Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
ACS Chem Neurosci ; 14(6): 1063-1070, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36847485

ABSTRACT

Prostaglandin D2 (PGD2) is one of the most potent endogenous sleep-promoting molecules. However, the cellular and molecular mechanisms of the PGD2-induced activation of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO), the major nonrapid eye movement (NREM)-sleep center, still remains unclear. We here show that PGD2 receptors (DP1) are not only expressed in the leptomeninges but also in astrocytes from the VLPO. We further demonstrate, by performing real-time measurements of extracellular adenosine using purine enzymatic biosensors in the VLPO, that PGD2 application causes a 40% increase in adenosine level, via an astroglial release. Measurements of vasodilatory responses and electrophysiological recordings finally reveal that, in response to PGD2 application, adenosine release induces an A2AR-mediated dilatation of blood vessels and activation of VLPO sleep-promoting neurons. Altogether, our results unravel the PGD2 signaling pathway in the VLPO, controlling local blood flow and sleep-promoting neurons, via astrocyte-derived adenosine.


Subject(s)
Astrocytes , Prostaglandins , Astrocytes/metabolism , Adenosine/metabolism , Prostaglandin D2/pharmacology , Prostaglandin D2/physiology , Sleep , Neurons/metabolism
2.
Mol Hum Reprod ; 27(5)2021 05 08.
Article in English | MEDLINE | ID: mdl-33851217

ABSTRACT

Adenomyosis is characterised by epithelial gland and mesenchymal stroma invasion of the uterine myometrium. Adenomyosis is an oestrogen-dependent gynaecological disease in which a number of factors, such as inflammatory molecules, prostaglandins (PGs), angiogenic factors, cell proliferation and extracellular matrix remodelling proteins, also play a role as key disease mediators. In this study, we used mice lacking both lipocalin and hematopoietic-PG D synthase (L- and H-Pgds) genes in which PGD2 is not produced to elucidate PGD2 roles in the uterus. Gene expression studied by real-time PCR and hormone dosages performed by ELISA or liquid chromatography tandem mass spectroscopy in mouse uterus samples showed that components of the PGD2 signalling pathway, both PGDS and PGD2-receptors, are expressed in the mouse endometrium throughout the oestrus cycle with some differences among uterine compartments. We showed that PGE2 production and the steroidogenic pathway are dysregulated in the absence of PGD2. Histological analysis of L/H-Pgds-/- uteri, and immunohistochemistry and immunofluorescence analyses of proliferation (Ki67), endothelial cell (CD31), epithelial cell (pan-cytokeratin), myofibroblast (α-SMA) and mesenchymal cell (vimentin) markers, identify that 6-month-old L/H-Pgds-/- animals developed adenomyotic lesions, and that disease severity increased with age. In conclusion, this study suggests that the PGD2 pathway has major roles in the uterus by protecting the endometrium against adenomyosis development. Additional experiments, using for instance transcriptomic approaches, are necessary to fully determine the molecular mechanisms that lead to adenomyosis in L/H-Pgds-/- mice and to confirm whether this strain is an appropriate model for studying the human disease.


Subject(s)
Adenomyosis/metabolism , Prostaglandin D2/physiology , Signal Transduction , Uterus/metabolism , Animals , Dinoprostone/metabolism , Female , Intramolecular Oxidoreductases/metabolism , Lipocalins/metabolism , Mice , Prostaglandin D2/genetics , Prostaglandin D2/metabolism , Real-Time Polymerase Chain Reaction , Steroids/biosynthesis , Uterus/physiology
3.
PLoS Biol ; 18(12): e3000739, 2020 12.
Article in English | MEDLINE | ID: mdl-33370269

ABSTRACT

Cardiac levels of the signal transducer and activator of transcription factor-3 (STAT3) decline with age, and male but not female mice with a cardiomyocyte-specific STAT3 deficiency conditional knockout (CKO) display premature age-related heart failure associated with reduced cardiac capillary density. In the present study, isolated male and female CKO-cardiomyocytes exhibit increased prostaglandin (PG)-generating cyclooxygenase-2 (COX-2) expression. The PG-degrading hydroxyprostaglandin-dehydrogenase-15 (HPGD) expression is only reduced in male cardiomyocytes, which is associated with increased prostaglandin D2 (PGD2) secretion from isolated male but not female CKO-cardiomyocytes. Reduced HPGD expression in male cardiomyocytes derive from impaired androgen receptor (AR)-signaling due to loss of its cofactor STAT3. Elevated PGD2 secretion in males is associated with increased white adipocyte accumulation in aged male but not female hearts. Adipocyte differentiation is enhanced in isolated stem cell antigen-1 (SCA-1)+ cardiac progenitor cells (CPC) from young male CKO-mice compared with the adipocyte differentiation of male wild-type (WT)-CPC and CPC isolated from female mice. Epigenetic analysis in freshly isolated male CKO-CPC display hypermethylation in pro-angiogenic genes (Fgfr2, Epas1) and hypomethylation in the white adipocyte differentiation gene Zfp423 associated with up-regulated ZFP423 expression and a shift from endothelial to white adipocyte differentiation compared with WT-CPC. The expression of the histone-methyltransferase EZH2 is reduced in male CKO-CPC compared with male WT-CPC, whereas no differences in the EZH2 expression in female CPC were observed. Clonally expanded CPC can differentiate into endothelial cells or into adipocytes depending on the differentiation conditions. ZFP423 overexpression is sufficient to induce white adipocyte differentiation of clonal CPC. In isolated WT-CPC, PGD2 stimulation reduces the expression of EZH2, thereby up-regulating ZFP423 expression and promoting white adipocyte differentiation. The treatment of young male CKO mice with the COX inhibitor Ibuprofen or the PGD2 receptor (DP)2 receptor antagonist BAY-u 3405 in vivo increased EZH2 expression and reduced ZFP423 expression and adipocyte differentiation in CKO-CPC. Thus, cardiomyocyte STAT3 deficiency leads to age-related and sex-specific cardiac remodeling and failure in part due to sex-specific alterations in PGD2 secretion and subsequent epigenetic impairment of the differentiation potential of CPC. Causally involved is the impaired AR signaling in absence of STAT3, which reduces the expression of the PG-degrading enzyme HPGD.


Subject(s)
Myocytes, Cardiac/metabolism , Prostaglandin D2/metabolism , STAT3 Transcription Factor/metabolism , Adipocytes, White/metabolism , Animals , Cell Differentiation/genetics , Cells, Cultured , Cyclooxygenase 2/metabolism , Endothelial Cells/metabolism , Female , Heart Failure/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Multipotent Stem Cells/metabolism , Prostaglandin D2/physiology , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Stem Cells/metabolism
4.
Front Endocrinol (Lausanne) ; 11: 572113, 2020.
Article in English | MEDLINE | ID: mdl-33117286

ABSTRACT

Eosinophils are key regulators of adipose tissue homeostasis, thus characterization of adipose tissue-related molecular factors capable of regulating eosinophil activity is of great interest. Leptin is known to directly activate eosinophils in vitro, but leptin ability of inducing in vivo eosinophilic inflammatory response remains elusive. Here, we show that leptin elicits eosinophil influx as well as its activation, characterized by increased lipid body biogenesis and LTC4 synthesis. Such leptin-triggered eosinophilic inflammatory response was shown to be dependent on activation of the mTOR signaling pathway, since it was (i) inhibited by rapamycin pre-treatment and (ii) reduced in PI3K-deficient mice. Local infiltration of activated eosinophils within leptin-driven inflammatory site was preceded by increased levels of classical mast cell-derived molecules, including TNFα, CCL5 (RANTES), and PGD2. Thus, mice were pre-treated with a mast cell degranulating agent compound 48/80 which was capable to impair leptin-induced PGD2 release, as well as eosinophil recruitment and activation. In agreement with an indirect mast cell-driven phenomenon, eosinophil accumulation induced by leptin was abolished in TNFR-1 deficient and also in HQL-79-pretreated mice, but not in mice pretreated with neutralizing antibodies against CCL5, indicating that both typical mast cell-driven signals TNFα and PGD2, but not CCL5, contribute to leptin-induced eosinophil influx. Distinctly, leptin-induced eosinophil lipid body (lipid droplet) assembly and LTC4 synthesis appears to depend on both PGD2 and CCL5, since both HQL-79 and anti-CCL5 treatments were able to inhibit these eosinophil activation markers. Altogether, our data show that leptin triggers eosinophilic inflammation in vivo via an indirect mechanism dependent on activation of resident mast cell secretory activity and mediation by TNFα, CCL5, and specially PGD2.


Subject(s)
Eosinophils/drug effects , Leptin/pharmacology , Mast Cells/physiology , Prostaglandin D2/physiology , Animals , Cell Movement/drug effects , Chemokine CCL5/physiology , Eosinophils/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
5.
Med Hypotheses ; 143: 110122, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32759007

ABSTRACT

A characteristic feature of COVID-19 disease is lymphopenia. Lymphopenia occurs early in the clinical course and is a predictor of disease severity and outcomes. The mechanism of lymphopenia in COVID-19 is uncertain. It has been variously attributed to the release of inflammatory cytokines including IL-6 and TNF-α; direct infection of the lymphocytes by the virus; and rapid sequestration of lymphocytes in the tissues. Additionally, we postulate that prostaglandin D2 (PGD2) is a key meditator of lymphopenia in COVID-19. First, SARS-CoV infection is known to stimulate the production of PGD2 in the airways, which inhibits the host dendritic cell response via the DP1 receptor signaling. Second, PGD2 is known to upregulate monocytic myeloid-derived suppressor cells (MDSC) via the DP2 receptor signaling in group 2 innate lymphoid cells (ILC2). We propose targeting PGD2/DP2 signaling using a receptor antagonist such as ramatroban as an immunotherapy for immune dysfunction and lymphopenia in COVID-19 disease.


Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Lymphopenia/physiopathology , Models, Immunological , Molecular Targeted Therapy , Pandemics , Pneumonia, Viral/physiopathology , Prostaglandin D2/physiology , Respiratory System/metabolism , Adult , COVID-19 , Carbazoles/pharmacology , Carbazoles/therapeutic use , Child , Coronavirus Infections/complications , Coronavirus Infections/immunology , Dendritic Cells/immunology , Humans , Lymphopenia/etiology , Myeloid Cells/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Prostaglandin D2/biosynthesis , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/physiology , SARS-CoV-2 , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , T-Lymphocytes/immunology , Thromboxane A2/antagonists & inhibitors
6.
J Invest Dermatol ; 140(11): 2210-2220.e5, 2020 11.
Article in English | MEDLINE | ID: mdl-32222457

ABSTRACT

A role for the adhesion G-protein coupled receptor ADGRE2 or EMR2 in mechanosensing was revealed by the finding of a missense substitution (p.C492Y) associated with familial vibratory urticaria. In these patients, friction of the skin induces mast cell hyper-degranulation through p.C492Y-ADGRE2, causing localized hives, flushing, and hypotension. We have now characterized the responses and intracellular signals elicited by mechanical activation in human mast cells expressing p.C492Y-ADGRE2 and attached to dermatan sulfate, a ligand for ADGRE2. The presence of p.C492Y-ADGRE2 reduced the threshold to activation and increased the extent of degranulation along with the percentage of mast cells responding. Vibration caused phospholipase C activation, transient increases in cytosolic calcium, and downstream activation of phosphoinositide 3-kinase and extracellular signal-regulated kinases 1 and 2 by Gßγ, Gαq/11, and Gαi/o-independent mechanisms. Degranulation induced by vibration was dependent on phospholipase C pathways, including calcium, protein kinase C, and phosphoinositide 3-kinase but not extracellular signal-regulated kinases 1/2 pathways, along with pertussis toxin-sensitive signals. In addition, mechanoactivation of mast cells stimulated the synthesis and release of prostaglandin D2, to our knowledge a previously unreported mediator in vibratory urticaria, and extracellular signal-regulated kinases 1/2 activation was required for this response together with calcium, protein kinase C, and to some extent, phosphoinositide 3-kinase. Our studies thus identified critical molecular events initiated by mechanical forces and potential therapeutic targets for patients with vibratory urticaria.


Subject(s)
Mast Cells/physiology , Receptors, G-Protein-Coupled/genetics , Urticaria/etiology , Calcium/metabolism , Cell Degranulation , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/physiology , Humans , Mechanotransduction, Cellular , Mutation, Missense , Phosphatidylinositol 3-Kinases/physiology , Prostaglandin D2/physiology , Protein Kinase C/physiology , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Tetraspanin 30/physiology , Type C Phospholipases/physiology , Urticaria/genetics , Vibration/adverse effects
7.
Mol Neurobiol ; 57(5): 2265-2278, 2020 May.
Article in English | MEDLINE | ID: mdl-32006234

ABSTRACT

Suppression of ubiquitin proteasome pathway (UPP) and stimulation of caspase-3 are involved in neurodegeneration. Can UPP activators and caspase-3 inhibitors ameliorate neurodegeneration? Here, we found a novel neuronal cell death accompanied with UPP activation and caspase-3 inhibition. Recently, plasmalemmal neuron-specific enolase (NSE) has been identified as one of membrane targets of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). 15d-PGJ2 induces neuronal apoptosis via activating caspase-3 and inactivating UPP, whereas the anti-NSE antibody inactivated caspase-3, activated UPP, and caused neuronal cell death. The anti-NSE antibody activated caspase-1 (pyroptosis marker), but not condense chromatin (apoptosis marker). The anti-NSE antibody declined intracellular level of ATP, which is not altered in pyroptosis. The intracellular level of calcium is elevated in necrosis and pyroptosis, but its chelator did not ameliorate the neurotoxicity of anti-NSE. Thiol antioxidants such as N-acetyl cysteine and glutathione reduced the neurotoxicity of 15d-PGJ2 but enhanced that of the anti-NSE antibody. The anti-NSE antibody incorporated propidium iodide into neurons through the disrupted plasma membrane, which are not observed in ferroptosis and autophagic cell death. Thus, the anti-NSE antibody induced neuronal cell death in a novel fashion distinguished from necrosis, necroptosis, apoptosis, pyroptosis, ferroptosis, and autophagic cell death.


Subject(s)
Caspase 3/drug effects , Cell Death/drug effects , Immunoglobulin G/pharmacology , Neurons/drug effects , Phosphopyruvate Hydratase/immunology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Acetylcysteine/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antioxidants/pharmacology , Calcium Signaling , Caspase 1/metabolism , Cerebral Cortex/cytology , Chromatin/ultrastructure , Enzyme Activation/drug effects , Female , Glutathione/pharmacology , Goats/immunology , HSP70 Heat-Shock Proteins/metabolism , Immunoglobulin G/immunology , MAP Kinase Signaling System/drug effects , Neurites/drug effects , Neurons/cytology , Phosphopyruvate Hydratase/physiology , Pregnancy , Prostaglandin D2/analogs & derivatives , Prostaglandin D2/physiology , Protein Processing, Post-Translational/drug effects , Rabbits/immunology , Rats , Rats, Wistar , Species Specificity , Ubiquitination/drug effects
8.
Circ Res ; 125(3): 282-294, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31213138

ABSTRACT

RATIONALE: Fluid shear stress (FSS) maintains NOS-3 (endothelial NO synthase) expression. Homozygosity for the C variant of the T-786C single-nucleotide polymorphism of the NOS3 gene, which solely exists in humans, renders the gene less sensitive to FSS, resulting in a reduced endothelial cell (EC) capacity to generate NO. Decreased bioavailability of NO in the arterial vessel wall facilitates atherosclerosis. Consequently, individuals homozygous for the C variant have an increased risk for coronary heart disease (CHD). OBJECTIVE: At least 2 compensatory mechanisms seem to minimize the deleterious effects of this single-nucleotide polymorphism in affected individuals, one of which is characterized herein. METHODS AND RESULTS: Human genotyped umbilical vein ECs and THP-1 monocytes were used to investigate the role of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in vitro. Its concentration in plasma samples from genotyped patients with CHD and age-matched CHD-free controls was determined using quantitative ultraperformance LC-MS/MS. Exposure of human ECs to FSS effectively reduced monocyte transmigration particularly through monolayers of CC-genotype ECs. Primarily in CC-genotype ECs, FSS elicited a marked rise in COX (cyclooxygenase)-2 and L-PGDS (lipocalin-type prostaglandin D synthase) expression, which appeared to be NO sensitive, and provoked a significant release of 15d-PGJ2 over baseline. Exogenous 15d-PGJ2 significantly reduced monocyte transmigration and exerted a pronounced anti-inflammatory effect on the transmigrated monocytes by downregulating, for example, transcription of the IL (interleukin)-1ß gene (IL1B). Reporter gene analyses verified that this effect is due to binding of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) to 2 AREs (antioxidant response elements) in the proximal IL1B promoter. In patients with CHD, 15d-PGJ2 plasma levels were significantly upregulated compared with age-matched CHD-free controls, suggesting that this powerful anti-inflammatory prostanoid is part of an endogenous defence mechanism to counteract CHD. CONCLUSIONS: Despite a reduced capacity to form NO, CC-genotype ECs maintain a robust anti-inflammatory phenotype through an enhanced FSS-dependent release of 15d-PGJ2.


Subject(s)
Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide/blood , Polymorphism, Single Nucleotide , Prostaglandin D2/analogs & derivatives , Adaptation, Physiological , Aged , Aged, 80 and over , Coronary Disease/blood , Coronary Disease/genetics , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Enzyme Induction , Female , Genes, Reporter , Genetic Predisposition to Disease , Hemorheology , Human Umbilical Vein Endothelial Cells , Humans , Inflammation , Intramolecular Oxidoreductases/biosynthesis , Intramolecular Oxidoreductases/genetics , Lipocalins/biosynthesis , Lipocalins/genetics , Male , Middle Aged , NF-E2-Related Factor 2/physiology , Nitric Oxide Synthase Type III/genetics , Prostaglandin D2/biosynthesis , Prostaglandin D2/blood , Prostaglandin D2/physiology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , THP-1 Cells
9.
J Matern Fetal Neonatal Med ; 31(9): 1241-1245, 2018 May.
Article in English | MEDLINE | ID: mdl-28337942

ABSTRACT

Fetal pain and fetal anesthesia are still matter of debate: some authors hypothesize that several intrauterine endocrine neuroinhibitors (ENIn) anesthetize the fetus, keeping it in a constant state of sleep, and making pharmacological fetal anesthesia useless for fetal surgery, while others argue fetal pain is possible and shoud be prevented with fetal anesthesy. AIM: To retrieve evidences about fetal pain, fetal arousability and about the level of sedation induced by the ENIn, in order to assess the necessity of direct fetal anesthesia during prenatal fetal surgery. METHODS: We performed a careful literature review (1990-2016) on fetal arousability, and on the possibility that ENIn at the average fetal blood levels induce actual anesthesia. We retrieved the papers that fulfilled the research criteria, with particular attention to the second half of pregnancy, the period when most fetal surgery is performed. RESULTS: Fetuses are awake about 10% of the total time in the last gestational weeks, and they can be aroused by external stimuli. ENIn have not an anesthetic effect at normal fetal values, but only when they areartificialy injected at high doses; their blood levels in the last trimester of average pregnancies are not dissimilar either in the fetus or in the mother. CONCLUSIONS: During the second half of the pregnancy, external stimuli can awake the fetuses, although they spend most of the time in sleeping state; the presence of ENIn is absolutely not enough to guarantee an effective anesthesia during surgery. Thus, direct fetal analgesia/anesthesia is mandatory, though further studies on its possible drawbacks are necessary.


Subject(s)
Analgesia , Fetus/surgery , Pain/embryology , Pain/prevention & control , Adenosine/blood , Adenosine/physiology , Analgesia/methods , Anesthesia/methods , Arousal , Female , Fetal Blood/chemistry , Fetus/innervation , Gestational Age , Humans , MEDLINE , Nervous System/embryology , Pain Management , Pregnancy , Pregnanolone/blood , Pregnanolone/physiology , Prostaglandin D2/blood , Prostaglandin D2/physiology
10.
Neurobiol Aging ; 62: 130-145, 2018 02.
Article in English | MEDLINE | ID: mdl-29149631

ABSTRACT

Regulation of the amyloid precursor protein (APP) processing by α- and ß-secretases is of special interest to Alzheimer's disease (AD), as these proteases prevent or mediate amyloid beta formation, respectively. Neuroinflammation is also implicated in AD. Our data demonstrate that the endogenous mediator of inflammation prostaglandin J2 (PGJ2) promotes full-length APP (FL-APP) processing by α- and ß-secretases. The decrease in FL-APP was independent of proteasomal, lysosomal, calpain, caspase, and γ-secretase activities. Moreover, PGJ2-treatment promoted cleavage of secreted APP, specifically sAPPα and sAPPß, generated by α and ß-secretase, respectively. Notably, PGJ2-treatment induced caspase-dependent cleavage of sAPPß. Mechanistically, PGJ2-treatment selectively diminished mature (O- and N-glycosylated) but not immature (N-glycosylated only) FL-APP. PGJ2-treatment also increased the overall levels of protein O-GlcNAcylation, which occurs within the nucleocytoplasmic compartment. It is known that APP undergoes O-GlcNAcylation and that the latter protects proteins from proteasomal degradation. Our results suggest that by increasing protein O-GlcNAcylation levels, PGJ2 renders mature APP less prone to proteasomal degradation, thus shunting APP toward processing by α- and ß-secretases.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Protein Precursor/metabolism , Prostaglandin D2/analogs & derivatives , Animals , Caspases/physiology , Cells, Cultured , Cytoplasm/metabolism , Female , Glycosylation , Humans , Inflammation/etiology , Inflammation/metabolism , Male , Prostaglandin D2/physiology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Rats, Sprague-Dawley , Tumor Cells, Cultured
11.
Mol Neurobiol ; 55(3): 2227-2248, 2018 03.
Article in English | MEDLINE | ID: mdl-28299574

ABSTRACT

Prostaglandins (PGs) are divided into conventional PGs, e.g., PGD2, and cyclopentenone-type PGs, e.g., 15-deoxy-Δ12,14 prostaglandin J2 (15d-PGJ2). PGD2 is non-enzymatically metabolized to PGJ2, Δ12-PGJ2, and 15d-PGJ2. In the central nervous system, 15d-PGJ2 differentiates embryonic midbrain cells into dopaminergic neuronal cells via its nuclear peroxysome proliferator-activated receptor-γ (PPARγ). 15d-PGJ2 exerts conflict actions: proinflammatory and anti-inflammatory activities. In the brain, 15d-PGJ2 possesses opposite functions as a neuroprotectant at low concentrations and a neurotoxicant at high concentrations in the brain. PPARγ contributes to the neuroprotective effect of 15d-PGJ2 but not to the neurotoxic effect. Its membrane receptor, chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2), is not also involved in the neurotoxicity of 15d-PGJ2. 15d-PGJ2 induces neuronal apoptosis via inactivating ubiquitin proteasome pathway and activating caspase cascade. Alternatively, 15d-PGJ2 downregulates phosphoinositide 3-kinase (PI3K)-Akt pathway and suppresses neurite outgrowth. 15d-PGJ2 possesses α,ß-unsaturated ketone moiety in its cyclopentenone ring and acts an endogenous electrophile. By the Michael addition reaction, 15d-PGJ2 is covalently bound to cellular nucleophiles, such as free cysteine residues of proteins that regulate intracellular signaling pathways. There are specific binding sites of [3H]15d-PGJ2 in the plasma membrane of cerebral cortices. Besides CRTH2, plasmalemmal glycolytic enzymes, respiratory chain enzymes, molecular chaperones, adaptor proteins and cytoskeletons are identified as membrane targets for 15d-PGJ2. In the present review, we provide evidences for pathophysiological roles of 15d-PGJ2 in the central nervous system and neurological diseases.


Subject(s)
Central Nervous System/physiology , Immunologic Factors/physiology , Immunologic Factors/toxicity , Nervous System Diseases/physiopathology , Prostaglandin D2/analogs & derivatives , Animals , Cell Survival/drug effects , Cell Survival/physiology , Central Nervous System/drug effects , Central Nervous System/pathology , Humans , Nervous System Diseases/chemically induced , Nervous System Diseases/pathology , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Prostaglandin D2/physiology , Prostaglandin D2/toxicity
13.
Blood ; 129(13): 1802-1810, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28115365

ABSTRACT

Supplementation with nontoxic doses of micronutrient selenium has been shown to alleviate chronic myelogenous leukemia (CML) via the elimination of leukemia stem cells (LSCs) in mice. This treatment provides a new and novel method for eliminating the LSCs that are otherwise not targeted by existing therapies. The antileukemic effect of selenium was dependent on the production of endogenous cyclopentenone prostaglandins (CyPGs), Δ-12 prostaglandin J2 (Δ12-PGJ2), and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Here, we show that these endogenous CyPGs, produced by mice maintained on selenium-supplemented diets, alleviate the symptoms of CML through their ability to activate the nuclear hormone receptor, peroxisome proliferator activated receptor γ (PPARγ). GW9662, a potent PPARγ antagonist, blocked the antileukemic effect of selenium supplementation by significantly reducing CyPGs. This effect was mediated by an increase in 15-prostaglandin dehydrogenase (15-Pgdh) activity, which oxidizes and inactivates Δ12-PGJ2 and 15d-PGJ2 In contrast, treatment with the PPARγ agonist pioglitazone mimicked selenium supplementation. This treatment led to decreased 15-Pgdh activity and increased CyPG levels, which inhibited CML progression. Selenium-dependent activation of PPARγ mediated by endogenous CyPGs decreased Stat5 expression leading to the downregulation of Cited2, a master regulator of LSC quiescence. These studies suggest a potential role for selenium supplementation as an adjuvant therapy in CML.


Subject(s)
Leukemia/drug therapy , PPAR gamma/metabolism , Prostaglandin D2/analogs & derivatives , Selenium/therapeutic use , Animals , Antineoplastic Agents , Dietary Supplements , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , PPAR gamma/agonists , PPAR gamma/antagonists & inhibitors , Prostaglandin D2/biosynthesis , Prostaglandin D2/physiology , Selenium/pharmacology
14.
Med Sci (Paris) ; 31(6-7): 617-21, 2015.
Article in French | MEDLINE | ID: mdl-26152165

ABSTRACT

Prostaglandin D2 (PGD2) and derivatives are lipid mediators involved in the control of the intestinal epithelial barrier homeostasis. Their involvement in the pathophysiology of chronic inflammatory bowel disease (IBD) is still debated. Several results highlight the duality of PGD2 as an anti- or pro-inflammatory mediator. This duality seems to be related to a differential expression of its receptors by intestinal epithelial cells and the surrounding immunocompetent cells. The enteric glial cells from the enteric nervous system (ENS) express the lipocalin-type-prostaglandin D synthase and secrete PGD2 and 15d-PGJ2. The protective role of the ENS in the homeostatic control of the epithelial intestinal barrier and its involvement in the pathogenesis of IBD have already been demonstrated. Thus, these lipid mediators seem to be new actors of the neuro-glio-epithelial unit and could play a crucial role maintaining gut barrier integrity.


Subject(s)
Epithelial Cells/physiology , Homeostasis/physiology , Intestinal Mucosa/physiology , Prostaglandin D2/physiology , Animals , Humans , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/pathology , Lipids/pharmacology , Paracrine Communication
15.
Dev Comp Immunol ; 52(2): 182-91, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26027798

ABSTRACT

Prostaglandins (PGs) play a key role in the development on the immune response through the regulation of both pro- and anti-inflammatory processes. PGD(2) can be either pro- or anti-inflammatory depending on the inflammatory milieu. Prostaglandin D synthase (PGDS) is the enzyme responsible for the conversion of PGH(2) to PGD(2). In mammals, two types of PGDS synthase have been described, the hematopoietic (H-PGDS) and the lipocalin (L-PGDS). In the present study we describe the existence of two orthologs of the mammalian L-PGDS (PGDS1 and PGDS2) in the gilthead seabream and characterize their gene expression profiles and biological activity. The results showed a dramatic induction of the gene coding for PGDS1 in acidophilic granulocytes (AGs), which are functionally equivalent to mammalian neutrophils, after a prolonged in vitro activation with different pathogen associated molecular patterns (PAMPs). In contrast PGDS2 was not expressed in these cells. The functional relevance of the induction of PGDS1 in AGs was confirmed by the ability of these cells to release PGD(2) upon PAMP stimulation. To gain further insight into the role of PGD(2) in the resolution of inflammation in fish, we examined the ability of PGD(2) or its cyclopentenone derivates (cyPGs) to modulate the main functional activities of AGs. It was found that both PGD(2) and cyPGs inhibited the production of reactive oxygen species and downregulated the transcript levels of the gene encoding interleukin-1ß. Taken together, these results demonstrate that the use of PGD(2) and its metabolites in the resolution of inflammation was established before the divergence of fish from tetrapods more than 450 million years ago and support a critical role for granulocytes in the resolution of inflammation in vertebrates.


Subject(s)
Fish Diseases/metabolism , Gram-Negative Bacterial Infections/veterinary , Granulocytes/metabolism , Prostaglandin D2/physiology , Sea Bream/immunology , Amino Acid Sequence , Animals , Base Sequence , Brain/immunology , Brain/metabolism , Cells, Cultured , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Molecular Sequence Data , Organ Specificity , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phagocytosis , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Sea Bream/metabolism , Sea Bream/microbiology
16.
Prostaglandins Other Lipid Mediat ; 118-119: 28-33, 2015.
Article in English | MEDLINE | ID: mdl-25964109

ABSTRACT

The objective of the study was to investigate the role of prostaglandin D2 during pregnancy and its mediator Lipocalin-type prostaglandin D2 synthase (L-PGDS) as a predictor of preterm birth (PTB). Transgenic L-PGDS (+/+), L-PGDS (-/-) and C57BL/6 control pregnant mice models were used to determine the effect of DP1 and DP2 receptor antagonists in lipopolysaccharide (LPS)-induced PTB mice. In addition, L-PGDS levels were measured in the cervicovaginal secretions (CVS) of 370 pregnant women using ELISA and further processed for isoform detection using 2-D gel electrophoresis. Our results found that C57BL/6 control mice (n = 26), transgenic L-PGDS (+/+) (n = 26), demonstrated an 89% and 100% preterm birth in LPS (intraperitoneal injection, 20mg/kg) induced mice model respectively. Interestingly, the incidence of PTB was significantly reduced to 40% in L-PGDS (-/-) knockout mice (n = 26). DP1 and DP2 receptor antagonists (0.264 µg/day, dose of 0.1 µg/µl with the flow of 0.11 µl/h for 28 day using Alzet pumps) were used to investigate the effect in LPS-induced PTB in C57BL/6 mice and found 3.3-fold increase in viable pups after LPS-induction. In addition, L-PGDS levels were measured in CVS samples and found that PTB women (n = 296) had two-fold higher levels compared to full term births (n = 74) and established a significant inverse correlation between levels of L-PGDS and days to expected delivery by using 370 preterm birth CVS samples. Elevated L-PGDS levels in the CVS of women may be considered as a potential biomarker for PTB in future. Secondly, the use of DP1 and DP2 receptor antagonists may represent novel tocolytic agents for the treatment of PTB.


Subject(s)
Intramolecular Oxidoreductases/physiology , Lipocalins/physiology , Premature Birth/enzymology , Prostaglandin D2/physiology , Animals , Biomarkers/metabolism , Female , Humans , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Premature Birth/diagnosis , Premature Birth/immunology , Vagina/enzymology
17.
Cancer Med ; 3(4): 1041-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24729479

ABSTRACT

Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D2) caused more adenomas in Apc(Min/+) mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D2 (PGD2) binds to the prostaglandin D2 receptor known as PTGDR (or DP1). PGD2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD2. To assess, we produced Apc(Min/+) mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced Apc(Min/+) mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30-40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in Apc(Min/+) mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. Apc(Min/+) mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD2 signals acting through PTGDR in suppression of intestinal tumors.


Subject(s)
Adenoma/genetics , Intestinal Neoplasms/genetics , Prostaglandin D2/physiology , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Adenoma/metabolism , Adenoma/pathology , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Female , Gene Expression , Humans , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Intramolecular Oxidoreductases , Isomerases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/genetics , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics , Tumor Burden , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
18.
Thorax ; 69(7): 654-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24567296

ABSTRACT

BACKGROUND: Airway macrophage (AM) phagocytosis is impaired in severe asthma. Prostaglandin (PG) E2 and D2 are increased in severe asthma and suppress AM phagocytic function in vitro. In this study, we sought evidence for PG-mediated impairment of phagocytosis of inhalable carbonaceous particulate matter (PM) by AM in children with severe asthma compared with mild asthmatics and healthy controls. METHODS: AM were obtained from children with asthma and healthy controls using induced sputum. AM carbon area (µm(2)) was assessed by image analysis. In a subgroup of asthmatics, urinary PGE2 and PGD2 metabolites were measured by high-performance liquid chromatography, and PM exposure at the home address was modelled. Phagocytosis of PM by human monocyte-derived macrophages and rat AM was assessed in vitro by image analysis. RESULTS: AM carbon was 51% lower in children with moderate-to-severe asthma (n=36) compared with mild asthmatics (n=12, p<0.01) and healthy controls (n=47, p<0.01). There was no association between modelled PM exposure and AM carbon in 33 asthmatics who had a urine sample, but there was an inverse association between AM carbon and urinary metabolites of PGE2 and D2 (n=33, rs=-0.40, p<0.05, and rs=-0.44, p<0.01). PGE2 10(-6) M, but not PGD2 10(-6) M, suppressed phagocytosis of PM10 by human macrophages in vitro (p<0.05 vs control). PGE2 10(-6) M also suppressed phagocytosis of PM10 by rat AM in vitro (p<0.01 vs control). CONCLUSIONS: Phagocytosis of inhaled carbonaceous PM by AMs is impaired in severe asthma. PGE2 may contribute to impaired AM phagocytic function in severe asthma.


Subject(s)
Asthma/physiopathology , Carbon/analysis , Environmental Exposure/analysis , Macrophages/chemistry , Phagocytosis/physiology , Sputum/chemistry , Asthma/immunology , Asthma/metabolism , Carbon/immunology , Case-Control Studies , Child , Chromatography, High Pressure Liquid , Dinoprostone/immunology , Dinoprostone/physiology , Dinoprostone/urine , Female , Humans , London , Macrophages/immunology , Male , Particle Size , Phagocytosis/immunology , Prostaglandin D2/immunology , Prostaglandin D2/physiology , Prostaglandin D2/urine , Spirometry , Sputum/immunology , Urban Population
19.
Clin Anat ; 27(2): 201-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23813685

ABSTRACT

Yawning is a behavior to which little research has been devoted. However, its purpose has not yet been demonstrated and remains controversial. In this article, we propose a new theory involving the brain network that is functional during the resting state, that is, the default mode network. When this network is active, yawning manifests a process of switching to the attentional system through its capacity to increase circulation of cerebrospinal fluid (CSF), thereby increasing clearance of somnogenic factors (prostaglandin D(2), adenosine, and others) accumulating in the cerebrospinal fluid.


Subject(s)
Attention/physiology , Cerebrospinal Fluid/physiology , Nerve Net/physiology , Yawning/physiology , Adenosine/physiology , Arousal/physiology , Homeostasis/physiology , Humans , Prostaglandin D2/physiology , Sleep/physiology
SELECTION OF CITATIONS
SEARCH DETAIL