAV replication in normal human nasal epithelial (NHNE) cells. Inoculation of S. epidermidis also suppressed IAV infection and the concentration of polyamines including putrescine, spermidine, and spermine was completely attenuated in S. epidermidis-inoculated NHNE cells. S. epidermidis activated the enzyme involved in the production of ornithine from arginine and downregulated the activity of the enzyme involved in the production of putrescine from ornithine in nasal epithelium. S. epidermidis also induced the activation of enzymes that promote the extracellular export of spermine and spermidine in NHNE cells. Our findings demonstrate that S. epidermidis is shown to be able of creating an intracellular environment lacking polyamines in the nasal epithelium and promote the balance of cellular polyamines in favor of the host to restrict influenza virus replication.


Subject(s)
Influenza A virus , Nasal Mucosa , Polyamines , Staphylococcus epidermidis , Symbiosis , Virus Replication , Staphylococcus epidermidis/physiology , Staphylococcus epidermidis/metabolism , Humans , Polyamines/metabolism , Influenza A virus/physiology , Nasal Mucosa/microbiology , Nasal Mucosa/virology , Nasal Mucosa/metabolism , Influenza, Human/virology , Influenza, Human/metabolism
12.
Bull Exp Biol Med ; 177(3): 307-312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39123088

ABSTRACT

We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.


Subject(s)
Amine Oxidase (Copper-Containing) , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors , Animals , Rats , Oxidation-Reduction/drug effects , Deamination , Amine Oxidase (Copper-Containing)/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Polyamine Oxidase , Putrescine/metabolism , Putrescine/pharmacology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Cell-Free System , Liver/metabolism , Liver/drug effects , Polyamines/metabolism , Spermine/metabolism , Spermine/pharmacology , Spermidine/metabolism , Male , Nitrogen/metabolism , Rats, Wistar
13.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125742

ABSTRACT

Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.


Subject(s)
Homeostasis , Neoplasms , Polyamines , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Polyamines/metabolism , Animals , Drug Synergism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
14.
Plant Physiol Biochem ; 215: 109030, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137683

ABSTRACT

Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.


Subject(s)
Metalloids , Polyamines , Polyamines/metabolism , Metalloids/metabolism , Metalloids/toxicity , Plants/metabolism , Plants/drug effects , Metals/metabolism , Metals/toxicity , Stress, Physiological/drug effects
15.
Microbiol Res ; 288: 127871, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39137590

ABSTRACT

The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.


Subject(s)
Bile Acids and Salts , Disease Progression , Fatty Acids, Volatile , Gastrointestinal Microbiome , Neoplasms , Humans , Neoplasms/microbiology , Neoplasms/metabolism , Neoplasms/drug therapy , Fatty Acids, Volatile/metabolism , Bile Acids and Salts/metabolism , Hydrogen Sulfide/metabolism , Polyamines/metabolism , Tryptophan/metabolism , Carcinogenesis , Animals , Tumor Microenvironment
16.
J Pharm Biomed Anal ; 251: 116418, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39180893

ABSTRACT

The deregulation of amino acid and polyamine metabolism is a hallmark of malignancy that regulates cancer cell proliferation, angiogenesis, and invasion. A sensitive mass spectrometry method was developed to simultaneously quantify 10 cancer-associated metabolites in pleural effusion cells for the diagnosis of malignancy and to complement conventional pleural cytology. Analytes were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) using C8-reversed-phase HPLC for separation and sequential window acquisition of all theoretical fragment ion spectra (SWATH) acquisition for obtaining high-resolution quantitative MS/MS chromatograms. This method was validated and applied to pleural effusion cells from patients with lung adenocarcinoma (LUAD, n = 48) and those from benign controls (n = 23). The range of the above metabolites was 2-200 ng/mL for proline, aspartate, ornithine, creatine, glutamine, glutamate, arginine, citrulline, and spermine and 10-1000 ng/mL for putrescine. The intra-assay and inter-assay coefficient of variation was below 13.70 % for all analytes. The joint detection of these metabolites in pleural effusion cells achieved a clinical sensitivity of 75.0 % and specificity of 95.7 % differentiating LUAD patients from benign controls. This assay enabled the detection of 10 cancer-associated metabolites in pleural effusion cells, and the increased concentration of these metabolites was correlated with the presence of LUAD.


Subject(s)
Adenocarcinoma of Lung , Amino Acids , Lung Neoplasms , Polyamines , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Polyamines/analysis , Polyamines/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/diagnosis , Amino Acids/analysis , Amino Acids/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/diagnosis , Male , Tandem Mass Spectrometry/methods , Female , Middle Aged , Aged , Pleural Effusion, Malignant/metabolism , Pleural Effusion, Malignant/diagnosis , Sensitivity and Specificity , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Reproducibility of Results
17.
ACS Chem Neurosci ; 15(15): 2811-2821, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39058922

ABSTRACT

Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.


Subject(s)
Animals, Newborn , Brain , Hypoxia-Ischemia, Brain , Neurotransmitter Agents , Polyamines , Animals , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Polyamines/metabolism , Brain/metabolism , Neurotransmitter Agents/metabolism , Rats , Rats, Sprague-Dawley , Neurons/metabolism , Metabolomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
18.
Physiol Plant ; 176(4): e14411, 2024.
Article in English | MEDLINE | ID: mdl-38973028

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Subject(s)
Arabidopsis , Bacillus licheniformis , Ethylenes , Polyamines , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis/physiology , Ethylenes/metabolism , Polyamines/metabolism , Bacillus licheniformis/metabolism , Bacillus licheniformis/genetics , Gene Expression Regulation, Plant/drug effects , Signal Transduction/drug effects , Stress, Physiological , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Seedlings/metabolism , Alkalies/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
19.
Cells ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38994986

ABSTRACT

Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.


Subject(s)
Oxidoreductases Acting on CH-NH Group Donors , Polyamines , Humans , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Polyamines/metabolism , Cell Line, Tumor , Spermine/metabolism , Spermine/analogs & derivatives , Acetylation , A549 Cells
20.
Mol Cancer ; 23(1): 136, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965534

ABSTRACT

BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.


Subject(s)
Drug Resistance, Neoplasm , Eukaryotic Translation Initiation Factor 5A , Melanoma , Mutation , Peptide Initiation Factors , Polyamines , Proto-Oncogene Proteins B-raf , RNA-Binding Proteins , Vemurafenib , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Animals , Polyamines/metabolism , Mice , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Cell Line, Tumor , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Vemurafenib/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Xenograft Model Antitumor Assays , CRISPR-Cas Systems , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Lysine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL