Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.649
Filter
1.
Emerg Microbes Infect ; 13(1): 2366354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979571

ABSTRACT

In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Polymyxin B , RNA, Small Untranslated , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Small Untranslated/genetics , Microbial Sensitivity Tests , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , RNA, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics
2.
J Control Release ; 372: 795-809, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960150

ABSTRACT

Biofilms, particularly those formed by multiple bacterial species, pose significant economic and environmental challenges, especially in the context of medical implants. Addressing the urgent need for effective treatment strategies that do not exacerbate drug resistance, we developed a novel nanoformulation, Ce6&PMb@BPN, based on black phosphorus nanosheets (BPN) for targeted treatment of mixed-species biofilms formed by Acinetobacter baumannii (A. baumannii) and methicillin-resistant Staphylococcus aureus (MRSA).The formulation leverages polymyxin B (PMb) for bacterial targeting and chlorin e6 (Ce6) for photodynamic action. Upon near-infrared (NIR) irradiation, Ce6&PMb@BPN efficiently eliminates biofilms by combining chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT), reducing biofilm biomass significantly within 30 min. In vivo studies on mice infected with mixed-species biofilm-coated catheters demonstrated the formulation's potent antibacterial and biofilm ablation effects. Moreover, comprehensive biosafety evaluations confirmed the excellent biocompatibility of Ce6&PMb@BPN. Taken together, this intelligently designed nanoformulation holds potential for effectively treating biofilm-associated infections, addressing the urgent need for strategies to combat antibiotic-resistant biofilms, particularly mixed-species biofilm, in medical settings.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Methicillin-Resistant Staphylococcus aureus , Nanostructures , Phosphorus , Photochemotherapy , Polymyxin B , Porphyrins , Animals , Biofilms/drug effects , Polymyxin B/administration & dosage , Polymyxin B/pharmacology , Phosphorus/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Photochemotherapy/methods , Acinetobacter baumannii/drug effects , Nanostructures/chemistry , Porphyrins/administration & dosage , Porphyrins/chemistry , Porphyrins/pharmacology , Chlorophyllides , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Mice , Female , Photothermal Therapy/methods , Mice, Inbred BALB C , Drug Resistance, Bacterial , Staphylococcal Infections/drug therapy
3.
J Antimicrob Chemother ; 79(8): 1919-1928, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38946304

ABSTRACT

OBJECTIVES: Polymyxin-induced nephrotoxicity (PIN) is a major safety concern and challenge in clinical practice, which limits the clinical use of polymyxins. This study aims to investigate the risk factors and to develop a scoring tool for the early prediction of PIN. METHODS: Data on critically ill patients who received intravenous polymyxin B or colistin sulfate for over 24 h were collected. Logistic regression with the least absolute shrinkage and selection operator (LASSO) was used to identify variables that are associated with outcomes. The eXtreme Gradient Boosting (XGB) classifier algorithm was used to further visualize factors with significant differences. A prediction model for PIN was developed through binary logistic regression analysis and the model was assessed by temporal validation and external validation. Finally, a risk-scoring system was developed based on the prediction model. RESULTS: Of 508 patients, 161 (31.6%) patients developed PIN. Polymyxin type, loading dose, septic shock, concomitant vasopressors and baseline blood urea nitrogen (BUN) level were identified as significant predictors of PIN. All validation exhibited great discrimination, with the AUC of 0.742 (95% CI: 0.696-0.787) for internal validation, of 0.708 (95% CI: 0.605-0.810) for temporal validation and of 0.874 (95% CI: 0.759-0.989) for external validation, respectively. A simple risk-scoring tool was developed with a total risk score ranging from -3 to 4, corresponding to a risk of PIN from 0.79% to 81.24%. CONCLUSIONS: This study established a prediction model for PIN. Before using polymyxins, the simple risk-scoring tool can effectively identify patients at risk of developing PIN within a range of 7% to 65%.


Subject(s)
Anti-Bacterial Agents , Humans , Female , Male , Retrospective Studies , Middle Aged , Anti-Bacterial Agents/adverse effects , Aged , Risk Factors , Polymyxin B/adverse effects , Polymyxin B/administration & dosage , Pilot Projects , Critical Illness , Risk Assessment/methods , Polymyxins/adverse effects , Colistin/adverse effects , Colistin/administration & dosage , Logistic Models , Adult , Kidney Diseases/chemically induced
4.
Ann Clin Microbiol Antimicrob ; 23(1): 60, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965559

ABSTRACT

BACKGROUND: Gram-negative bacteria (GNB) are becoming increasingly resistant to a wide variety of antibiotics. There are currently limited treatments for GNB, and the combination of antibiotics with complementary mechanisms has been reported to be a feasible strategy for treating GNB infection. The inability to cross the GNB outer membrane (OM) is an important reason that a broad spectrum of Gram-positive only class of antibiotics (GPOAs) is lacking. Polymyxins may help GPOAs to permeate by disrupting OM of GNB. OBJECTIVE: To identify what kind of GPOAs can be aided to broaden their anti-GNB spectrum by polymyxins, we systematically investigated the synergy of eight GPOAs in combination with colistin (COL) and polymyxin B (PMB) against GNB in vitro. METHODS: The synergistic effect of COL or PMB and GPOAs combinations against GNB reference strains and clinical isolates were determined by checkerboard tests. The killing kinetics of the combinations were assessed using time-kill assays. RESULTS: In the checkerboard tests, polymyxins-GPOAs combinations exert synergistic effects characterized by species and strain specificity. The synergistic interactions on P. aeruginosa strains are significantly lower than those on strains of A. baumannii, K. pneumoniae and E. coli. Among all the combinations, COL has shown the best synergistic effect in combination with dalbavancin (DAL) or oritavancin (ORI) versus almost all of the strains tested, with FICIs from 0.16 to 0.50 and 0.13 to < 0.28, respectively. In addition, the time-kill assays demonstrated that COL/DAL and COL/ORI had sustained bactericidal activity. CONCLUSIONS: Our results indicated that polymyxins could help GPOAs to permeate the OM of specific GNB, thus showed synergistic effects and bactericidal effects in the in vitro assays. In vivo combination studies should be further conducted to validate the results of this study.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Synergism , Gram-Negative Bacteria , Microbial Sensitivity Tests , Polymyxin B , Polymyxins , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Polymyxins/pharmacology , Polymyxin B/pharmacology , Humans , Colistin/pharmacology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Pseudomonas aeruginosa/drug effects
5.
J Infect Dev Ctries ; 18(7): 1050-1057, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39078788

ABSTRACT

INTRODUCTION: The aim of this study was to compare the efficacy and safety of colistin sulfate (CS) with polymyxin B sulfate (PMB) in the treatment of pneumonia induced by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODOLOGY: Patients diagnosed with pneumonia caused by CR-GNB and admitted to the intensive care unit (ICU) from January 2020 to September 2022 were enrolled in this study. The patients were divided into the CS group and the PMB group according to their medication regimens. Group-wise demographic data, clinical efficacy, prognosis, and adverse events were analyzed and compared. RESULTS: A total of 120 patients (68 in the CS group and 52 in the PMB group) with pneumonia were included in the study. The majority of the pathogens were CR-Acinetobacter baumannii, followed by CR-Klebsiella pneumoniae, and CR-Pseudomonas aeruginosa. The clinical response rates in the CS and PMB groups after treatment were 62.0% and 65.4%, bacterial clearances were 44.0% and 36.5%, 28-day mortality rates were 16.0% and 13.5%, respectively; no significant differences between the two treatments were found. Nevertheless, the adverse effects were significantly less common in the CS group than in the PMB group, especially when treatments were administered intravenously. CONCLUSIONS: CS, a novel polymyxin E formulation, is as effective as PMB in treating pneumonia induced by CR-GNB while causing less side effects.


Subject(s)
Anti-Bacterial Agents , Colistin , Pneumonia, Bacterial , Polymyxin B , Humans , Polymyxin B/therapeutic use , Polymyxin B/administration & dosage , Male , Colistin/therapeutic use , Colistin/adverse effects , Colistin/administration & dosage , Female , Anti-Bacterial Agents/therapeutic use , Middle Aged , Aged , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Retrospective Studies , Acinetobacter baumannii/drug effects , Gram-Negative Bacterial Infections/drug therapy , Treatment Outcome , Adult , Gram-Negative Bacteria/drug effects , Intensive Care Units , Pseudomonas aeruginosa/drug effects , Aged, 80 and over , Klebsiella pneumoniae/drug effects
6.
J Antimicrob Chemother ; 79(8): 1969-1973, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38870067

ABSTRACT

OBJECTIVES: Central nervous system (CNS) infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) present a major health and economic burden worldwide. This multicentre prospective study aimed to assess the feasibility and usefulness of CSF therapeutic drug monitoring (TDM) after intrathecal/intraventricular administration of polymyxin B in patients with CNS infections. METHODS: Forty-two patients treated with intrathecal/intraventricular administration of polymyxin B against CR-GNB-induced CNS infections were enrolled. CSF trough level (Cmin) was collected beginning on Day 2 post-polymyxin B initiation and thereafter. The primary outcomes were clinical cure and 28-day all-cause mortality. RESULTS: All patients started with intrathecal/intraventricular administration of polymyxin B at a dose of 5 g/day, corresponding to a median CSF Cmin of 2.93 mg/L (range, 0.21-25.74 mg/L). Clinical cure was 71.4%, and the median CSF Cmin of this group was higher than that of clinical failure group [3.31 (IQR, 1.73-5.62) mg/L versus 2.25 (IQR, 1.09-4.12) mg/L; P = 0.011]. In addition, with MICs ≤ 0.5 mg/L, maintaining polymyxin B CSF Cmin above 2.0 mg/L showed a higher clinical cure rate (P = 0.041). The 28-day all-cause mortality rate was 31.0% and had no association with CSF Cmin. CONCLUSIONS: After intrathecal/intraventricular administration of polymyxin B, CSF concentrations fluctuated considerably inter- and intra-individual. Polymyxin B CSF Cmin above 2.0 mg/L was associated with clinical cure when MICs were ≤ 0.5 mg/L, and the feasibility of TDM warrants additional clinical studies.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Drug Monitoring , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Polymyxin B , Humans , Male , Female , Middle Aged , Polymyxin B/therapeutic use , Polymyxin B/administration & dosage , Polymyxin B/pharmacokinetics , Anti-Bacterial Agents/cerebrospinal fluid , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Prospective Studies , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/cerebrospinal fluid , Gram-Negative Bacterial Infections/mortality , Gram-Negative Bacterial Infections/microbiology , Carbapenems/therapeutic use , Carbapenems/pharmacokinetics , Carbapenems/pharmacology , Aged , Gram-Negative Bacteria/drug effects , Adult , Central Nervous System Infections/drug therapy , Central Nervous System Infections/cerebrospinal fluid , Central Nervous System Infections/microbiology , Central Nervous System Infections/mortality , Injections, Spinal , Treatment Outcome , Microbial Sensitivity Tests , Cerebrospinal Fluid/microbiology
7.
Nat Commun ; 15(1): 4733, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830951

ABSTRACT

Polymyxins are gram-negative antibiotics that target lipid A, the conserved membrane anchor of lipopolysaccharide in the outer membrane. Despite their clinical importance, the molecular mechanisms underpinning polymyxin activity remain unresolved. Here, we use surface plasmon resonance to kinetically interrogate interactions between polymyxins and lipid A and derive a phenomenological model. Our analyses suggest a lipid A-catalyzed, three-state mechanism for polymyxins: transient binding, membrane insertion, and super-stoichiometric cluster accumulation with a long residence time. Accumulation also occurs for brevicidine, another lipid A-targeting antibacterial molecule. Lipid A modifications that impart polymyxin resistance and a non-bactericidal polymyxin derivative exhibit binding that does not evolve into long-lived species. We propose that transient binding to lipid A permeabilizes the outer membrane and cluster accumulation enables the bactericidal activity of polymyxins. These findings could establish a blueprint for discovery of lipid A-targeting antibiotics and provide a generalizable approach to study interactions with the gram-negative outer membrane.


Subject(s)
Anti-Bacterial Agents , Lipid A , Polymyxin B , Surface Plasmon Resonance , Polymyxin B/pharmacology , Polymyxin B/metabolism , Lipid A/metabolism , Lipid A/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Microbial Sensitivity Tests , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/drug effects , Kinetics
8.
World J Microbiol Biotechnol ; 40(8): 243, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869625

ABSTRACT

It was known that UVc irradiation increases the reactive oxygen species' (ROS) levels in bacteria hence the intervention of antioxidant enzymes and causes also changes in fatty acids (FAs) composition enabling bacteria to face antibiotics. Here, we intended to elucidate an interrelationship between SOD and susceptibility to antibiotics by studying FA membrane composition of UVc-treated P. aeruginosa PAO1 and its isogenic mutants (sodM, sodB and sod MB) membrane, after treatment with antibiotics. Swarmer mutants defective in genes encoding superoxide dismutase were pre-exposed to UVc radiations and then tested by disk diffusion method for their contribution to antibiotic tolerance in comparison with the P. aeruginosa wild type (WT). Moreover, fatty acid composition of untreated and UVc-treated WT and sod mutants was examined by Gaz chromatography and correlated to antibiotic resistance. Firstly, it has been demonstrated that after UVc exposure, swarmer WT strain, sodM and sodB mutants remain resistant to polymixin B, a membrane target antibiotic, through membrane unsaturation supported by the intervention of Mn-SOD after short UVc exposure and cyclopropanation of unsaturated FAs supported by the action of Fe-SOD after longer UVc exposure. However, resistance for ciprofloxacin is correlated with increase in saturated FAs. This correlation has been confirmed by a molecular docking approach showing that biotin carboxylase, involved in the initial stage of FA biosynthesis, exhibits a high affinity for ciprofloxacin. This investigation has explored the correlation of antibiotic resistance with FA content of swarmer P.aeruginosa pre-exposed to UVc radiations, confirmed to be antibiotic target dependant.


Subject(s)
Anti-Bacterial Agents , Mutation , Pseudomonas aeruginosa , Superoxide Dismutase , Ultraviolet Rays , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Cyclopropanes/pharmacology , Drug Resistance, Bacterial/genetics , Fatty Acids/metabolism , Ciprofloxacin/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Computer Simulation , Polymyxin B/pharmacology
9.
Acta Biomater ; 184: 323-334, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901753

ABSTRACT

The treatment of sepsis caused by multidrug-resistant (MDR) Gram-negative bacterial infections remains challenging. With these pathogens exhibiting resistance to carbapenems and new generation cephalosporins, the traditional antibiotic polymyxin B (PMB) has reemerged as a critical treatment option. However, its severe neurotoxicity and nephrotoxicity greatly limit the clinical application. Therefore, we designed negatively charged high-density lipoprotein (HDL) mimicking nanodiscs as a PMB delivery system, which can simultaneously reduce toxicity and enhance drug efficacy. The negative charge prevented the PMB release in physiological conditions and binding to cell membranes, significantly reducing toxicity in mammalian cells and mice. Notably, nanodisc-PMB exhibits superior efficacy than free PMB in sepsis induced by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Nanodisc-PMB shows promise as a treatment for carbapenem-resistant Gram-negative bacterial sepsis, especially caused by Acinetobacter baumannii, and the nanodiscs could be repurposed for other toxic antibiotics as an innovative delivery system. STATEMENT OF SIGNIFICANCE: Multidrug-resistant Gram-negative bacteria, notably carbapenem-resistant Acinetobacter baumannii, currently pose a substantial challenge due to the scarcity of effective treatments, rendering Polymyxins a last-resort antibiotic option. However, their therapeutic application is significantly limited by severe neurotoxic and nephrotoxic side effects. Prevailing polymyxin delivery systems focus on either reducing toxicity or enhancing bioavailability yet fail to simultaneously achieve both. In this scenario, we have developed a distinctive HDL-mimicking nanodisc for polymyxin B, which not only significantly reduces toxicity but also improves efficacy against Gram-negative bacteria, especially in sepsis caused by CRAB. This research offers an innovative drug delivery system for polymyxin B. Such advancement could notably improve the therapeutic landscape and make a significant contribution to the arsenal against these notorious pathogens.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Polymyxin B , Sepsis , Polymyxin B/pharmacology , Polymyxin B/chemistry , Acinetobacter baumannii/drug effects , Animals , Acinetobacter Infections/drug therapy , Sepsis/drug therapy , Mice , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Lipoproteins, HDL/chemistry
10.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38942450

ABSTRACT

The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Drug Resistance, Bacterial , Polymyxin B , Polymyxin B/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Animals , Anti-Bacterial Agents/pharmacology , Virulence , Mice , Acinetobacter Infections/microbiology , Virulence Factors/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Models, Animal , Sepsis/microbiology , Biofilms/drug effects , Biofilms/growth & development
11.
mBio ; 15(7): e0063424, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38904391

ABSTRACT

Polymyxins [colistin and polymyxin B (PMB)] comprise an important class of natural product lipopeptide antibiotics used to treat multidrug-resistant Gram-negative bacterial infections. These positively charged lipopeptides interact with lipopolysaccharide (LPS) located in the outer membrane and disrupt the permeability barrier, leading to increased uptake and bacterial cell death. Many bacteria counter polymyxins by upregulating genes involved in the biosynthesis and transfer of amine-containing moieties to increase positively charged residues on LPS. Although 4-deoxy-l-aminoarabinose (Ara4N) and phosphoethanolamine (PEtN) are highly conserved LPS modifications in Escherichia coli, different lineages exhibit variable PMB susceptibilities and frequencies of resistance for reasons that are poorly understood. Herein, we describe a mechanism prevalent in E. coli B strains that depends on specific insertion sequence 1 (IS1) elements that flank genes involved in the biosynthesis and transfer of Ara4N to LPS. Spontaneous and transient chromosomal amplifications mediated by IS1 raise the frequency of PMB resistance by 10- to 100-fold in comparison to strains where a single IS1 element located 90 kb away from the end of the arn operon has been deleted. Amplification involving IS1 becomes the dominant resistance mechanism in the absence of PEtN modification. Isolates with amplified arn operons gradually lose their PMB-resistant phenotype with passaging, consistent with classical PMB heteroresistance behavior. Analysis of the whole genome transcriptome profile showed altered expression of genes residing both within and outside of the duplicated chromosomal segment, suggesting complex phenotypes including PMB resistance can result from tandem amplification events.IMPORTANCEPhenotypic variation in susceptibility and the emergence of resistant subpopulations are major challenges to the clinical use of polymyxins. While a large database of genes and alleles that can confer polymyxin resistance has been compiled, this report demonstrates that the chromosomal insertion sequence (IS) content and distribution warrant consideration as well. Amplification of large chromosomal segments containing the arn operon by IS1 increases the Ara4N content of the lipopolysaccharide layer in Escherichia coli B lineages using a mechanism that is orthogonal to transcriptional upregulation through two-component regulatory systems. Altogether, our work highlights the importance of IS elements in modulating gene expression and generating diverse subpopulations that can contribute to phenotypic polymyxin B heteroresistance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Lipopolysaccharides , Operon , Polymyxin B , Polymyxin B/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Lipopolysaccharides/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Chromosomes, Bacterial/genetics , DNA Transposable Elements , Gene Expression Regulation, Bacterial
13.
Microbiol Spectr ; 12(8): e0019124, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38904380

ABSTRACT

The rapid expansion of antibiotic-resistant bacterial diseases is a global burden on public health. It makes sense to repurpose and reposition already-approved medications for use as supplementary agents in synergistic combinations with existing antibiotics. Here, we demonstrate that the anthelmintic drug nitazoxanide (NTZ) synergistically enhances the effectiveness of the lipopeptide antibiotic polymyxin B in inhibiting gram-negative bacteria, including those resistant to polymyxin B. Mechanistic investigations revealed that nitazoxanide inhibited calcium influx and cell membrane depolarization, enhanced the affinity between polymyxin B and the extracellular membrane, and promoted intracellular ATP depletion and an increase in reactive oxygen species (ROS), thus enhancing the penetration and disruption of the Escherichia coli cell membrane by polymyxin B. The transcriptomic analysis revealed that the combination resulted in energy depletion by inhibiting both aerobic and anaerobic respiration patterns in bacterial cells. The increased bactericidal effect of polymyxin B on the E. coli ∆nuoC strain further indicates that NuoC could be a promising target for nitazoxanide. Furthermore, the combination of nitazoxanide and polymyxin B showed promising therapeutic effects in a mouse infection model infected with E. coli. Taken together, these results demonstrate the potential of nitazoxanide as a novel adjuvant to polymyxin B, to overcome antibiotic resistance and improve therapeutic outcomes in refractory infections.IMPORTANCEThe rapid spread of antibiotic-resistant bacteria poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Here, the synergistic activity of the FDA-approved agent nitazoxanide (NTZ) combined with polymyxin B was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of the combination of nitazoxanide and polymyxin B were explored by fluorescent dye, transmission electron microscopy (TEM), and transcriptomic analysis. The synergistic efficacy was evaluated in vivo by the Escherichia coli and mouse sepsis models. These results suggested that nitazoxanide, as a promising antibiotic adjuvant, can effectively enhance polymyxin B activity, providing a potential strategy for treating multidrug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Drug Synergism , Escherichia coli Infections , Escherichia coli , Nitro Compounds , Polymyxin B , Thiazoles , Nitro Compounds/pharmacology , Animals , Thiazoles/pharmacology , Polymyxin B/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Mice , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Female
14.
Int J Antimicrob Agents ; 64(1): 107189, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697578

ABSTRACT

The main objective of this study was to assess the effect of rich artificial cation-adjusted Mueller-Hinton broth (CAMHB) on the growth of three strains of Acinetobacter baumannii (ATCC 19606 and two clinical strains), either susceptible or resistant to polymyxin B (PMB), and on PMB bactericidal activity. A pharmacokinetic (PK)/pharmacodynamic (PD) modelling approach was used to characterize the effect of PMB in various conditions. Time-kill experiments were performed using undiluted CAMHB or CAMHB diluted to 50%, 25% and 10%, with or without Ca2+ and Mg2+ compensation (known to affect PMB activity), and with PMB concentrations ranging from 0.25 to 256 mg/L based on the strain's MIC. For each strain, time-kill replicates were modelled using NONMEM. Unexpectedly, dilution of CAMHB by up to 10-fold did not affect the growth rate of any of the three strains in the absence of PMB. However, the bactericidal activity of PMB increased with medium dilution, resulting in a reduction in the apparent bacterial regrowth of the various strains observed after a few hours. Data for each strain were well characterized by a PK/PD model, with two bacterial subpopulations with different susceptibility to PMB (more susceptible and less susceptible). The impact of medium dilution and cation compensation showed relatively high, unexplained between-strain variability. Further studies are needed to characterize the mechanism underlying the medium dilution effect.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Culture Media , Microbial Sensitivity Tests , Polymyxin B , Acinetobacter baumannii/drug effects , Polymyxin B/pharmacology , Polymyxin B/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Humans , Culture Media/chemistry , Microbial Viability/drug effects
15.
Sci Rep ; 14(1): 12550, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822071

ABSTRACT

Extracorporeal blood purification with polymyxin B immobilized fiber column direct hemoperfusion (PMX-DHP), is reported to be effective in treating COVID-19 pneumonitis with oxygen demand. This multicenter prospective study evaluated the efficacy and safety of PMX-DHP in oxygen-requiring patients with COVID-19 admitted between September 28, 2020, and March 31, 2022. The primary endpoint was the percentage of clinical improvement 15 days after treatment. The secondary endpoint was the percentage of worsened disease status. Data from the COVID-19 patient registry were used for the synthetic control group. The improvement rate on Day 15 did not differ between PMX-treated patients and controls; however, the deterioration rate was 0.38 times lower in the PMX-treated group, and the death rates on Day 29 were 0 and 11.1% in the PMX-treated and control groups, respectively. The PMX group showed a 0.73 times higher likelihood for reduced intensive care demand, as 16.7% of PMX-treated patients and 22.8% of controls worsened. After treatment blood oxygenation improved, urinary ß2-microglobulin and liver-type fatty acid-binding protein showed significant decreases, and IL-6 decreased once during treatment but did not persist. In this study, PMX treatment effectively prevented the worsening of COVID-19 pathology, accompanied by improved oxygenation. PMX treatment to remove activated cells may effectively improve patient outcomes.


Subject(s)
COVID-19 , Hemoperfusion , Polymyxin B , Humans , COVID-19/therapy , Polymyxin B/administration & dosage , Polymyxin B/therapeutic use , Male , Female , Hemoperfusion/methods , Middle Aged , Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Treatment Outcome , Oxygen , Oxygen Inhalation Therapy/methods , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage
16.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
17.
J Assoc Physicians India ; 72(1): 43-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38736073

ABSTRACT

INTRODUCTION: A survey-based approach to managing antibiotic-resistant infections in the intensive care unit (ICU) setting, with a focus on carbapenem-resistant Enterobacteriaceae (CRE) cases, was conducted. Among CRE, New Delhi metallo-ß-lactamase 1 (NDM-1) is a carbapenemase that is resistant to ß-lactam antibiotics and has a broader spectrum of antimicrobial resistance than other carbapenemase types. The article explains that healthcare-associated infections (HAIs) are a significant problem, particularly in low- and middle-income countries, and that carbapenem in combination with other antibiotics are the most potent class of antimicrobial agents effective in treating life-threatening bacterial infections, including those caused by resistant strains. AIM: The survey aimed to gather critical care healthcare professionals (HCPs') opinions on their current practices in managing infections acquired in the hospital and ICU settings, with a focus on CRE cases, specifically NDM-1 and other antibiotic-resistant infections. METHODS: Responses from critical care healthcare professionals, including online surveys and in-person interviews, to gain insights into the management of infections caused by multidrug-resistant bacteria. The findings related to the insights on the prevalence of bacterial flora, clinical experiences on efficacy and safety of meropenem sulbactam ethylenediaminetetraacetic acid (EDTA) (MSE) in CRE cases, and various combination therapies of antibiotics used to treat antibiotic-resistant infections in ICU setting were evaluated. RESULTS: Klebsiella pneumoniae bacteria were the most common bacteria in cultures, followed by Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. NDM-1 was the type of carbapenemase found in around 50% of CRE patients. MSE is among the most preferred antibiotics besides colistin, polymyxin B, and ceftazidime avibactum for CRE cases and specifically for NDM-1 cases due to its high rate of efficacy and safety. CONCLUSION: The article concludes with a discussion on the antibiotics used in response to CRE cases, reporting that critical care HCP considers MSE with high efficacy and safe antibiotic combination and was used as both monotherapy and in combination with other antibiotics. The survey highlights the need for exploring and better understanding the role of MSE in the management of CRE infections, especially in NDM-1.


Subject(s)
Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Critical Care , Enterobacteriaceae Infections , Intensive Care Units , Humans , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , Critical Care/methods , Cross Infection/drug therapy , Cross Infection/microbiology , Surveys and Questionnaires , beta-Lactamases , Drug Resistance, Multiple, Bacterial , Meropenem/therapeutic use , India , Attitude of Health Personnel , Polymyxin B/therapeutic use , Carbapenems/therapeutic use , Carbapenems/pharmacology , Klebsiella pneumoniae/drug effects , Health Personnel
18.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772980

ABSTRACT

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Biofilms , Drug Synergism , Endopeptidases , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilms/drug effects , Endopeptidases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Pseudomonas aeruginosa/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Nisin/pharmacology , Nisin/chemistry , Polymyxin B/pharmacology , Bacteriophages , Colistin/pharmacology , Bacteriophage T4/drug effects , Bacteriophage T4/physiology , Bacteriophage T7/drug effects , Bacteriophage T7/genetics
19.
J Extracell Vesicles ; 13(5): e12447, 2024 May.
Article in English | MEDLINE | ID: mdl-38766978

ABSTRACT

The continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic. Our research demonstrates that OMVs protect bacteria from polymyxins. OMVs derived from Polymyxin B (PB)-stressed K. pneumoniae exhibited heightened protective efficacy due to increased vesiculation, compared to OMVs from unstressed Klebsiella. OMVs also shield bacteria from different bacterial families. This was validated ex vivo and in vivo using precision cut lung slices (PCLS) and Galleria mellonella. In all models, OMVs protected K. pneumoniae from PB and reduced the associated stress response on protein level. We observed significant changes in the lipid composition of OMVs upon PB treatment, affecting their binding capacity to PB. The altered binding capacity of single OMVs from PB stressed K. pneumoniae could be linked to a reduction in the lipid A amount of their released vesicles. Although the amount of lipid A per vesicle is reduced, the overall increase in the number of vesicles results in an increased protection because the sum of lipid A and therefore PB binding sites have increased. This unravels the mechanism of the altered PB protective efficacy of OMVs from PB stressed K. pneumoniae compared to control OMVs. The lipid A-dependent protective effect against PB was confirmed in vitro using artificial vesicles. Moreover, artificial vesicles successfully protected Klebsiella from PB ex vivo and in vivo. The findings indicate that OMVs act as protective shields for bacteria by binding to polymyxins, effectively serving as decoys and preventing antibiotic interaction with the cell surface. Our findings provide valuable insights into the mechanisms underlying antibiotic cross-protection and offer potential avenues for the development of novel therapeutic interventions to address the escalating threat of multidrug-resistant bacterial infections.


Subject(s)
Anti-Bacterial Agents , Klebsiella pneumoniae , Polymyxin B , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Animals , Polymyxin B/pharmacology , Bacterial Outer Membrane/metabolism , Polymyxins/pharmacology , Extracellular Vesicles/metabolism , Klebsiella Infections/microbiology , Klebsiella Infections/metabolism , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/drug effects
20.
BMJ Case Rep ; 17(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702070

ABSTRACT

Bartter syndrome is a genetic disorder characterised by chloride-unresponsive metabolic alkalosis, hypokalaemia, hypomagnesaemia and hypercalciuria. While it commonly presents antenatally or in early infancy, sometimes, drugs can induce a state similar to Bartter syndrome in any age group, called acquired Bartter syndrome. Polymyxins and aminoglycosides are the most commonly implicated drugs. Polymyxin B and polymyxin E (popularly known as colistin) are the two chemically similar polymyxins that are commonly used clinically. While colistin is frequently associated with nephrotoxicity, polymyxin B is generally considered less nephrotoxic. This difference is due to the way these two drugs are handled by the kidneys. In this case report, we discuss a middle-aged male who developed Bartter syndrome due to polymyxin B, which resolved on discontinuation of the drug, and re-appeared after its re-introduction later. This case exemplifies the nephrotoxicity caused by polymyxin B and the need for vigilance when using this drug.


Subject(s)
Anti-Bacterial Agents , Bartter Syndrome , Polymyxin B , Humans , Male , Bartter Syndrome/chemically induced , Bartter Syndrome/diagnosis , Polymyxin B/adverse effects , Anti-Bacterial Agents/adverse effects , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL