Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
J Hazard Mater ; 476: 135061, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38972205

ABSTRACT

This study investigated the relationship between microplastic (MP) presence and pollutant removal in granular sludge sequencing batch reactors (GSBRs). Two types of MPs, polyethylene (PE) and polyethylene terephthalate (PET), were introduced in varying concentrations to assess their effects on microbial community dynamics and rates of nitrogen, phosphorus, and organic compound removal. The study revealed type-dependent variations in the deposition of MPs within the biomass, with PET-MPs exhibiting a stronger affinity for accumulation in biomass. A 50 mg/L dose of PET-MP decreased COD removal efficiency by approximately 4 % while increasing P-PO4 removal efficiency by around 7 % compared to the control reactor. The rate of nitrogen compounds removal decreased with higher PET-MP dosages but increased with higher PE-MP dosages. An analysis of microbial activity and gene abundance highlighted the influence of MPs on the expression of the nosZ and ppk1 genes, which code enzymes responsible for nitrogen and phosphorus transformations. The study also explored shifts in microbial community structure, revealing alterations with changes in MP dose and type. This research contributes valuable insights into the complex interactions between MP, microbial communities, and pollutant removal processes in GSBR systems, with implications for the sustainable management of wastewater treatment in the presence of MP.


Subject(s)
Bioreactors , Microplastics , Nitrogen , Phosphorus , Water Pollutants, Chemical , Water Pollutants, Chemical/metabolism , Microplastics/toxicity , Phosphorus/metabolism , Phosphorus/chemistry , Nitrogen/metabolism , Sewage/microbiology , Polyethylene Terephthalates/metabolism , Polyethylene Terephthalates/chemistry , Polyethylene/metabolism , Polyethylene/chemistry , Microbiota , Bacteria/metabolism , Bacteria/genetics , Waste Disposal, Fluid/methods
2.
Sci Total Environ ; 948: 174554, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39004366

ABSTRACT

This study investigates P. ostreatus and A. bisporus biodegradation capacity of low density polyethylene (LDPE) oxidised to simulate environmental weathering. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the degradation of LDPE treated with fungal cultures. Molecular implications of LDPE degradation by P. ostreatus and A. bisporus were evaluated by Reverse transcription followed by quantitative PCR (qRT-PCR) of lac, mnp and lip genes expression. After 90 days of incubation, FT-IR analysis showed, for both fungal treatments, an increasing in the intensity of peaks related to the asymmetric C-C-O stretching (1160 to 1000 cm-1) and the -OH stretching (3700 to 3200 cm-1) due to the formation of alcohols and carboxylic acid, indicating depolymerisation of LDPE. This was confirmed by the SEM analysis, where a widespread alteration of the surface morphology was observed for treated LDPE fragments. Results revealed that the exposure of P. ostreatus to oxidised LDPE treatment led to a significant increase in the expression of the lac6, lac7, lac9, lac10 and mnp2 genes, while A. bisporus showed an over-expression in lac2 and lac12 genes. The obtained results offer new perspectives for a biotechnological use of P. ostreatus and A. bisporus for plastic bioremediation.


Subject(s)
Biodegradation, Environmental , Lignin , Lignin/metabolism , Polyethylene/metabolism , Plastics/metabolism
3.
Microbes Environ ; 39(3)2024.
Article in English | MEDLINE | ID: mdl-39085141

ABSTRACT

Polyethylene (PE), a widely used recalcitrant synthetic polymer, is a major global pollutant. PE has very low biodegradability due to its rigid C-C backbone and high hydrophobicity. Although microorganisms have been suggested to possess PE-degrading enzymes, our understanding of the PE biodegradation process and its overall applicability is still lacking. In the present study, we used an artificial bacterial consortium for PE biodegradation to compensate for the enzyme availability and metabolic capabilities of individual bacterial strains. Consortium members were selected based on available literature and preliminary screening for PE-degrading enzymes, including laccases, lipases, esterases, and alkane hydroxylases. PE pellets were incubated with the consortium for 200 days. A next-generation sequencing ana-lysis of the consortium community of the culture broth and on the PE pellet identified Rhodococcus as the dominant bacteria. Among the Rhodococcus strains in the consortium, Rhodococcus erythropolis was predominant. Scanning electron microscopy (SEM) revealed multilayered biofilms with bacteria embedded on the PE surface. SEM micrographs of PE pellets after biofilm removal showed bacterial pitting and surface deterioration. Multicellular biofilm structures and surface biodeterioration were observed in an incubation of PE pellets with R. erythropolis alone. The present study demonstrated that PE may be biodegraded by an artificially constructed bacterial consortium, in which R. erythropolis has emerged as an important player. The results showing the robust colonization of hydrophobic PE by R. erythropolis and that it naturally possesses and extracellularly expresses several target enzymes suggest its potential as a host for further improved PE biodeterioration by genetic engineering technology using a well-studied host-vector system.


Subject(s)
Biodegradation, Environmental , Biofilms , Microbial Consortia , Polyethylene , Rhodococcus , Rhodococcus/genetics , Rhodococcus/metabolism , Polyethylene/metabolism , Polyethylene/chemistry , Biofilms/growth & development , Microscopy, Electron, Scanning
4.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943017

ABSTRACT

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Subject(s)
Bacteria , Biodegradation, Environmental , Microbiota , Microplastics , Waste Disposal Facilities , Microplastics/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Water Pollutants, Chemical/metabolism , Polyesters/metabolism , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Estuaries , Polyethylene/metabolism , Polyethylene Terephthalates/metabolism
5.
Environ Microbiol ; 26(6): e16658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843592

ABSTRACT

Plastic pollution is a vast and increasing problem that has permeated the environment, affecting all aspects of the global food web. Plastics and microplastics have spread to soil, water bodies, and even the atmosphere due to decades of use in a wide range of applications. Plastics include a variety of materials with different properties and chemical characteristics, with polyethylene being a dominant fraction. Polyethylene is also an extremely persistent compound with slow rates of photodegradation or biodegradation. In this study, we developed a method to isolate communities of microbes capable of biodegrading a polyethylene surrogate. This method allows us to study potential polyethylene degradation over much shorter time periods. Using this method, we enriched several communities of microbes that can degrade the polyethylene surrogate within weeks. We also identified specific bacterial strains with a higher propensity to degrade compounds similar to polyethylene. We provide a description of the method, the variability and efficacy of four different communities, and key strains from these communities. This method should serve as a straightforward and adaptable tool for studying polyethylene biodegradation.


Subject(s)
Bacteria , Biodegradation, Environmental , Polyethylene , Polyethylene/metabolism , Polyethylene/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Microbiota , Soil Microbiology
6.
Environ Microbiol Rep ; 16(3): e13302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852938

ABSTRACT

Boreal freshwaters go through four seasons, however, studies about the decomposition of terrestrial and plastic compounds often focus only on summer. We compared microbial decomposition of 13C-polyethylene, 13C-polystyrene, and 13C-plant litter (Typha latifolia) by determining the biochemical fate of the substrate carbon and identified the microbial decomposer taxa in humic lake waters in four seasons. For the first time, the annual decomposition rate including separated seasonal variation was calculated for microplastics and plant litter in the freshwater system. Polyethylene decomposition was not detected, whereas polystyrene and plant litter were degraded in all seasons. In winter, decomposition rates of polystyrene and plant litter were fivefold and fourfold slower than in summer, respectively. Carbon from each substrate was mainly respired in all seasons. Plant litter was utilized efficiently by various microbial groups, whereas polystyrene decomposition was limited to Alpha- and Gammaproteobacteria. The decomposition was not restricted only to the growth season, highlighting that the decomposition of both labile organic matter and extremely recalcitrant microplastics continues throughout the seasons.


Subject(s)
Biodegradation, Environmental , Lakes , Microbiota , Seasons , Lakes/microbiology , Lakes/chemistry , Plastics/metabolism , Plastics/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humic Substances/analysis , Typhaceae/microbiology , Typhaceae/metabolism , Typhaceae/chemistry , Microplastics/metabolism , Polyethylene/metabolism , Polyethylene/chemistry , Carbon/metabolism , Polystyrenes/chemistry , Polystyrenes/metabolism
7.
J Hazard Mater ; 476: 135012, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38944993

ABSTRACT

Biodegradation of polyethylene (PE) plastics is environmentally friendly. To obtain the laccases that can efficiently degrade PE plastics, we generated 9 ancestral laccases from 23 bacterial three-domain laccases through ancestral sequence reconstruction. The optimal temperatures of the ancestral laccases were between 60 °C-80 °C, while their optimal pHs were at 3.0 or 4.0. Without substrate pretreatment and mediator addition, all the ancestral laccases can degrade low-density polyethylene (LDPE) films at pH 7.0 and 60 °C. Among them, Anc52, which shared low sequence identity (18 %-41.7 %) with the reported PE-degrading laccases, was the most effective for LDPE degradation. After the catalytic reactions at 90 °C for 14 h, Anc52 (0.2 mg/mL) induced clear wrinkles and deep pits on the PE film surface detected by scanning electron microscope, and its carbonyl and hydroxyl indices reached 2.08 and 2.42, respectively. Then, we identified the residues 203 and 288 critical for PE degradation through site-directed mutation on Anc52. Moreover, Anc52 be activated by heat treatment (60 °C and 90 °C) at pH 7.0, which gave it a high catalytic efficiency (kcat/Km= 191.73 mM-1·s-1) and thermal stability (half-life at 70 °C = 13.70 h). The ancestral laccases obtained here could be good candidates for PE biodegradation.


Subject(s)
Biodegradation, Environmental , Laccase , Polyethylene , Laccase/genetics , Laccase/chemistry , Laccase/metabolism , Polyethylene/chemistry , Polyethylene/metabolism , Bacteria/enzymology , Bacteria/genetics , Hydrogen-Ion Concentration , Protein Domains , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
8.
J Hazard Mater ; 472: 134488, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703685

ABSTRACT

Bioelectrochemical systems (BES) offer significant potential for treating refractory waste and recovering bioenergy. However, their ability to mitigate microplastic pollution in wastewater remains unexplored. This study showed that BES facilitated the treatment of polyethylene (PE), polyvinyl chloride (PVC), and Mix (PE+PVC) microplastic wastewater and the methane recovery (40.61%, 20.02%, 21.19%, respectively). The lactate dehydrogenase (LDH), adenosine triphosphate (ATP), cytochrome c, and nicotinamide adenine dinucleotide (NADH/NAD+) ratios were elevated with electrical stimulation. Moreover, the applied voltage improved the polysaccharides content of the extracellular polymeric substances (EPS) in the PE-BES but decreased in PVC-BES, while the proteins showed the opposite trend. Metatranscriptomic sequencing showed that the abundance of fermentation bacteria, acetogens, electrogens, and methanogens was greatly enhanced by applying voltage, especially at the anode. Methane metabolism was dominated by the acetoclastic methanogenic pathway, with the applied voltage promoting the enrichment of Methanothrix, resulting in the direct conversion of acetate to acetyl-CoA via acetate-CoA ligase (EC: 6.2.1.1), and increased metabolic activity in the anode. Moreover, applied voltage greatly boosted the function genes expression level related to energy metabolism, tricarboxylic acid (TCA) cycle, electron transport, and transporters on the anode biofilm. Overall, these results demonstrate that BES can mitigate microplastic pollution during wastewater treatment.


Subject(s)
Biofilms , Methane , Microplastics , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Methane/metabolism , Anaerobiosis , Water Pollutants, Chemical/metabolism , Bioreactors , Waste Disposal, Fluid/methods , Electrochemical Techniques , Polyethylene/metabolism , Polyethylene/chemistry
9.
Sci Total Environ ; 939: 173582, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38810744

ABSTRACT

Since plastic waste has become a worldwide pollution problem, studying the ability of marine microorganisms to degrade plastic waste is important. However, conventional methods are unable to in situ real-time study the ability of microorganisms to biodegrade plastics. In recent years, Raman spectroscopy has been widely used in the characterization of plastics as well as in the study of biological metabolism due to its low cost, rapidity, label-free, non-destructive, and water-independent features, which provides us with new ideas to address the above limitations. Here, we have established a method to study the degradation ability of microorganisms on plastics using confocal Raman imaging. Alternaria alternata FB1, a recently reported polyethylene (PE) degrading marine fungus, is used as a model to perform a long-term (up to 274 days) in situ real-time nondestructive inspection of its degradation process. We can prove the degradation of PE plastics from the following two aspects, visualization and analysis of the degradation process based on depth imaging and quantification of the degradation rate by crystallinity calculations. The findings also reveal unprecedented degradation details. The method is important for realizing high-throughput screening of microorganisms with potential to degrade plastics and studying the degradation process of plastics in the future.


Subject(s)
Biodegradation, Environmental , Polyethylene , Spectrum Analysis, Raman , Polyethylene/metabolism , Spectrum Analysis, Raman/methods , Alternaria/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis
10.
J Hazard Mater ; 474: 134768, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820749

ABSTRACT

Cadmium (Cd) and microplastics (MPs) gradually increased to be prevalent contaminants in soil, it is important to understand their combined effects on different soil-plant systems. We studied how different doses of polylactic acid (PLA) and polyethylene (PE) affected Cd accumulation, pakchoi growth, soil chemical and microbial properties, and metabolomics in two soil types. We found that high-dose MPs decreased Cd accumulation in plants in red soil, while all MPs decreased Cd bioaccumulation in fluvo-aquic soil. This difference was primarily attributed to the increase in dissolved organic carbon (DOC) and pH in red soil by high-dose MPs, which inhibited Cd uptake by plant roots. In contrast, MPs reduced soil nitrate nitrogen and available phosphorus, and weakened Cd mobilization in fluvo-aquic soil. In addition, high-dose PLA proved detrimental to plant health, manifesting in shortened shoot and root lengths. Co-exposure of Cd and MPs induced the shifts in bacterial populations and metabolites, with specific taxa and metabolites closely linked to Cd accumulation. Overall, co-exposure of Cd and MPs regulated plant growth and Cd accumulation by driving changes in soil bacterial community and metabolic pathways caused by soil chemical properties. Our findings could provide insights into the Cd migration in different soil-plant systems under MPs exposure. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) and cadmium (Cd) are common pollutants in farmland soil. Co-exposure of MPs and Cd can alter Cd accumulation in plants, and pose a potential threat to human health through the food chain. Here, we investigated the effects of different types and doses of MPs on Cd accumulation, plant growth, soil microorganisms, and metabolic pathways in different soil-plant systems. Our results can contribute to our understanding of the migration and transport of Cd by MPs in different soil-plant systems and provide a reference for the control of combined pollution in the future research.


Subject(s)
Cadmium , Microplastics , Soil Microbiology , Soil Pollutants , Cadmium/metabolism , Cadmium/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Microplastics/toxicity , Microplastics/metabolism , Bacteria/metabolism , Bacteria/drug effects , Polyesters/metabolism , Polyesters/chemistry , Polyethylene/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Soil/chemistry , Plants/metabolism , Plants/drug effects
11.
Biotechnol Lett ; 46(4): 671-689, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705964

ABSTRACT

The present work reports the application of novel gut strains Bacillus safensis CGK192 (Accession No. OM658336) and Bacillus australimaris CGK221 (Accession No. OM658338) in the biological degradation of synthetic polymer i.e., high-density polyethylene (HDPE). The biodegradation assay based on polymer weight loss was conducted under laboratory conditions for a period of 90 days along with regular evaluation of bacterial biomass in terms of total protein content and viable cells (CFU/cm2). Notably, both strains achieved significant weight reduction for HDPE films without any physical or chemical pretreatment in comparison to control. Hydrophobicity and biosurfactant characterization were also done in order to assess strains ability to form bacterial biofilm over the polymer surface. The post-degradation characterization of HDPE was also performed to confirm degradation using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electronic microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX), and Gas chromatography-mass spectrometry (GC-MS). Interestingly strain CGK221 was found to be more efficient in forming biofilm over polymer surface as indicated by lower half-life (i.e., 0.00032 day-1) and higher carbonyl index in comparison to strain CGK192. The findings reflect the ability of our strains to develop biofilm and introduce an oxygenic functional group into the polymer surface, thereby making it more susceptible to degradation.


Subject(s)
Bacillus , Biofilms , Bacillus/metabolism , Bacillus/isolation & purification , Biofilms/growth & development , Biodegradation, Environmental , Polyethylene/chemistry , Polyethylene/metabolism , Plastics/chemistry , Plastics/metabolism , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions
12.
Sci Total Environ ; 927: 172243, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582118

ABSTRACT

Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.


Subject(s)
Biodegradation, Environmental , Larva , Microplastics , Polyethylene , Polystyrenes , Tenebrio , Animals , Microplastics/metabolism , Tenebrio/metabolism , Polyethylene/metabolism , Gastrointestinal Microbiome , Water Pollutants, Chemical/metabolism
13.
Sci Rep ; 14(1): 8351, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594512

ABSTRACT

Plastic accumulation is a severe threat to the environment due to its resistivity to thermal, mechanical and biological processes. In recent years, microbial degradation of plastic waste disposal is of interest because of its eco-friendly nature. In this study, a total of 33 fungi were isolated from the plastisphere and out of which 28 fungal species showed halo zone of clearance in agarized LDPE media. The fungus showing highest zone of clearance was further used to evaluate its degradation potential. Based on morphological and molecular technique, the fungus was identified as Cladosporium sphaerospermum. The biodegradation of LDPE by C. sphaerospermum was evaluated by various methods. The exposure of LDPE with C. sphaerospermum resulted in weight loss (15.23%) in seven days, higher reduction rate (0.0224/day) and lower half-life (30.93 days). FTIR analysis showed changes in functional group and increased carbonyl index in LDPE treated with C. sphaerospermum. SEMimages evidenced the formation of pits, surface aberrations and grooves on the LDPE film treated with the fungus whereas the untreated control LDPE film showed no change. AFM analysis confirmed the surface changes and roughness in fungus treated LDPE film. This might be due to the extracellular lignolytic enzymes secreted by C. sphaerospermum grown on LDPE. The degradation of polyethylene by Short chain alkanes such as dodecane, hexasiloxane and silane were identified in the extract of fungus incubated with LDPE film through GC-MS analysis which might be due to the degradation of LDPE film by C. sphaerospermum. This was the first report on the LDPE degradation by C. sphaerospermum in very short duration which enables green scavenging of plastic wastes.


Subject(s)
Cladosporium , Polyethylene , Polyethylene/metabolism , Biodegradation, Environmental
14.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38643575

ABSTRACT

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Polyethylene , Polypropylenes , Water Pollutants, Chemical , Polypropylenes/chemistry , Polyethylene/chemistry , Polyethylene/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Microplastics/toxicity , Microplastics/metabolism , Fresh Water/microbiology , Estuaries
15.
Sci Total Environ ; 930: 172619, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38649045

ABSTRACT

To obtain a multifunctional bacterium that can effectively degrade polyethylene (PE) and sulfonamide antibiotics (SAs), PE and SAs were selected as the primary research objects. Multifunctional degrading bacteria were isolated and screened from an environment in which plastics and antibiotics have existed for a long time. An efficient degrading strain, Raoultella sp., was screened by measuring the degradation performance of PE and SAs. We analyzed the changes in the microbial community of indigenous bacteria using 16S rRNA. After 60 d of degradation at 28 °C, the Raoultella strain to PE degradation rate was 4.20 %. The SA degradation rates were 96 % (sulfonathiazole, (ST)), 86 % (sulfamerazine, (SM)), 72 % (sulfamethazine, (SM2)) and 64 % (sulfamethoxazole, (SMX)), respectively. This bacterium increases the surface roughness of PE plastic films and produces numerous gullies, pits, and folds. In addition, after 60 d, the contact angle of the plastic film decreased from 92.965° to 70.205°, indicating a decrease in hydrophobicity. High-throughput sequencing analysis of the degrading bacteria revealed that the Raoultella strain encodes enzymes involved in PE and SA degradation. The results of this study not only provide a theoretical basis for further study of the degradation mechanism of multifunctional and efficient degrading bacteria but also provide potential strain resources for the biodegradation of waste plastics and antibiotics in the environment.


Subject(s)
Anti-Bacterial Agents , Biodegradation, Environmental , Polyethylene , Soil Microbiology , Soil Pollutants , Anti-Bacterial Agents/metabolism , Soil Pollutants/metabolism , Polyethylene/metabolism , RNA, Ribosomal, 16S , Soil/chemistry , Bacteria/metabolism
16.
J Environ Manage ; 358: 120832, 2024 May.
Article in English | MEDLINE | ID: mdl-38599089

ABSTRACT

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Subject(s)
Biodegradation, Environmental , Larva , Microplastics , Polyethylene , Tenebrio , Animals , Tenebrio/metabolism , Polyethylene/metabolism , Microplastics/toxicity , Gastrointestinal Microbiome/drug effects , Oxidative Stress
17.
Sci Total Environ ; 934: 172819, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38679106

ABSTRACT

Plastic pollution in the marine realm is a severe environmental problem. Nevertheless, plastic may also serve as a potential carbon and energy source for microbes, yet the contribution of marine microbes, especially marine fungi to plastic degradation is not well constrained. We isolated the fungus Parengyodontium album from floating plastic debris in the North Pacific Subtropical Gyre and measured fungal-mediated mineralization rates (conversion to CO2) of polyethylene (PE) by applying stable isotope probing assays with 13C-PE over 9 days of incubation. When the PE was pretreated with UV light, the biodegradation rate of the initially added PE was 0.044 %/day. Furthermore, we traced the incorporation of PE-derived 13C carbon into P. album biomass using nanoSIMS and fatty acid analysis. Despite the high mineralization rate of the UV-treated 13C-PE, incorporation of PE-derived 13C into fungal cells was minor, and 13C incorporation was not detectable for the non-treated PE. Together, our results reveal the potential of P. album to degrade PE in the marine environment and to mineralize it to CO2. However, the initial photodegradation of PE is crucial for P. album to metabolize the PE-derived carbon.


Subject(s)
Biodegradation, Environmental , Polyethylene , Polyethylene/metabolism , Water Pollutants, Chemical/metabolism , Polyporales/metabolism
18.
Ecotoxicol Environ Saf ; 274: 116207, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38492484

ABSTRACT

Plastic pollution is a common concern of global environmental pollution. Polystyrene (PS) and polyethylene (PE) account for almost one-third of global plastic production. However, so far, there have been few reports on microbial strains capable of simultaneously degrading PS and PE. In this study, Microbacterium esteraromaticum SW3, a non-pathogenic microorganism that can use PS or PE as the only carbon source in the mineral salt medium (MM), was isolated from plastics-contaminated soil and identified. The optimal growth conditions for SW3 in MM were 2% (w/v) PS or 2% (w/v) PE, 35°C and pH 6.3. A large number of bacteria and obvious damaged areas were observed on the surface of PS and PE products after inoculated with SW3 for 21 d. The degradation rates of PS and PE by SW3 (21d) were 13.17% and 5.39%, respectively. Manganese peroxidase and lipase were involved in PS and PE degradation by SW3. Through Fourier infrared spectroscopy detection, different functional groups such as carbonyl, hydroxyl and amidogen groups were produced during the degradation of PS and PE by SW3. Moreover, PS and PE were degraded into alkanes, ketones, carboxylic acids, esters and so on detected by GC-MS. Collectively, we have isolated and identified SW3, which can use PS or PE as the only carbon source in MM as well as degrade PS and PE products. This study not only provides a competitive candidate strain with broad biodegradability for the biodegradation of PS and/or PE pollution, but also provides new insights for the study of plastic biodegradation pathways.


Subject(s)
Actinomycetales , Polystyrenes , Polystyrenes/metabolism , Polyethylene/metabolism , Soil , Actinomycetales/metabolism , Biodegradation, Environmental , Carbon , Plastics/metabolism , Microbacterium
19.
Sci Total Environ ; 924: 171580, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38462004

ABSTRACT

The study focused on marine bacteria, specifically Bacillus cereus, sourced from heavily polluted coastal areas in Tamil Nadu, aiming to assess their efficacy in degrading low-density polyethylene (LDPE) and polystyrene over a 42-day period. When LDPE and polystyrene films were incubated with Bacillus cereus, they exhibited maximum weight losses of 4.13 ± 0.81 % and 14.13 ± 2.41 %, respectively. Notably, polystyrene exhibited a higher reduction rate (0.0036 day-1) and a shorter half-life (195.29 days). SEM images of the treated LDPE and polystyrene unveiled surface erosion with cracks. The energy dispersive X-ray (EDX) analysis revealed elevated carbon content and the presence of oxygen in the treated LDPE and polystyrene films. The ATR-FTIR spectra exhibited distinctive peaks corresponding to functional groups, with observable peak shifts in the treated films. Notable increases were detected in carbonyl, internal double bond, and vinyl indices across all treated groups. Additionally, both treated LDPE and polystyrene showed reduced crystallinity. This research sheds light on Bacillus cereus (OR268710) biodegradation capabilities, emphasizing its potential for eco-friendly waste management in coastal regions.


Subject(s)
Polyethylene , Polystyrenes , Polyethylene/metabolism , Bacillus cereus/metabolism , India , Biodegradation, Environmental , Plastics/metabolism
20.
Arch Microbiol ; 206(4): 188, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519709

ABSTRACT

Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.


Subject(s)
Bacillus , Polystyrenes , Polystyrenes/metabolism , Polyethylene/metabolism , Polyethylene Terephthalates , Laccase , Bacillus/metabolism , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL