Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.438
Filter
2.
Oncotarget ; 15: 424-438, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953895

ABSTRACT

Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.


Subject(s)
Drug Combinations , Drug Synergism , Gastrointestinal Neoplasms , Mutation , Neoplastic Stem Cells , Neovascularization, Pathologic , Phenylurea Compounds , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Pyridines , Pyrrolidines , STAT3 Transcription Factor , Thymine , Trifluridine , Uracil , Xenograft Model Antitumor Assays , Humans , Trifluridine/pharmacology , Phenylurea Compounds/pharmacology , Animals , Pyridines/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/metabolism , Uracil/pharmacology , Uracil/analogs & derivatives , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Thymine/pharmacology , Cell Line, Tumor , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Angiogenesis
3.
Neoplasma ; 71(3): 266-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38958711

ABSTRACT

Neural invasion underlies the local spread of gastric cancer and is associated with poor prognosis. This process has been receiving increasing attention in recent years. However, the relationship between neural invasion and the malignant phenotypes of gastric cancer cells, as well as the molecular mechanism involved in this process, remain unclear. In this study, bioinformatics analysis was performed using a dataset obtained from The Cancer Genome Atlas-Stomach Adenocarcinoma. The results revealed that high expression of GDNF family receptor alpha 3 (GFRA3) was associated with a poor prognosis of patients with gastric cancer. GFRA3 is a receptor for artemin (ARTN), a glial cell line-derived neurotrophic factor (GDNF). This association was indicated by short overall/disease-free survival, as well as the presence of high-stage and high-grade disease. Gene set enrichment analysis showed that two cancer-associated pathways, namely KRAS signaling and epithelial-mesenchymal transition (EMT), were activated when GFRA3 was highly expressed in gastric cancer. Further studies confirmed that GFRA3 activated KRAS downstream signaling phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) or extracellular signal-regulated kinase (ERK) and induced EMT markers, as well as promoted the migration and invasion of gastric cancer cells. As a ligand of GFRA3, ARTN induced the EMT, migration, and invasion of gastric cancer cells via GFRA3. Notably, the effects of the ARTN-GFRA3 axis were attenuated by treatment with a KRAS inhibitor. The present findings indicated that, during the neural invasion of gastric cancer, ARTN-mediated activation of GFRA3 induces EMT phenotypes, migration, and invasion of gastric cancer cells via KRAS signaling.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Glial Cell Line-Derived Neurotrophic Factor Receptors , Neoplasm Invasiveness , Nerve Tissue Proteins , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Phenotype , Prognosis , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic
4.
Cell Death Dis ; 15(7): 474, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956060

ABSTRACT

Colorectal cancer (CRC) is one of the most common tumors of the digestive system worldwide. KRAS mutations limit the use of anti-EGFR antibodies in combination with chemotherapy for the treatment of CRC. Therefore, novel targeted therapies are needed to overcome the KRAS-induced oncogenesis. Recent evidence suggests that inhibition of PI3K led to ferroptosis, a nonapoptotic cell death closely related to KRAS-mutant cells. Here, we showed that a selective PI3Kδ inhibitor TYM-3-98 can suppress the AKT/mTOR signaling and activate the ferroptosis pathway in KRAS-mutant CRC cells in a concentration-dependent manner. This was evidenced by the lipid peroxidation, iron accumulation, and depletion of GSH. Moreover, the overexpression of the sterol regulatory element-binding protein 1 (SREBP1), a downstream transcription factor regulating lipid metabolism, conferred CRC cells greater resistance to ferroptosis induced by TYM-3-98. In addition, the effect of TYM-3-98 was confirmed in a xenograft mouse model, which demonstrated significant tumor suppression without obvious hepatoxicity or renal toxicity. Taken together, our work demonstrated that the induction of ferroptosis contributed to the PI3Kδ inhibitor-induced cell death via the suppression of AKT/mTOR/SREBP1-mediated lipogenesis, thus displaying a promising therapeutic effect of TYM-3-98 in CRC treatment.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Lipogenesis , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , TOR Serine-Threonine Kinases , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Lipogenesis/drug effects , Lipogenesis/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Mice , Signal Transduction/drug effects , Mice, Nude , Cell Line, Tumor , Mutation/genetics , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology
5.
JAMA Netw Open ; 7(7): e2419142, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967928

ABSTRACT

Importance: Among patients with metastatic colorectal cancer (mCRC), data are limited on disparate biomarker testing and its association with clinical outcomes on a national scale. Objective: To evaluate the socioeconomic and demographic inequities in microsatellite instability (MSI) and KRAS biomarker testing among patients with mCRC and to explore the association of testing with overall survival (OS). Design, Setting, and Participants: This cohort study, conducted between November 2022 and March 2024, included patients who were diagnosed with mCRC between January 1, 2010, and December 31, 2017. The study obtained data from the National Cancer Database, a hospital-based cancer registry in the US. Patients with mCRC and available information on biomarker testing were included. Patients were classified based on whether they completed or did not complete MSI or KRAS tests. Exposure: Demographic and socioeconomic factors, such as age, race, ethnicity, educational level in area of residence, median household income, insurance type, area of residence, facility type, and facility location were evaluated. Main Outcomes and Measures: The main outcomes were MSI and KRAS testing between the date of diagnosis and the date of first-course therapy. Univariable and multivariable logistic regressions were used to identify the relevant factors in MSI and KRAS testing. The OS outcomes were also evaluated. Results: Among the 41 061 patients included (22 362 males [54.5%]; mean [SD] age, 62.3 [10.1] years; 17.3% identified as Black individuals, 78.0% as White individuals, 4.7% as individuals of other race, with 6.5% Hispanic or 93.5% non-Hispanic ethnicity), 28.8% underwent KRAS testing and 43.7% received MSI testing. A significant proportion of patients had Medicare insurance (43.6%), received treatment at a comprehensive community cancer program (40.5%), and lived in an area with lower educational level (51.3%). Factors associated with a lower likelihood of MSI testing included age of 70 to 79 years (relative risk [RR], 0.70; 95% CI, 0.66-0.74; P < .001), treatment at a community cancer program (RR, 0.74; 95% CI, 0.70-0.79; P < .001), rural residency (RR, 0.80; 95% CI, 0.69-0.92; P < .001), lower educational level in area of residence (RR, 0.84; 95% CI, 0.79-0.89; P < .001), and treatment at East South Central facilities (RR, 0.67; 95% CI, 0.61-0.73; P < .001). Similar patterns were observed for KRAS testing. Survival analysis showed modest OS improvement in patients with MSI testing (hazard ratio, 0.93; 95% CI, 0.91-0.96; P < .001). The median (IQR) follow-up time for the survival analysis was 13.96 (3.71-29.34) months. Conclusions and Relevance: This cohort study of patients with mCRC found that older age, community-setting treatment, lower educational level in area of residence, and treatment at East South Central facilities were associated with a reduced likelihood of MSI and KRAS testing. Highlighting the sociodemographic-based disparities in biomarker testing can inform the development of strategies that promote equity in cancer care and improve outcomes for underserved populations.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Healthcare Disparities , Microsatellite Instability , Proto-Oncogene Proteins p21(ras) , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Male , Female , Middle Aged , Aged , Healthcare Disparities/statistics & numerical data , Proto-Oncogene Proteins p21(ras)/genetics , United States , Cohort Studies , Socioeconomic Factors , Neoplasm Metastasis
6.
J Cardiothorac Surg ; 19(1): 376, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926874

ABSTRACT

PURPOSE: The purpose of this study is to investigate whether gene mutations can lead to the growth of malignant pulmonary nodules. METHODS: Retrospective analysis was conducted on patients with pulmonary nodules at Hebei Provincial People's Hospital, collecting basic clinical information such as gender, age, BMI, and hematological indicators. According to the inclusion and exclusion criteria, 85 patients with malignant pulmonary nodules were selected for screening, and gene mutation testing was performed on all patient tissues to explore the relationship between gene mutations and the growth of malignant pulmonary nodules. RESULTS: There is a correlation between KRAS and TP53 gene mutations and the growth of pulmonary nodules (P < 0.05), while there is a correlation between KRAS and TP53 gene mutations and the growth of pulmonary nodules in the subgroup of invasive malignant pulmonary nodules (P < 0.05). CONCLUSION: Mutations in the TP53 gene can lead to the growth of malignant pulmonary nodules and are correlated with the degree of invasion of malignant pulmonary nodules.


Subject(s)
Lung Neoplasms , Mutation , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53 , Humans , Male , Female , Retrospective Studies , Middle Aged , Proto-Oncogene Proteins p21(ras)/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Aged , Multiple Pulmonary Nodules/genetics , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Adult , DNA Mutational Analysis , Genes, p53/genetics
7.
Cell Commun Signal ; 22(1): 324, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867255

ABSTRACT

BACKGROUND: KRAS-mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS-G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c-MET), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS-mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. METHODS: Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS-mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS-mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. RESULTS: Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS-mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 (p = 0.014) for high levels of KRAS mRNA expression and 3.742 (p = 0.052) for high MET mRNA expression. CONCLUSIONS: We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS-mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Omeprazole , Proto-Oncogene Proteins c-met , Proto-Oncogene Proteins p21(ras) , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Animals , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Omeprazole/pharmacology , Omeprazole/therapeutic use , Mice , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays , Mice, Nude , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Female , Triazines/pharmacology , Triazines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Piperazines , Piperidines , Pyridazines , Pyridones
8.
Hum Pathol ; 149: 21-28, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862093

ABSTRACT

It is often difficult to obtain adequate tissue for genomic study from distant metastases for assessment of targeted therapy in colorectal carcinomas. The study aims to explore the genomic differences between matched distant metastatic colorectal carcinomas (mCRC) and primary carcinoma using surgical specimens of both with adequate tissue. Thirty-four paired primary and distant metastatic colorectal carcinoma samples (liver, ovary, and lung) were obtained from surgical excisions (not small biopsies) and are microsatellite stable. They were subjected to DNA sequencing using comprehensive next-generation sequencing. This included mutation concordance analysis and mutational signature analysis. The mutation concordance analysis showed 49.6% shared mutations between primary and metastatic tumours, with 23.0% mutations exclusive to primary tumours and 27.4% mutations exclusive to distant metastases. While many patients with KRAS/BRAF mutations had shared mutations, two cases had unique KRAS mutations in the primary tumours only. Additionally, TMB (tumour mutational burden) analysis revealed that half of the TMB-high (≥7.5 mutations/Mb) metastatic colorectal carcinomas had a low TMB (<7.5 mutations/Mb) in the primary tumours. The mutational signature analysis identified de novo signatures consistent with known single base substitution patterns such as SBS11 (alkylation agents) and SBS30 (base excision repair deficiency) post-chemotherapy. To conclude, this study demonstrates significant genomic variations in resected distant metastasis when compared to primary colorectal carcinomas when adequate tissue is available. This finding underscores the importance of considering these differences and selecting tissue for mutation analysis in planning targeted and effective treatment strategies for mCRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Mutation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/surgery , Female , Male , Middle Aged , Aged , Biomarkers, Tumor/genetics , DNA Mutational Analysis , Proto-Oncogene Proteins B-raf/genetics , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/surgery , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasm Staging , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/surgery , High-Throughput Nucleotide Sequencing , Gene Expression Profiling , Adult , Antineoplastic Agents/therapeutic use
9.
Cancer Control ; 31: 10732748241262179, 2024.
Article in English | MEDLINE | ID: mdl-38875469

ABSTRACT

OBJECTIVES: The present study aimed to evaluate the frequencies of KRAS, NRAS, and BRAF mutations and their possible associations with clinicopathological features in 249 Moroccan patients with colorectal cancer (CRC). METHODS: A retrospective investigation of a cohort of formalin-fixed paraffin-embedded tissues of 249 patients with CRC was screened for KRAS/NRAS/BRAF mutations using Idylla™ technology and pyrosequencing. RESULTS: KRAS, NRAS, and BRAF mutations were revealed in 46.6% (116/249), 5.6% (14/249), and 2.4% (6/249) of patients. KRAS exon 2 mutations were identified in 87.9% of patients (102/116). KRAS G12D and G12 C were the most frequent, at 32.8% and 12.93%, respectively. Among the patients with KRAS exon 2 wild-type (wt), 27.6% (32/116) harbored additional KRAS mutations. Concurrent KRAS mutations were identified in 9.5% (11/116); including six in codon 146 (A146P/T/V), three in codon 61 (Q61H/L/R), one in codon 12 (G12 A and Q61H), and one in codon 13 (G13D and Q61 L). Among the NRAS exon 2 wt patients, 64.3% (9/14) harbored additional NRAS mutations. Concurrent NRAS mutations were identified in 28.6% (4/14) of NRAS-mutant patients. Since 3.2% wt KRAS were identified with NRAS mutations, concomitant KRAS and NRAS mutations were identified in 2.4% (6/249) of patients. KRAS mutations were higher in the >50-year-old age-group (P = .031), and the tumor location was revealed to be significantly associated with KRAS mutations (P = .028) predominantly in left colon (27.5%) and colon (42.2%) locations. NRAS mutations were most prevalent in the left colon (42.8%) and in well-differentiated tumors (64.2%). CONCLUSION: Detection of KRAS mutations, particularly the G12 C subtype, may be significant for patients with CRC and has possible therapeutic implications. However, rare KRAS concomitant mutations in CRC patients suggest that each individual may present distinct therapeutic responses. KRAS testing alongside the identification of other affected genes in the same patient will make the treatments even more personalized by contributing more accurately to the clinical decision process. Overall, early diagnosis using novel molecular techniques may improve the management of CRC by providing the most efficient therapies for Moroccan patients.


Subject(s)
Colorectal Neoplasms , GTP Phosphohydrolases , Membrane Proteins , Mutation , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins B-raf/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Male , Female , Proto-Oncogene Proteins p21(ras)/genetics , Membrane Proteins/genetics , Middle Aged , GTP Phosphohydrolases/genetics , Morocco/epidemiology , Retrospective Studies , Aged , Adult , Aged, 80 and over , DNA Mutational Analysis
10.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843329

ABSTRACT

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Subject(s)
Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Pancreatic Neoplasms , Phosphoproteins , Proteome , Proto-Oncogene Proteins p21(ras) , Animals , Humans , Mice , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphorylation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , HEK293 Cells
11.
Science ; 384(6700): eadk0775, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843331

ABSTRACT

How the KRAS oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients. Integration with our ERK-regulated phospho- and total proteome highlights ERK deregulation of the anaphase promoting complex/cyclosome (APC/C) and other components of the cell cycle machinery as key processes that drive pancreatic ductal adenocarcinoma (PDAC) growth. Our findings elucidate mechanistically the critical role of ERK in driving KRAS-mutant tumor growth and in resistance to KRAS-ERK MAPK targeted therapies.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Signal-Regulated MAP Kinases , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Mutation , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Transcriptome , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , HEK293 Cells
12.
J Mater Chem B ; 12(26): 6442-6451, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38860876

ABSTRACT

Self-assembled DNA nanostructures hold great promise in biosensing, drug delivery and nanomedicine. Nevertheless, challenges like instability and inefficiency in cellular uptake of DNA nanostructures under physiological conditions limit their practical use. To tackle these obstacles, this study proposes a novel approach that integrates the cationic polymer polyethyleneimine (PEI) with DNA self-assembly. The hypothesis is that the positively charged linear PEI can facilitate the self-assembly of DNA nanostructures, safeguard them against harsh conditions and impart them with the cellular penetration characteristic of PEI. As a demonstration, a DNA nanotube (PNT) was successfully synthesized through PEI mediation, and it exhibited significantly enhanced stability and cellular uptake efficiency compared to conventional Mg2+-assembled DNA nanotubes. The internalization mechanism was further found to be both clathrin-mediated and caveolin-mediated endocytosis, influenced by both PEI and DNA. To showcase the applicability of this hybrid nanostructure for biomedical settings, the KRAS siRNA-loaded PNT was efficiently delivered into lung adenocarcinoma cells, leading to excellent anticancer effects in vitro. These findings suggest that the PEI-mediated DNA assembly could become a valuable tool for future biomedical applications.


Subject(s)
Adenocarcinoma of Lung , DNA , Lung Neoplasms , Nanotubes , Polyethyleneimine , Proto-Oncogene Proteins p21(ras) , RNA, Small Interfering , Polyethyleneimine/chemistry , Humans , Nanotubes/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , DNA/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Particle Size , Cell Proliferation/drug effects , Drug Carriers/chemistry
13.
Biomolecules ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927010

ABSTRACT

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Subject(s)
Keratinocytes , PPAR delta , PPAR-beta , Stearoyl-CoA Desaturase , Keratinocytes/metabolism , Keratinocytes/drug effects , PPAR-beta/metabolism , PPAR-beta/genetics , Animals , Mice , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , PPAR delta/metabolism , PPAR delta/genetics , Fatty Acids/metabolism , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Humans , Oleic Acid/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/pathology
14.
Org Biomol Chem ; 22(26): 5374-5384, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38869445

ABSTRACT

The success of targeted covalent inhibitors (TCIs) for treating cancers has spurred the search for novel scaffolds to install covalent warheads. In our endeavour, using a scaffold hopping strategy, we managed to utilize imidazo[1,2-a]pyridine as the core backbone and explored its potential for the development of covalent inhibitors, therefore, synthesizing a series of novel KRAS G12C inhibitors facilitated by the Groebke-Blackburn-Bienaymè reaction (GBB reaction). Preliminary bio-evaluation screening delivered compound I-11 as a potent anticancer agent for KRAS G12C-mutated NCI-H358 cells, whose effects were further clarified by a series of cellular, biochemical, and molecular docking experiments. These results not only indicate the potential of compound I-11 as a lead compound for the treatment of intractable cancers, but also validate the unique role of imidazo[1,2-a]pyridine as a novel scaffold suitable for the discovery of covalent anticancer agents.


Subject(s)
Antineoplastic Agents , Drug Discovery , Pyridines , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Cell Line, Tumor , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug
15.
Cells ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920688

ABSTRACT

Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinomas (PDACs) harbor activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand the role of AKT signaling in mutant-KRAS pancreatic tumors, this study utilized proteolysis-targeting chimeras (PROTACs) and CRISPR-Cas9-genome editing to investigate AKT proteins. The PROTAC down-regulation of AKT proteins markedly slowed the growth of three pancreatic tumor cell lines harboring mutant KRAS. In contrast, the inhibition of AKT kinase activity alone had very little effect on the growth of these cell lines. The concurrent genetic deletion of all AKT isoforms (AKT1, AKT2, and AKT3) in the KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cell line also dramatically slowed its growth in vitro and when orthotopically implanted in syngeneic mice. Surprisingly, insulin-like growth factor-1 (IGF-1), but not epidermal growth factor (EGF), restored KPC cell growth in serum-deprived conditions, and the IGF-1 growth stimulation effect was AKT-dependent. The RNA-seq analysis of AKT1/2/3-deficient KPC cells suggested that reduced cholesterol synthesis may be responsible for the decreased response to IGF-1 stimulation. These results indicate that the presence of all three AKT isoforms supports pancreatic tumor cell growth, and the pharmacological degradation of AKT proteins may be more effective than AKT catalytic inhibitors for treating pancreatic cancer.


Subject(s)
Down-Regulation , Mutation , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins c-akt/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Animals , Cell Line, Tumor , Mice , Humans , Down-Regulation/drug effects , Down-Regulation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mutation/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
16.
J Pathol ; 263(4-5): 397-399, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38828491

ABSTRACT

Pancreatic cancer is a highly aggressive disease. Developing new strategies and using powerful methodologies for its early detection, coupled with in-depth comprehension of the mechanisms governing subtype evolution, will not only help to stratify PDAC patients' prognosis but also prevent unfavourable subtype plasticity upon treatment with chemotherapy. Michiels et al have developed a new approach to better capture PDAC heterogeneity at the single tumour duct spatial resolution level, leveraging detection of transcripts for mutant KRAS and multiple subtype markers. Their study sheds light on the association of mutant KRAS and PDAC phenotypic heterogeneity. The findings support functional cooperation of plastic tumour cells and opens new challenges towards PDAC patient stratification and therapeutic intervention. Pathology-based tools will be of prime importance to address these issues in a clinically meaningful manner. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Single-Cell Analysis , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Single-Cell Analysis/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Genetic Heterogeneity , Phenotype
17.
Exp Hematol ; 135: 104248, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834136

ABSTRACT

DNMT3A mutations are frequently found in clonal hematopoiesis and a variety of hematologic malignancies, including acute myeloid leukemia. An assortment of mouse models have been engineered to explore the tumorigenic potential and malignant lineage bias due to loss of function of DNMT3A in consort with commonly comutated genes in myeloid malignancies, such as Flt3, Nras, Kras, and c-Kit. We employed several tamoxifen-inducible Cre-ERT2 murine model systems to study the effects of constitutively active KrasG12D-driven myeloid leukemia (Kras) development together with heterozygous (3aHet) or homozygous Dnmt3a deletion (3aKO). Due to the rapid generation of diverse nonhematologic tumors appearing after tamoxifen induction, we employed a transplantation model. With pretransplant tamoxifen induction, most Kras mice died quickly of T-cell malignancies regardless of Dnmt3a status. Using posttransplant induction, we observed a dose-dependent effect of DNMT3A depletion that skewed the leukemic phenotype toward a myeloid lineage. Specifically, 64% of 3aKO/Kras mice had exclusively myeloid disease compared with 36% of 3aHet/Kras and only 13% of Kras mice. Here, 3aKO combined with Kras led to increased disease burden, multiorgan infiltration, and faster disease progression. DOT1L inhibition exerted profound antileukemic effects in malignant 3aKO/Kras cells, but not malignant cells with Kras mutation alone, consistent with the known sensitivity of DNMT3A-mutant leukemia to DOT1L inhibition. RNAseq from malignant myeloid cells revealed that biallelic Dnmt3a deletion was associated with loss of cell-cycle regulation, MYC activation, and TNF⍺ signaling. Overall, we developed a robust model system for mechanistic and preclinical investigations of acute myeloid leukemia with DNMT3A and Ras-pathway lesions.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Proto-Oncogene Proteins p21(ras) , Animals , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Disease Models, Animal , Mice, Transgenic , Mice, Knockout , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism
18.
Lung Cancer ; 193: 107854, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38917687

ABSTRACT

OBJECTIVES: Limited data are available on central nervous system (CNS) efficacy with standard-of-care therapies for KRAS-mutated (KRASmut) advanced non-small cell lung cancer (NSCLC). The objective of this study was to investigate the incidence and progression of brain metastases in KRASmut advanced NSCLC treated with docetaxel using pooled data from historical clinical trials. MATERIALS AND METHODS: Data from phase 2/3 trials of docetaxel-containing regimens in advanced NSCLC were sourced from the Medidata platform. Analysis was restricted to stage IIIB-IV KRASmut NSCLC with disease progression after ≥ 1 systemic anticancer therapy. Participants with asymptomatic, treated, and stable brain metastases were included. Endpoints included 12-month CNS disease control rate (CNS-DCR) and CNS progression per Response Evaluation Criteria in Solid Tumors; progression-free survival (PFS); and overall survival (OS). Data were pooled and analyses stratified by baseline brain metastases status. RESULTS: A total of 595 participants were included in the analysis (62 [10%] with baseline brain metastases and 533 [90 %] without). Among participants with brain metastases, 17 (27.4 %) had CNS progression during docetaxel treatment and 12-month CNS-DCR was 75.8 %; 45 (8.4 %) participants without baseline brain metastases developed brain metastases during treatment. In an analysis restricted to patients with metastatic disease, outcomes with and without baseline brain metastases included: median PFS, 3.3 and 4.9 months (p < 0.005); 12-month PFS, 5 % and 16 %; median OS, 6.9 and 10.4 months (p < 0.005); and 12-month OS, 20 % and 44 %, respectively. CONCLUSION: These findings establish CNS progression rates with docetaxel in previously treated KRASmut advanced NSCLC and facilitate interpretation of data from ongoing randomized clinical trials of novel KRAS-targeted therapeutic strategies vs. docetaxel.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Docetaxel , Lung Neoplasms , Mutation , Proto-Oncogene Proteins p21(ras) , Humans , Docetaxel/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Male , Proto-Oncogene Proteins p21(ras)/genetics , Female , Middle Aged , Aged , Adult , Clinical Trials, Phase III as Topic , Neoplasm Staging , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease Progression
19.
Cancer Cell ; 42(6): 943-945, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38861932

ABSTRACT

The development of mutant-selective KRAS inhibitors represents a major therapeutic advance; however, patients can develop resistance through feedback mechanisms and genetic alterations in the RAS pathway. Three publications in Nature and Cancer Discovery describe a promising RAS(ON) multi-selective inhibitor that simultaneously targets oncogenic RAS and multiple potential resistance mechanisms while sparing normal tissue.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , ras Proteins/metabolism , ras Proteins/genetics , Mutation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Signal Transduction/drug effects , Molecular Targeted Therapy/methods
20.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892436

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1-2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay.


Subject(s)
Pancreatic Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins p21(ras) , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Pancreatic Ductal/therapy , Signal Transduction/drug effects , Apoptosis , Mutation , Cell Proliferation/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL