Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.836
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000151

ABSTRACT

Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.


Subject(s)
Hemoglobins , Oxygen , Plastics , Polypropylenes , Hemoglobins/chemistry , Hemoglobins/metabolism , Adsorption , Oxygen/chemistry , Oxygen/metabolism , Plastics/chemistry , Polypropylenes/chemistry , Polyethylene/chemistry , Microplastics/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Molecules ; 29(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893375

ABSTRACT

This study investigates the process of long-term (bio)degradation of polyethylene (PE) in an old municipal waste landfill (MWL) and its implications for environmental and human health. Advanced techniques, such as ICP-ES/MS and IC-LC, were used to analyze heavy metals and anions/cations, demonstrating significant concentration deviations from control samples. The soil's chemical composition revealed numerous hazardous organic compounds, further indicating the migration of additives from PE to the soil. Toxicological assessments, including Phytotoxkit FTM, Microtox® bioassay, and Ostracodtoxkit®, demonstrated phytotoxicity, acute toxicity, and high mortality in living organisms (over 85% for Heterocypris Incongruens). An unusual concentration of contaminants in the MWL's middle layers, linked to Poland's economic changes during the 1980s and 1990s, suggests increased risks of pollutant migration, posing additional environmental and health threats. Moreover, the infiltration capability of microorganisms, including pathogens, into PE structures raises concerns about potential groundwater contamination through the landfill bottom. This research underscores the need for vigilant management and updated strategies to protect the environment and public health, particularly in older landfill sites.


Subject(s)
Polyethylene , Waste Disposal Facilities , Polyethylene/chemistry , Humans , Soil Pollutants/analysis , Soil Pollutants/chemistry , Environmental Monitoring/methods , Biodegradation, Environmental , Metals, Heavy/analysis , Soil/chemistry
3.
Sci Total Environ ; 942: 173771, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38851351

ABSTRACT

The impact of microplastics and their additives on soil nutrient cycling, particularly through microbial mechanisms, remains underexplored. This study investigated the effects of polyethylene microplastics, polyethylene resin, and plastic additives on soil nitrogen content, physicochemical properties, nitrogen cycling functional genes, microbial composition, and nitrogen transformation rates. Results showed that all amendments increased total nitrogen but decreased dissolved total nitrogen. Polyethylene microplastics and additives increased dissolved organic nitrogen, while polyethylene resin reduced it and exhibited higher microbial biomass. Amendments reduced or did not change inorganic nitrogen levels, with additives showing the lowest values. Polyethylene resin favored microbial nitrogen immobilization, while additives were more inhibitory. Amendment type and content significantly interacted with nitrogen cycling genes and microbial composition. Distinct functional microbial biomarkers and network structures were identified for different amendments. Polyethylene microplastics had higher gross ammonification, nitrification, and immobilization rates, followed by polyethylene resin and additives. Nitrogen transformation was driven by multiple functional genes, with Proteobacteria playing a significant role. Soil physicochemical properties affected nitrogen content through transformation rates, with C/N ratio having an indirect effect and water holding capacity directly impacting it. In summary, plastic additives, compared to polyethylene microplastics and resin, are less conducive to nitrogen degradation and microbial immobilization, exert significant effects on microbial community structure, inhibit transformation rates, and ultimately impact nitrogen cycling.


Subject(s)
Microplastics , Nitrogen Cycle , Nitrogen , Polyethylene , Soil Microbiology , Soil Pollutants , Soil , Soil/chemistry , Microbial Interactions
4.
Biomed Phys Eng Express ; 10(4)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38861949

ABSTRACT

Laminated barriers incorporating metal sheets provide effective protection for space-restricted radiotherapy centers. This study aimed to assess photoneutron contamination in smaller vaults protected by different compositions of multilayer barriers during simulated pelvic radiotherapy with 18 MV photon beams. Monte Carlo Simulations of 18 MV LINAC (Varian 2100 C/D) and Medical Internal Radiation Dose (MIRD) phantom were used to assess photoneutron contamination within reconstructed vaults incorporating different combinations of metal sheet and borated polyethylene (BPE) during pelvic radiotherapy. The findings highlight a 3.27 and 2.91 times increase in ambient neutron doseHn*(10) along the maze of reconstructed vaults that use lead and steel sheets, respectively, compared to concrete. TheHn*(10) outside the treatment room increased after incorporating a metal sheet, but it remained within the permissible limit of 20µSv/week for uncontrolled areas adjacent to the LINAC bunker, even with a workload of 1000Gy/week. Neutron equivalent doses in the patient's organs ranged from 0.22 to 0.96 mSv Gy-1. There is no notable distinction in the organ's neutron equivalent dose, fatal cancer risk, secondary radiation-induced cancer risk, and cancer mortality for various laminated barrier compositions. Furthermore, the use of metal sheets for vault wall reconstruction keeps the variation in cancer risk induced by photoneutrons below 6%, while risks of fatal cancer and cancer mortality vary less than 11%. While the metal portion of the laminated barrier raises the neutron dose, the addition of a BPE plate reduces concerns of increased effective dose and secondary malignancy risk.


Subject(s)
Monte Carlo Method , Neutrons , Phantoms, Imaging , Radiotherapy Dosage , Humans , Photons/therapeutic use , Particle Accelerators , Computer Simulation , Polyethylene/chemistry , Radiation Protection/methods , Radiation Dosage , Radiotherapy/methods
5.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892267

ABSTRACT

Food safety and quality are major concerns in the food industry. Despite numerous studies, polyethylene remains one of the most used materials for packaging due to industry reluctance to invest in new technologies and equipment. Therefore, modifications to the current materials are easier to implement than adopting whole new solutions. Antibacterial activity can be induced in low-density polyethylene films only by adding antimicrobial agents. ZnO nanoparticles are well known for their strong antimicrobial activity, coupled with low toxicity and UV shielding capability. These characteristics recommend ZnO for the food industry. By incorporating such safe and dependable antimicrobial agents in the polyethylene matrix, we have obtained composite films able to inhibit microorganisms' growth that can be used as packaging materials. Here we report the obtaining of highly homogenous composite films with up to 5% ZnO by a melt mixing process at 150 °C for 10 min. The composite films present good transparency in the visible domain, permitting consumers to visualize the food, but have good UV barrier properties. The composite films exhibit good antimicrobial and antibiofilm activity from the lowest ZnO composition (1%), against both Gram-positive and Gram-negative bacterial strains. The homogenous dispersion of ZnO nanoparticles into the polyethylene matrix was assessed by Fourier transform infrared microscopy and scanning electron microscopy. The optimal mechanical barrier properties were obtained for composition with 3% ZnO. The thermal analysis indicates that the addition of ZnO nanoparticles has increased thermal stability by more than 100 °C. The UV-Vis spectra indicate a low transmittance in the UV domain, lower than 5%, making the films suitable for blocking photo-oxidation processes. The obtained films proved to be efficient packaging films, successfully preserving plum (Rome) tomatoes for up to 14 days.


Subject(s)
Food Packaging , Polyethylene , Solanum lycopersicum , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Food Packaging/methods , Polyethylene/chemistry , Solanum lycopersicum/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biofilms/drug effects
6.
Chemosphere ; 361: 142501, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825244

ABSTRACT

In aquatic environments the concurrent exposure of molluscs to microplastics (MPs) and estrogens is common, as these pollutants are frequently released by wastewater treatment plants into estuaries. Therefore, this study aimed to evaluate the independent and co-exposure impacts of polyethylene microplastics (PE-MPs) and estrogenic endocrine-disrupting chemicals (EEDCs) at environmentally relevant concentrations on polar metabolites and morphological parameters of the Sydney rock oyster. A seven-day acute exposure revealed no discernible differences in morphology; however, significant variations in polar metabolites were observed across oyster tissues. The altered metabolites were mostly amino acids, carbohydrates and intermediates of the Kreb's cycle. The perturbation of metabolites were tissue and sex-specific. All treatments generally showed an increase of metabolites relative to controls - a possible stimulatory and/or a potential hormetic response. The presence of MPs impeded the exposure of adsorbed and free EEDCs potentially due to the selective feeding behaviour of oysters to microplastics, favouring algae over similar-sized PE-MPs, and the formation of an eco/bio-corona involving faeces, pseudo-faeces, natural organic matter, and algae.


Subject(s)
Endocrine Disruptors , Estrogens , Metabolome , Microplastics , Ostreidae , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Ostreidae/metabolism , Ostreidae/drug effects , Estrogens/toxicity , Estrogens/metabolism , Endocrine Disruptors/toxicity , Metabolome/drug effects , Polyethylene/toxicity , Female
7.
Chemosphere ; 361: 142520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834092

ABSTRACT

Organic fertilizers have become a vector for the transport of microplastics (MPs), which pose human health concerns through the food chain. This study aimed to quantify and characterize MPs in eight different compost samples of various raw materials and their subsequent translocation to lettuce (Lacuta sativa) grown on contaminated composts. The results revealed that the MP abundance ranged from 3810 to 16530 MP/kg. Municipal solid waste compost (MSWC) had highest abundance (16082 ± 632 MP/kg), followed by leaf compost (LC) and organic compost (OC) (6299 ± 1011 and 3680 ± 419 MP/kg, respectively). MPs of <100 µm in size were most dominant in MSWC and LC. Fragments and fibers were the prevalent shape types, with white/transparent colored MPs being more abundant. Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were the dominant polymers. MPs accumulation in the lettuce leaves was greatest in the lettuce plants grown on MSWC, followed by those grown on LC and OC, indicating that MSWC grown lettuce is not suitable for human consumption. The decrease in the growth (leaf length, number of leaves, leaf fresh and weights) and physiological (membrane stability index, relative water contents) parameters of lettuce was in line with the trend of MP accumulations. Hence, it is highly important to regulate the plastic contents in compost because it is a threat to ecosystems and human health.


Subject(s)
Composting , Lactuca , Microplastics , Soil Pollutants , Microplastics/analysis , Lactuca/metabolism , Lactuca/growth & development , Lactuca/chemistry , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Environmental Monitoring , Polymers/analysis , Solid Waste/analysis , Polyethylene , Fertilizers/analysis , Polypropylenes
8.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943017

ABSTRACT

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Subject(s)
Bacteria , Biodegradation, Environmental , Microbiota , Microplastics , Waste Disposal Facilities , Microplastics/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Water Pollutants, Chemical/metabolism , Polyesters/metabolism , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Estuaries , Polyethylene/metabolism , Polyethylene Terephthalates/metabolism
9.
Environ Microbiol Rep ; 16(3): e13302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852938

ABSTRACT

Boreal freshwaters go through four seasons, however, studies about the decomposition of terrestrial and plastic compounds often focus only on summer. We compared microbial decomposition of 13C-polyethylene, 13C-polystyrene, and 13C-plant litter (Typha latifolia) by determining the biochemical fate of the substrate carbon and identified the microbial decomposer taxa in humic lake waters in four seasons. For the first time, the annual decomposition rate including separated seasonal variation was calculated for microplastics and plant litter in the freshwater system. Polyethylene decomposition was not detected, whereas polystyrene and plant litter were degraded in all seasons. In winter, decomposition rates of polystyrene and plant litter were fivefold and fourfold slower than in summer, respectively. Carbon from each substrate was mainly respired in all seasons. Plant litter was utilized efficiently by various microbial groups, whereas polystyrene decomposition was limited to Alpha- and Gammaproteobacteria. The decomposition was not restricted only to the growth season, highlighting that the decomposition of both labile organic matter and extremely recalcitrant microplastics continues throughout the seasons.


Subject(s)
Biodegradation, Environmental , Lakes , Microbiota , Seasons , Lakes/microbiology , Lakes/chemistry , Plastics/metabolism , Plastics/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humic Substances/analysis , Typhaceae/microbiology , Typhaceae/metabolism , Typhaceae/chemistry , Microplastics/metabolism , Polyethylene/metabolism , Polyethylene/chemistry , Carbon/metabolism , Polystyrenes/chemistry , Polystyrenes/metabolism
10.
J Phys Chem Lett ; 15(25): 6560-6567, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38885454

ABSTRACT

Aggregation of human α-synuclein protein is regarded to be a key stage in the etiology of Parkinson's disease and numerous other neurodegenerative illnesses. Microplastics pollution can be a potential agent to promote various neurodegenerative disorders. In this study, we have employed various multispectroscopic analytical methods to investigate the binding interactions between polyethylene (PE-MPs), polyvinyl chloride (PVC-MPs), polystyrene (PS-MPs) microplastics, and human α-synuclein protein. Spectroscopic investigations using UV-vis absorption, circular dichroism, and Fourier transform infrared have indicated different alterations in α-synuclein protein's secondary structures induced by the formation of the α-synuclein protein-MP binding complex. This study suggests that PS-MPs are found to be the most effective microplastic that promote amyloidogenic oligomer emergence because of their tiny size (100 nm).


Subject(s)
Microplastics , alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Humans , Microplastics/chemistry , Polystyrenes/chemistry , Circular Dichroism , Spectroscopy, Fourier Transform Infrared , Protein Binding , Polyvinyl Chloride/chemistry , Polyethylene/chemistry , Protein Structure, Secondary , Amyloid/chemistry , Amyloid/metabolism
11.
ACS Appl Mater Interfaces ; 16(25): 32445-32455, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870411

ABSTRACT

Flexible sensors are of great interest due to their potential applications in human physiological signal monitoring, wearable devices, and healthcare. However, sensor devices employed for cardiovascular testing are normally bulky and expensive, which hamper wearability and point-of-care use. Herein, we report a simple method for preparing multifunctional flexible sensors using hydrazine hydrate (N2H4·H2O) as the reducing agent, graphene as the active material, and polyethylene (PE) tape as the encapsulation material. The flexible sensor produced with this method has a low detection limit of 100 mg, a fast response and recovery time of 40 and 20 ms, and shows no performance degradation even after up to 30,000 motion cycles. The sensors we have developed are capable of monitoring the pulse with relative accuracy, which presents an opportunity to replace bulky devices and normalize cardiovascular testing in the future. In order to further broaden the application field, the sensor is installed as a sensor array to recognize objects of different weights and shapes, showing that the sensor has excellent application potential in wearable artificial intelligence.


Subject(s)
Graphite , Wearable Electronic Devices , Graphite/chemistry , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Hydrazines/chemistry , Pulse , Polyethylene/chemistry , Biosensing Techniques/instrumentation
12.
J Hazard Mater ; 474: 134816, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850928

ABSTRACT

Polyethylene microplastics (PE MPs) are the main MPs in agricultural soils and undergo oxidation upon environmental exposure. However, the influence of MP oxidation on phytotoxicity (especially for crop fruit) is still limited. This study aimed to explore the effect of PE MP oxidation on crop toxicity. Herein, a combination of plant phenotyping, metabolomic, and transcriptomic approaches was used to evaluate the effects of low-oxidation PE (LOPE) and high-oxidation PE (HOPE) on wheat growth, grain quality, and related molecular mechanisms using pot experiments. The results showed that HOPE induced a stronger inhibition of wheat growth and reduction in protein content and mineral elements than LOPE. This was accompanied by root ultrastructural damage and downregulation of carbohydrate metabolism, translation, nutrient reservoir activity, and metal ion binding gene expression. Compared with HOPE, LOPE activated a stronger plant defense response by reducing the starch content by 22.87 %, increasing soluble sugar content by 44.93 %, and upregulating antioxidant enzyme genes and crucial metabolic pathways (e.g., starch and sucrose, linoleic acid, and phenylalanine metabolism). The presence of PE MPs in the environment exacerbates crop growth inhibition and fruit quality deterioration, highlighting the need to consider the environmental and food safety implications of MPs in agricultural soils.


Subject(s)
Microplastics , Oxidation-Reduction , Polyethylene , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/growth & development , Polyethylene/toxicity , Microplastics/toxicity , Soil Pollutants/toxicity , Edible Grain/metabolism , Edible Grain/drug effects , Edible Grain/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Gene Expression Regulation, Plant/drug effects
13.
ACS Nano ; 18(27): 18085-18100, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38935618

ABSTRACT

Nanoplastics (NPs), as emerging contaminants, have been shown to cause testicular disorders in mammals. However, whether paternal inheritance effects on offspring health are involved in NP-induced reproductive toxicity remains unclear. In this study, we developed a mouse model where male mice were administered 200 nm polyethylene nanoparticles (PE-NPs) at a concentration of 2 mg/L through daily gavage for 35 days to evaluate the intergenerational effects of PE-NPs in an exclusive male-lineage transmission paradigm. We observed that paternal exposure to PE-NPs significantly affected growth phenotypes and sex hormone levels and induced histological damage in the testicular tissue of both F0 and F1 generations. In addition, consistent changes in sperm count, motility, abnormalities, and gene expression related to endoplasmic reticulum stress, sex hormone synthesis, and spermatogenesis were observed across paternal generations. The upregulation of microRNA (miR)-1983 and the downregulation of miR-122-5p, miR-5100, and miR-6240 were observed in both F0 and F1 mice, which may have been influenced by reproductive signaling pathways, as indicated by the RNA sequencing of testis tissues and quantitative real-time polymerase chain reaction findings. Furthermore, alterations in the gut microbiota and subsequent Spearman correlation analysis revealed that an increased abundance of Desulfovibrio (C21_c20) and Ruminococcus (gnavus) and a decreased abundance of Allobaculum were positively associated with spermatogenic dysfunction. These findings were validated in a fecal microbiota transplantation trial. Our results demonstrate that changes in miRNAs and the gut microbiota caused by paternal exposure to PE-NPs mediated intergenerational effects, providing deeper insights into mechanisms underlying the impact of paternal inheritance.


Subject(s)
Gastrointestinal Microbiome , MicroRNAs , Nanoparticles , Paternal Exposure , Testis , Animals , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Gastrointestinal Microbiome/drug effects , Paternal Exposure/adverse effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Nanoparticles/chemistry , Polyethylene/toxicity , Spermatogenesis/drug effects
14.
Waste Manag ; 186: 188-197, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38909442

ABSTRACT

This investigation's novelty and objective reside in exploring catalytic flash pyrolysis of cross-linked polyethylene (XLPE) plastic residue in the presence of kaolin, with the perspective of achieving sustainable production of gasoline-range hydrocarbons. Through proximate analysis, thermogravimetric analysis, and heating value determination, this study also assessed the energy-related characteristics of cross-linked polyethylene plastic residue, revealing its potential as an energy source (44.58 MJ kg-1) and suitable raw material for pyrolysis due to its low ash content and high volatile matter content. To understand the performance as a low-cost catalyst in the flash pyrolysis of cross-linked polyethylene plastic residue, natural kaolin was subjected to characterization through thermogravimetric analysis, X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF). Cross-linked polyethylene plastic residue was subjected to thermal and catalytic pyrolysis in an analytical microreactor coupled to gas chromatography-mass spectrometry (Py-GC/MS system), operating at 500 °C, to characterize the distribution and composition of volatile reaction products. The application of kaolin as a catalyst resulted in a decline of the relative concentration of hydrocarbons in the diesel range (C8-C24) from approximately 87 % to 28 %, and a reduction in lubricating oils (C14-C50) from about 70 % to 13 %, while concomitantly increasing the relative concentration of lighter hydrocarbons in the gasoline range (C8-C12) from around 28 % to 87 %. Therefore, catalytic flash pyrolysis offers the potential for converting this plastic waste into a new and abundant chemical source of gasoline-range hydrocarbons. This process can be deemed viable and sustainable for managing and valorizing cross-linked polyethylene plastic residue.


Subject(s)
Gas Chromatography-Mass Spectrometry , Gasoline , Hydrocarbons , Pyrolysis , Gasoline/analysis , Gas Chromatography-Mass Spectrometry/methods , Catalysis , Hydrocarbons/analysis , Polyethylene/chemistry , Thermogravimetry/methods , Kaolin/chemistry , Spectroscopy, Fourier Transform Infrared/methods
15.
Environ Microbiol ; 26(6): e16658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843592

ABSTRACT

Plastic pollution is a vast and increasing problem that has permeated the environment, affecting all aspects of the global food web. Plastics and microplastics have spread to soil, water bodies, and even the atmosphere due to decades of use in a wide range of applications. Plastics include a variety of materials with different properties and chemical characteristics, with polyethylene being a dominant fraction. Polyethylene is also an extremely persistent compound with slow rates of photodegradation or biodegradation. In this study, we developed a method to isolate communities of microbes capable of biodegrading a polyethylene surrogate. This method allows us to study potential polyethylene degradation over much shorter time periods. Using this method, we enriched several communities of microbes that can degrade the polyethylene surrogate within weeks. We also identified specific bacterial strains with a higher propensity to degrade compounds similar to polyethylene. We provide a description of the method, the variability and efficacy of four different communities, and key strains from these communities. This method should serve as a straightforward and adaptable tool for studying polyethylene biodegradation.


Subject(s)
Bacteria , Biodegradation, Environmental , Polyethylene , Polyethylene/metabolism , Polyethylene/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Microbiota , Soil Microbiology
16.
PLoS One ; 19(6): e0301618, 2024.
Article in English | MEDLINE | ID: mdl-38843277

ABSTRACT

Periprosthetic tissue inflammation is a challenging complication arising in joint replacement surgeries, which is often caused by wear debris from polyethylene (PE) components. In this study, we examined the potential biological effects of grafting a [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSAH) polymer onto the surface of PE through a solvent-evaporation technique. J774A.1 macrophage-like cells and primary cultured mouse osteoblasts were treated with PE powder with or without the MEDSAH coating. MEDSAH grafting on PE substantially reduced the expression of pro-inflammatory cytokines and other mediators in primary cultured mouse osteoblasts, but did not significantly impact macrophage-mediated inflammation. Our findings suggest that a MEDSAH coating on PE-based materials has potential utility in mitigating periprosthetic tissue inflammation and osteolysis and preventing aseptic loosening in total joint replacements. Further research, including large-scale clinical trials and biomechanical analyses, is needed to assess the long-term performance and clinical implications of MEDSAH-coated PE-based materials in total joint arthroplasty.


Subject(s)
Inflammation , Osteoblasts , Polyethylene , Animals , Mice , Inflammation/pathology , Osteoblasts/metabolism , Osteoblasts/drug effects , Macrophages/metabolism , Cell Line , Cytokines/metabolism , Osteolysis/etiology , Osteolysis/pathology , Coated Materials, Biocompatible/chemistry , Methacrylates/chemistry , Arthroplasty, Replacement/adverse effects
17.
Huan Jing Ke Xue ; 45(6): 3688-3699, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897788

ABSTRACT

The continuous accumulation of microplastics in agricultural soils may affect the natural attenuation of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs). The effects of low-density polyethylene (LDPE) microplastics with the spiking proportion of 1 % and 0.01 % in soils on the natural attenuation of OPAHs were investigated via soil microcosm experiments. The relation between the response of bacterial communities and OPAHs dissipation was also explored. The initial content of OPAHs in the soil was 34.6 mg·kg-1. The dissipation of OPAHs in the soil on day 14 was inhibited by LDPE. The contents of OPAHs in LDPE groups were higher than that in the control by 0.9-1.6 mg·kg-1, and the inhibition degree increased with the proportion of LDPE. The contents of OPAHs were not significantly different among groups on day 28, indicating that the inhibitory effect of LDPE disappeared. LDPE did not change the composition of the dominant taxa in the OPAHs-contaminated soil community but influenced the relative abundances of some dominant taxa. LDPE increased the relative abundance of Proteobacteria and Actinobacteria at the phylum level and decreased that of Bacillus and increased those of Micromonospora, Sphingomonas, and Nitrospira (potential degrading bacteria of LDPE and endogenous substances) at the genus level, all four of which were the main genera dominating intergroup community differences. LDPE changed the α and ß diversity of bacterial communities, but the extents were not significant. LDPE affected the function of the bacterial community, reducing the total abundance of PAHs-degrading genes and some degrading enzymes, inhibiting the growth of PAHs-degrading bacteria and thus interfering with the natural decay of OPAHs.


Subject(s)
Biodegradation, Environmental , Microplastics , Polycyclic Aromatic Hydrocarbons , Polyethylene , Soil Microbiology , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/metabolism , Soil Pollutants/analysis , Soil/chemistry , Bacteria/classification , Bacteria/metabolism , Bacteria/growth & development , Bacteria/drug effects , Oxygen/metabolism
18.
Huan Jing Ke Xue ; 45(6): 3679-3687, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897787

ABSTRACT

The threat of microplastic pollution in soil ecosystems has caused widespread concern. In order to clarify the effect of polyethylene microplastics on soil properties, a 4-month soil incubation experiment was conducted in this study to investigate the effect of different mass fraction (1 %, 2.5 %, and 5 %) and particle sizes (30 mesh and 100 mesh) of polyethylene microplastics on soil chemical properties, nutrient contents, and enzyme activities. The results showed that:① When the particle size was 100 mesh, microplastics at the mass concentrations of the 2.5 % and 5 % treatments significantly reduced soil pH, and the exposure of polyethylene microplastics had no significant effect on soil conductivity. ② Compared to that in CK, the addition of microplastics reduced soil available potassium, available phosphorus, and nitrate nitrogen to varying degrees. The addition of 100 mesh microplastics significantly increased soil organic matter and ammonium nitrogen. ③ When the particle size was 100 mesh, compared to that in CK, treatments of all concentrations significantly increased soil catalase activity and alkaline phosphatase, showing an increasing but not significant trend, and the 5 % concentration treatment significantly decreased soil sucrase activity. ④ Changes in soil properties were influenced by the addition of microplastics of different concentrations and sizes, with higher concentrations and smaller particle sizes having more significant effects. In conclusion, the effects of microplastics on soil properties were not as pronounced as expected, and future research should focus on the mechanisms involved in the different effects.


Subject(s)
Microplastics , Phosphorus , Polyethylene , Soil Pollutants , Soil , Soil/chemistry , Soil Pollutants/analysis , Phosphorus/analysis , Nitrogen , Catalase/metabolism , Nutrients/analysis , Particle Size , Alkaline Phosphatase/metabolism
19.
J Environ Manage ; 363: 121254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850909

ABSTRACT

Despite being composed of recyclable materials, the main technological challenge of multilayer carton packs involves the efficient decompatibilization of the cellulosic, polymeric, and metallic phases. Here, a simple two-step mechanochemical process is described that uses only aqueous media and mechanical force to promote phase separation in order to fully recycle multi-layer carton packaging. The first step produces value-added micro- and nanocellulose, while in the second step, aluminum is extracted, forming precipitated aluminum and aluminum oxyhydroxides. Solid polyethylene (PE) remains with a degree of purity defined by the process efficiency. The results show that cellulose is efficiently extracted and converted into micro- and nanocellulose after 15 min of milling. In the second stage, approximately 90% of the aluminum is extracted from the PE after 15 min of milling. Due to the separation and drying medium conditions, the finely divided particles of extracted aluminum also have oxyhydroxides in their composition. It is believed that a passivation layer forms on the metallic aluminum particle. The techno-economic analysis revealed a positive net present value (NPV) of $17.5 million, with a minimum selling price of 1.62 USD/kg of cellulose. The environmental analysis concluded that most of the environmental impact of the process is associated with the entry of carton packages into the system, incorporating a small environmental load related to the industrial process. The results indicate a promising option toward a circular economy and carbon neutrality.


Subject(s)
Cellulose , Recycling , Cellulose/chemistry , Aluminum/chemistry , Polyethylene/chemistry
20.
J Orthop Traumatol ; 25(1): 24, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704499

ABSTRACT

BACKGROUND: This retrospective medium-term follow-up study compares the outcomes of medial fixed-bearing unicompartmental knee arthroplasty (mUKA) using a cemented metal-backed (MB) or an all-polyethylene (AP) tibial component. MATERIALS AND METHODS: The database of our institution was mined for primary mUKA patients implanted with an MB or an AP tibial component (the MB-UKA and AP-UKA groups, respectively) from 2015 to 2018. We compared patient demographics, patient-reported outcome measures (PROMs), and motion analysis data obtained with the Riablo™ system (CoRehab, Trento, Italy). We conducted propensity-score-matching (PSM) analysis (1:1) using multiple variables. RESULTS: PSM analysis yielded 77 pairs of MB-UKA and AP-UKA patients. At 5 years, the physical component summary (PCS) score was 52.4 ± 8.3 in MB-UKA and 48.2 ± 8.3 in AP-UKA patients (p < 0.001). The Forgotten Joint Score (FJS-12) was 82.9 ± 18.8 in MB-UKAs and 73.4 ± 22.5 in AP-UKAs (p = 0.015). Tibial pain was reported by 7.8% of the MB-UKA and 35.1% of the AP-UKA patients (p < 0.001). Static postural sway was, respectively, 3.9 ± 2.1 cm and 5.4 ± 2.3 (p = 0.0002), and gait symmetry was, respectively, 92.7% ± 3.7 cm and 90.4% ± 5.4 cm (p = 0.006). Patient satisfaction was 9.2 ± 0.8 in the MB-UKA and 8.3 ± 2.0 in the AP-UKA group (p < 0.003). CONCLUSIONS: MB-UKA patients experienced significantly better 5-year static sway and gait symmetry outcomes than AP-UKA patients. Although the PROMs of the two groups overlapped, MB-UKA patients had a lower incidence of tibial pain, better FJS-12 and PCS scores, and were more satisfied.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Metals , Patient Reported Outcome Measures , Propensity Score , Prosthesis Design , Humans , Retrospective Studies , Male , Female , Arthroplasty, Replacement, Knee/methods , Aged , Follow-Up Studies , Middle Aged , Tibia/surgery , Polyethylene , Treatment Outcome , Osteoarthritis, Knee/surgery
SELECTION OF CITATIONS
SEARCH DETAIL