Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
In Vivo ; 38(5): 2197-2204, 2024.
Article in English | MEDLINE | ID: mdl-39187312

ABSTRACT

BACKGROUND/AIM: In current literature, there is a notable lack of studies investigating the role of radiation-sensitive protein 51 (RAD-51) in pterygium diagnosis. Nevertheless, reports indicate elevated expression levels of RAD-51 among recurrent pterygium cases compared to those with primary pterygium. However, the genomic involvement of RAD-51 has yet to be explored in any population. This study aimed to assess the contribution of RAD-51 genotypes to pterygium risk in a representative Taiwanese population. MATERIALS AND METHODS: RAD-51 rs1801320 genotyping was successfully conducted in a Taiwanese cohort comprising 140 pterygium cases and 280 non-pterygium controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. RESULTS: The distribution of RAD-51 rs1801320 genotypes (GG, CG, and CC) in the pterygium group (70.0%, 25.7%, and 4.3%, respectively) did not significantly differ from that in the non-pterygium group (73.6%, 23.6%, and 2.8% for GG, CG, and CC genotypes, respectively; p for trend=0.6337). Carriers of the variant CG and CC RAD-51 rs1801320 genotypes exhibited 1.15- and 1.58-fold increased pterygium risk, respectively (95%CI=0.72-1.84 and 0.53-4.67, p=0.6552 and p=0.5914, respectively). In the dominant model, there appeared to be a slight association between variant genotypes CG and CC and pterygium risk (OR=1.19, 95%CI=0.76-1.87, p=0.0223). Allelic analysis revealed that the RAD-51 rs1801320 variant C allele was not significantly linked to pterygium risk (17.1% versus 14.6%, OR=1.20, 95%CI=0.82-1.78, p=0.3991). CONCLUSION: Variant genotypes at RAD-51 rs1801320 were firstly identified to associate with susceptibility to pterygium among Taiwanese individuals. Nonetheless, these findings warrant validation in larger and more diverse populations.


Subject(s)
Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Pterygium , Humans , Pterygium/genetics , Pterygium/etiology , Male , Female , Taiwan/epidemiology , Middle Aged , Aged , Rad51 Recombinase/genetics , Alleles , Risk Factors , Case-Control Studies , Gene Frequency , Adult
2.
Sci Rep ; 14(1): 18464, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122774

ABSTRACT

This study aims to estimate the familial risks of pterygium and assess its relative contributions to environmental and genetic factors using the 2000-2017 Taiwan National Health Insurance Research Database. The marginal Cox's model and the polygenic liability model were made. In Taiwan, the prevalence rate of pterygium in 2017 was 1.64% for individuals with affected first-degree relatives, higher than the general population (1.34%). The adjusted relative risk (RR) for pterygium was highest for twins of the same sex (15.54), followed by siblings of the same sex (4.69), offsprings (3.39), siblings of the different sex (2.88), spouse (2.12), parents (1.86), twins of the different sex (1.57), respectively. The phenotypic variance of pterygium was 21.6% from additive genetic variance, 24.3% from common environmental factors shared by family members, and 54.1% from non-shared environmental factors, respectively. Sensitivity analysis by restricting those with surgical pterygium reveals that aRRs and the three components were similar to those of the overall pterygium. In summary, the prevalence rate of pterygium was higher for individuals with affected first-degree relatives than for the general population. The non-shared environmental factors account for half of the phenotypic variance of pterygium; genetic and shared environmental factors explain the rest.


Subject(s)
Genetic Predisposition to Disease , Pterygium , Humans , Pterygium/genetics , Pterygium/epidemiology , Taiwan/epidemiology , Male , Female , Middle Aged , Prevalence , Adult , Aged , Risk Factors , Gene-Environment Interaction , Environment
3.
Chem Biol Drug Des ; 104(1): e14571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013779

ABSTRACT

Pterygium is a frequent eye surface condition that is characterized by a high rate of proliferation, fibrovascular development, cellular migration, corneal infiltration, and angiogenesis. We investigated that ex vivo primary pterygium and conjunctival cell cultures were generated to analyze the effect of trehalose on cellular proliferation. After trehalose treatment, we performed microarray analysis to evaluate changes in the mRNA profile. We analyzed gene ontology (GO) and KEGG pathways to identify hub genes that changed expression levels after treatment and were associated with pterygium development. We selected three genes to verify their expression levels using qRT-PCR. The study also evaluated the impact of trehalose treatment on cell migration through a wound-healing assay. Our results suggested that pterygium cell proliferation was inhibited in a dose-dependent manner by trehalose. 2354 DEG were identified in pterygium and conjunctiva cells treated with trehalose compared to untreated groups. Functional enrichment analysis showed that differentially expressed mRNAs are involved in proliferation, vasculature development, and cell migration. We identified ten hub genes including upregulated (RANBP3L, SLC5A3, RERG, ANKRD1, DHCR7, RAB27B, GPRC5B, MSMO1, ASPN, DRAM1) and downregulated (TNC, PTGS2, GREM2, NPTX1, NR4A1, HMOX1, CXCL12, IL6, MYH2, TXNIP). Microarray analysis and functional investigations suggest that trehalose affects the pathogenesis of pterygium by modifying the expression of genes involved in crucial pathways related to cell function.


Subject(s)
Cell Movement , Cell Proliferation , Conjunctiva , Pterygium , Trehalose , Pterygium/metabolism , Pterygium/drug therapy , Pterygium/genetics , Pterygium/pathology , Humans , Trehalose/pharmacology , Trehalose/metabolism , Cell Proliferation/drug effects , Conjunctiva/metabolism , Conjunctiva/drug effects , Conjunctiva/pathology , Cell Movement/drug effects , Cells, Cultured , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Middle Aged
4.
Eye (Lond) ; 38(15): 2880-2887, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38907016

ABSTRACT

Pterygium, an ocular surface disorder, manifests as a wing-shaped extension from the corneoscleral limbus onto the cornea, impacting vision and causing inflammation. With a global prevalence of 12%, varying by region, the condition is linked to UV exposure, age, gender, and socioeconomic factors. This review focuses on key genes associated with pterygium, shedding light on potential therapeutic targets. Matrix metalloproteinases (MMPs), especially MMP2 and MMP9, contribute to ECM remodelling and angiogenesis in pterygium. Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis and is elevated in pterygium tissues. B-cell lymphoma-2, S100 proteins, DNA repair genes (hOGG1, XRCC1), CYP monooxygenases, p53, and p16 are implicated in pterygium development. A protein-protein interaction network analysis highlighted 28 edges between the aforementioned proteins, except for VEGF, indicating a high level of interaction. Gene ontology, microRNA and pathway analyses revealed the involvement of processes such as base excision repair, IL-17 and p53 signalling, ECM disassembly, oxidative stress, hypoxia, metallopeptidase activity and others that are essential for pterygium development. In addition, miR-29, miR-125, miR-126, miR-143, miR-200, miR-429, and miR-451a microRNAs were predicted, which were shown to have a role in pterygium development and disease severity. Identification of these molecular mechanisms provides insights for potential diagnostic and therapeutic strategies for pterygium.


Subject(s)
Pterygium , Humans , Pterygium/genetics , Pterygium/diagnosis , Pterygium/therapy , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732006

ABSTRACT

A pterygium is a common conjunctival degeneration and inflammatory condition. It grows onto the corneal surface or limbus, causing blurred vision and cosmetic issues. Ultraviolet is a well-known risk factor for the development of a pterygium, although its pathogenesis remains unclear, with only limited understanding of its hereditary basis. In this study, we collected RNA-seq from both pterygial tissues and conjunctival tissues (as controls) from six patients (a total of twelve biological samples) and retrieved publicly available data, including eight pterygium samples and eight controls. We investigated the intrinsic gene regulatory mechanisms closely linked to the inflammatory reactions of pterygiums and compared Asian (Korea) and the European (Germany) pterygiums using multiple analysis approaches from different perspectives. The increased expression of antioxidant genes in response to oxidative stress and DNA damage implies an association between these factors and pterygium development. Also, our comparative analysis revealed both similarities and differences between Asian and European pterygiums. The decrease in gene expressions involved in the three primary inflammatory signaling pathways-JAK/STAT, MAPK, and NF-kappa B signaling-suggests a connection between pathway dysfunction and pterygium development. We also observed relatively higher activity of autophagy and antioxidants in the Asian group, while the European group exhibited more pronounced stress responses against oxidative stress. These differences could potentially be necessitated by energy-associated pathways, specifically oxidative phosphorylation.


Subject(s)
Inflammation , Oxidative Phosphorylation , Oxidative Stress , Pterygium , RNA-Seq , Pterygium/genetics , Pterygium/metabolism , Humans , Oxidative Stress/genetics , Inflammation/genetics , Conjunctiva/metabolism , Conjunctiva/pathology , Male , Female , Gene Expression Regulation , Middle Aged , Signal Transduction/genetics
6.
Mol Biol Rep ; 51(1): 524, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630344

ABSTRACT

BACKGROUND: Pterygium, characterized by the abnormal proliferation of epithelial cells, matrix remodeling, vascularization, and lesion migration, is a prevalent ocular surface disease involving the growth of fibrovascular tissue on the cornea. Despite the unclear underlying causes of pterygium, numerous investigations have indicated the involvement of cell death pathways in the regulation of cell cycle dynamics. Consequently, the objective of this study was to assess the expression levels of necroptosis markers in individuals diagnosed with pterygium, aiming to shed light on the potential role of necroptosis in the pathogenesis of this condition. METHODS: This study aimed to investigate the expression patterns of receptor-interacting serine/threonine kinase 3 (RIPK3) and receptor-interacting serine/threonine kinase 1 (RIPK1) genes in pterygium tissues. 41 patients undergoing pterygium excision surgery were recruited. Resected pterygium samples and normal conjunctival tissues were collected, and RIPK3 and RIPK1 mRNA levels were measured using quantitative real-time PCR. RESULTS: Our findings reveal that the expression of RIPK3 is significantly increased in samples obtained from individuals with pterygium. However, no significant alterations were observed in the expression of RIPK1 in these samples. Results showed significantly higher RIPK3 expression in pterygium tissues compared to controls. Moreover, increased RIPK3 levels correlated negatively with pterygium recurrence rates. CONCLUSIONS: These findings suggest RIPK3 may play a protective role against pterygium recurrence through necroptosis.


Subject(s)
Pterygium , Humans , Conjunctiva/abnormalities , Gene Expression/genetics , Pterygium/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Serine
7.
In Vivo ; 38(2): 539-545, 2024.
Article in English | MEDLINE | ID: mdl-38418145

ABSTRACT

BACKGROUND/AIM: In the literature, the studies about the role of matrix metalloproteinase-2 (MMP-2) in pterygium diagnosis are mainly based on its protein expression. The role of MMP-2 variants has never been examined. The aim of this study was to examine the association of MMP-2 genotypes with pterygium risk. MATERIALS AND METHODS: MMP-2 rs243865 and rs2285053 were genotyped in 140 pterygium cases and 280 non-pterygium controls by typical polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genotyping technology. RESULTS: The genotypic frequency of MMP-2 rs243865 CC, CT and TT were 86.4%, 12.9% and 0.7% in the pterygium group and 81.1%, 17.1% and 1.8% in the non-pterygium group (p for trend=0.3389). The variant CT and TT carriers had a 0.70- and 0.38-fold pterygium risk (95%CI=0.39-1.26 and 0.04-3.25, p=0.2982 and 0.6686, respectively). As for MMP-2 rs2285053, the genotypic frequency of CC, CT and TT were 67.1%, 28.6% and 4.3% in the pterygium group, non-significantly different from those in non-pterygium group (p for trend=0.7081). The CT and TT carriers had a 0.88- and 0.71-fold pterygium risk (95%CI=0.56-1.38 and 0.27-1.88, p=0.6612 and 0.6456, respectively). The allelic analysis results showed that MMP-2 rs243865 variant T allele was not associated with pterygium risk (7.1% versus 10.4%, OR=0.67, 95%CI=0.39-1.13, p=0.1649). As for MMP-2 rs2285053, the T allele was not associated with pterygium risk either (18.6% versus 21.1%, OR=0.85, 95%CI=0.59-1.23, p=0.4136). CONCLUSION: The genotypes at MMP-2 rs243865 or rs2285053 played minor role in determining individual susceptibility for pterygium among Taiwanese.


Subject(s)
Conjunctiva , Matrix Metalloproteinase 2 , Pterygium , Humans , Case-Control Studies , Conjunctiva/abnormalities , Gene Frequency , Genetic Predisposition to Disease , Genotype , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 7/genetics , Polymorphism, Single Nucleotide , Pterygium/genetics , Taiwan/epidemiology
8.
Ocul Surf ; 32: 91-103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290663

ABSTRACT

PURPOSE: Pterygium is a vision-threatening conjunctival fibrovascular degenerated disease with a high global prevalence up to 12 %, while no absolute pharmacotherapy has been applied in clinics. In virtue of single-cell RNA sequencing (scRNA-seq) technique, our study investigated underlying pathogeneses and potential therapeutic targets of pterygium from the cellular transcriptional level. METHODS: A total of 45605 cells from pterygium of patients and conjunctiva of normal controls (NC) were conducted with scRNA-seq, and then analyzed via integrated analysis, pathway enrichment, pseudotime trajectory, and cell-cell communications. Besides, immunofluorescence and western blot were performed in vivo and in vitro to verify our findings. RESULTS: In brief, 9 major cellular types were defined, according to canonical markers. Subsequently, we further determined the subgroups of each major cell lineages. Several newly identified cell sub-clusters could promote pterygium, including immuno-fibroblasts, epithelial mesenchymal transition (EMT)-epithelial cells, and activated vascular endothelial cells (activated-vEndo). Besides, we also probed the enrichment of immune cells in pterygium. Particularly, macrophages, recruited by ACKR1+activated-vEndo, might play an important role in the development of pterygium by promoting angiogenesis, immune suppression, and inflammation. CONCLUSION: An intricate cellular niche was revealed in pterygium via scRNA-seq analysis and the interactions between macrophages and ACKR1+ activated-vEndo might be the key part in the development of pterygia.


Subject(s)
Conjunctiva , Pterygium , Sequence Analysis, RNA , Single-Cell Analysis , Pterygium/genetics , Pterygium/metabolism , Humans , Single-Cell Analysis/methods , Conjunctiva/pathology , Conjunctiva/metabolism , Sequence Analysis, RNA/methods , Male , Female , Epithelial-Mesenchymal Transition/genetics
9.
Turk J Ophthalmol ; 53(6): 343-348, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38014881

ABSTRACT

Objectives: To determine the roles of small GTP-binding proteins Rac1, Rac2, and Rac3 expression in pterygial tissue and to compare these expressions with normal conjunctival tissue. Materials and Methods: Seventy-eight patients with primary pterygium were enrolled. Healthy conjunctival graft specimens obtained during pterygium surgery were used as control tissue. The real-time polymerase chain reaction method on the BioMark HD dynamic array system was utilized in genomic mRNA for the gene expression analysis. Protein expressions were analyzed using western blot and immunohistochemical methods. Results: RAC1, RAC2, and RAC3 gene expressions in pterygial tissues were not markedly elevated when compared to the control specimens (p>0.05). As a very low level of RAC1 gene expression was observed, further protein expression analysis was performed for the Rac2 and Rac3 proteins. Western blot and immunohistochemical analysis of Rac2 and Rac3 protein expression revealed no significant differences between pterygial and healthy tissues (p>0.05). Conclusion: This is the first study to identify the contribution of Rac proteins in pterygium. Our results indicate that the small GTP-binding protein Rac may not be involved in pterygium pathogenesis.


Subject(s)
Pterygium , Humans , Pterygium/surgery , Pterygium/genetics , Pterygium/metabolism , Conjunctiva/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , Blotting, Western
10.
Acta Histochem ; 125(8): 152101, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913560

ABSTRACT

Pterygium is a common eye surface disease with high recurrence and unclear pathogenesis. In current study, RNA sequencing was conducted in 6 pairs of human pterygium and conjunctival tissues, and Matr3 as a novel candidate gene was significantly reduced in pterygium compared to control tissues. Moreover, immunoprecipitation was performed to pull down MATR3, and WTAP specially interacting with MATR3 in control but not pterygium was identified by mass spectrum. Immunoprecipitation was performed to validate the interaction between MATR3 and WTAP/METTL3/METTL14 complex. (Methylated) RNA immunoprecipitation was performed to further reveal that the binding affinity of WTAP and MATR3 was lost at 3' UTR of RNA molecules of down-regulated genes in pterygium. Overall, we figured out the loss of intercrossing between MATR3 and N6-methyladenosine methyltransferase complex, as well as indicated the potential impact on transcription of target genes in pterygium.


Subject(s)
Pterygium , Humans , Methylation , Pterygium/genetics , RNA , Conjunctiva/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , RNA-Binding Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism
11.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768371

ABSTRACT

Pterygium and primary Sjögren's Syndrome (pSS) share many similarities in clinical symptoms and ocular pathophysiological changes, but their etiology is unclear. To identify the potential genes and pathways related to immunity, two published datasets, GSE2513 containing pterygium information and GSE176510 containing pSS information, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of pterygium or pSS patients compared with healthy control conjunctiva, and the common DEGs between them were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted for common DEGs. The protein-protein interaction (PPI) network was constructed using the STRING database to find the hub genes, which were verified in clinical samples. There were 14 co-upregulated DEGs. The GO and KEGG analyses showed that these common DEGs were enriched in pathways correlated with virus infection, antigen processing and presentation, nuclear factor-kappa B (NF-κB) and Th17 cell differentiation. The hub genes (IL1R1, ICAM1, IRAK1, S100A9, and S100A8) were selected by PPI construction. In the era of the COVID-19 epidemic, the relationship between virus infection, vaccination, and the incidence of pSS and pterygium growth deserves more attention.


Subject(s)
COVID-19 , Pterygium , Sjogren's Syndrome , Humans , Gene Expression Profiling , Pterygium/genetics , Sjogren's Syndrome/genetics , Conjunctiva , Computational Biology , Gene Regulatory Networks
12.
FEBS Lett ; 597(9): 1290-1299, 2023 05.
Article in English | MEDLINE | ID: mdl-36776133

ABSTRACT

Ocular pterygium-digital keloid dysplasia (OPDKD) is a rare hereditary disease characterized by corneal ingrowth of vascularized conjunctival tissue early in life. Later, patients develop keloids on fingers and toes but are otherwise healthy. In a recently described family with OPDKD, we report the presence of a de novo c.770C > T, p.(Thr257Ile) variant in PELI2 in the affected individual. PELI2 encodes for the E3 ubiquitin ligase Pellino-2. In transgenic U87MG cells overexpressing Pellino-2 with the p.(Thr257Ile) amino acid substitution, constitutive activation of the NLRP3 inflammasome was observed. However, the Thr257Ile variant did not affect Pellino-2 intracellular localization, its binding to known interaction partners, nor its stability. Our findings indicate that constitutive autoactivation of the NLRP3 inflammasome contributes to the development of PELI2-associated OPDKD.


Subject(s)
Keloid , Pterygium , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Keloid/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pterygium/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Inflamm Res ; 72(3): 589-602, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36692516

ABSTRACT

OBJECTIVES: We aimed at identifying the role of transient receptor potential (TRP) channels in pterygium. METHODS: Based on microarray data GSE83627 and GSE2513, differentially expressed genes (DEGs) were screened and 20 hub genes were selected. After gene correlation analysis, 5 TRP-related genes were obtained and functional analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Multifactor regulatory network including mRNA, microRNAs (miRNAs) and transcription factors (TFs) was constructed. The 5 gene TRP signature for pterygium was validated by multiple machine learning (ML) programs including support vector classifiers (SVC), random forest (RF), and k-nearest neighbors (KNN). Additionally, we outlined the immune microenvironment and analyzed the candidate drugs. Finally, in vitro experiments were performed using human conjunctival epithelial cells (CjECs) to confirm the bioinformatics results. RESULTS: Five TRP-related genes (MCOLN1, MCOLN3, TRPM3, TRPM6, and TRPM8) were validated by ML algorithms. Functional analyses revealed the participation of lysosome and TRP-regulated inflammatory pathways. A comprehensive immune infiltration landscape and TFs-miRNAs-mRNAs network was studied, which indicated several therapeutic targets (LEF1 and hsa-miR-455-3p). Through correlation analysis, MCOLN3 was proposed as the most promising immune-related biomarker. In vitro experiments further verified the reliability of our in silico results and demonstrated that the 5 TRP-related genes could influence the proliferation and proinflammatory signaling in conjunctival tissue contributing to the pathogenesis of pterygium. CONCLUSIONS: Our study suggested that TRP channels played an essential role in the pathogenesis of pterygium. The identified pivotal biomarkers (especially MCOLN3) and pathways provide novel directions for future mechanistic and therapeutic studies for pterygium.


Subject(s)
MicroRNAs , Pterygium , Transient Receptor Potential Channels , Humans , Pterygium/genetics , Transient Receptor Potential Channels/genetics , Reproducibility of Results , Conjunctiva , MicroRNAs/genetics
14.
Biomed Res Int ; 2022: 2673890, 2022.
Article in English | MEDLINE | ID: mdl-36398070

ABSTRACT

To investigate the regulatory mechanism of pterygium formation, we detected differentially expressed messenger RNAs (DE-mRNAs) and differentially expressed circular RNAs (DE-circRNAs) in pterygium-associated conjunctival epithelium (PCE) and normal conjunctival epithelium (NCE). Genome-wide mRNA and circRNA expression profiles of PCE and NCE were determined using high-throughput sequencing. Bioinformatics analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) analysis, were conducted. The microRNAs (miRNAs) interacting with the hub DE-mRNAs and DE-circRNAs were predicted and verified using real-time quantitative PCR (RT-qPCR). The data showed that there were 536 DE-mRNAs (280 upregulated and 256 downregulated mRNAs) and 78 DE-circRNAs (20 upregulated and 58 downregulated circRNAs) in PCE. KEGG enrichment analysis indicated that the DE-mRNAs were mainly involved in the following biological processes: IL-17 signalling pathway, viral protein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor interaction, ECM-receptor interaction, and focal adhesion. The GSEA results revealed that the epithelial mesenchymal transition (EMT) process was significantly enriched in upregulated mRNAs. The pterygium-associated circRNA-miRNA-mRNA network was established based on the top 10 DE-circRNAs, 4 validated miRNAs (upregulated miR-376a-5p and miR-208a-5p,downregulated miR-203a-3p and miR-200b-3p), and 31 DE-mRNAs. We found that miR-200b-3p, as a regulator of FN1, SDC2, and MEX3D, could be regulated by 5 upregulated circRNAs. In addition, we screened out EMT-related DE-mRNAs, including 6 upregulated DE-mRNAs and 6 downregulated DE-mRNAs. The EMT-related circRNA-miRNA-mRNA network was established with the top 10 circRNAs, 8 validated miRNAs (upregulated miR-17-5p, miR-181a-5p, and miR-106a-5p, downregulated miR-124-3p, miR-9-5p, miR-130b-5p, miR-1-3p, and miR-26b-5P), and 12 EMT-related DE-mRNAs. We found that hsa_circ_0002406 might upregulate FN1 and ADAM12 by sponging miR-26b-5p and miR-1-3p, respectively, thus promoting EMT in pterygium. Briefly, the study provides a novel viewpoint on the molecular pathological mechanisms in pterygium formation. CircRNA-miRNA-mRNA regulatory networks participate in the pathogenesis of pterygium and might become promising targets for pterygium prevention and treatment.


Subject(s)
MicroRNAs , Pterygium , Humans , RNA, Circular/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pterygium/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelium/metabolism , Cytokines
15.
Front Endocrinol (Lausanne) ; 13: 943275, 2022.
Article in English | MEDLINE | ID: mdl-36187094

ABSTRACT

Background: Pterygium is an ocular surface disease that can cause visual impairment if it progressively invades the cornea. Although many pieces of research showed ultraviolet radiation is a trigger of pterygium pathological progress, the underlying mechanism in pterygium remains indistinct. Methods: In this study, we used microarray to evaluate the changes of transcripts between primary pterygium and adjacent normal conjunctiva samples in China. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Moreover, we constructed protein-protein interaction (PPI) and miRNA-mRNA regulatory networks to predict possible regulatory relationships. We next performed gene set enrichment analysis (GSEA) to explore the similarities and differences of transcripts between Asian studies from the Gene Expression Omnibus database. Furthermore, we took the intersection of differentially expressed genes (DEGs) with other data and identified hub genes of the development of pterygium. Finally, we utilized real-time quantitative PCR to verify the expression levels of candidate genes. Results: A total of 49 DEGs were identified. The enrichment analyses of DEGs showed that pathways such as the Wnt-signaling pathway and metabolism-related pathways were upregulated, while pathways such as hormone-related and transcription factor-associated pathways were downregulated. The PPI and miRNA-mRNA regulatory networks provide ideas for future research directions. The GSEA of selecting Asian data revealed that epithelial-mesenchymal transition and myogenesis existed in the pathology of pterygium in the Asian group. Furthermore, five gene sets (interferon-gamma response, Wnt beta-catenin signaling, oxidative phosphorylation, DNA repair, and MYC targets v2) were found only in our Chinese datasets. After taking an intersection between selecting datasets, we identified two upregulated (SPP1 and MYH11) and five downregulated (ATF3, FOS, EGR1, FOSB, and NR4A2) hub genes. We finally chose night genes to verify their expression levels, including the other two genes (SFRP2 and SFRP4) involved in Wnt signaling; Their expression levels were significantly different between pterygium and conjunctiva. Conclusions: We consider hormone-related, metabolic, and Wnt signaling pathways may be important in the pathology of pterygium development. Nine candidate genes we identified deserve further study and can be potential therapeutic targets.


Subject(s)
MicroRNAs , Pterygium , Computational Biology , Conjunctiva/abnormalities , Conjunctiva/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Hormones , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Pterygium/genetics , RNA, Messenger , Ultraviolet Rays , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
16.
In Vivo ; 36(5): 2143-2148, 2022.
Article in English | MEDLINE | ID: mdl-36099089

ABSTRACT

BACKGROUND/AIM: Mechanisms of c-FOS activation in the onset and progression of pterygia remain under investigation. This study aimed to comparatively analyze c-FOS proto-oncogene expression levels in neoplastic pterygia and normal epithelia. MATERIALS AND METHODS: We used a liquid-based cytology assay on thirty (n=30) pterygia cell populations and normal epithelia (n=10) extracted by a smooth scraping of conjunctiva epithelia. Applying a cell spot-based technique, we constructed five (n=5) slides, each containing eight (n=8) cell spots. A modified immune-cytochemistry (ICC) assay for c-FOS protein was used. Additionally, digital image analysis was implemented to calculate c-FOS immunostaining intensity levels. RESULTS: High staining intensity levels of c-FOS were detected in 12/30 (40%), whereas the rest 18/30 (60%) demonstrated moderate expression. c-FOS levels were statistically significantly higher in the pterygia compared to control tissues (p=0.001). c-FOS levels in the pterygia were not associated with the sex of patients (p=0.678), the presence of recurrent lesion (p=0.390) or the location of the lesion (p=0.158). The levels of c-FOS, however, were marginally significantly affected by the morphology of the pterygia (p=0.005). More precisely, the c-FOS levels were significantly higher in pterygia with a fleshy morphology. CONCLUSION: c-FOS over-expression is observed frequently in pterygia. It seems to be critically involved in the molecular mechanism of the lesion by its over-expression affecting partially their morphological features. Cell spot liquid - based array analysis is an innovative, easy to implement technique for simultaneously evaluating a broad spectrum of molecules in multiple specimens on the same slide.


Subject(s)
Proto-Oncogene Proteins c-fos , Pterygium , Conjunctiva/abnormalities , Conjunctiva/pathology , Epithelium/metabolism , Humans , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Pterygium/genetics
17.
Ophthalmic Genet ; 43(4): 488-495, 2022 08.
Article in English | MEDLINE | ID: mdl-35445627

ABSTRACT

PURPOSE: To explore the underlying molecular mechanism of pterygium and identify the key genes regulating the development of pterygium. METHODS: Differentially expressed mRNAs were obtained from the Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID (http://david.abcc.ncifcrf.gov/). The differential expressions of hub genes were verified using the reverse transcription-real-time fluorescent quantitative PCR (RT-qPCR). The function of the hub genes was further confirmed based on associations between the single nucleotide polymorphisms (SNPs) in hub genes and pterygium. The genotyping results were analyzed using SNPStats online software in five gene models, including codominant, dominant, recessive, overdominant, and log-additive. Five gene models were analyzed using SNPStats. RESULTS: We found that 240 genes were significantly differentially expressed. Functional enrichment analysis showed that focal adhesion pathway is extremely meaningful, among which JUN, FN1, and LAMB1 were verified to significantly differentially express in pterygium (P = 0.0011, P = 0.0018, and P = 0.0050, respectively). However, the all nine candidate SNPs (rs11688, rs3748814 in JUN; rs1263, rs1132741, rs1250259 in FN1; rs20556, rs35710474, rs25659, rs4320486 in LAMB1), were not statistically associated with pterygium. CONCLUSION: Our results demonstrated that JUN, FN1, and LAMB1 polymorphisms were not associated with susceptibility to pterygium in Chinese Han population. Considering the fact that these three genes are differentially expressed in pterygium, further research is needed to explain its involvement in pterygium.


Subject(s)
Fibronectins , Laminin , Proto-Oncogene Proteins c-jun , Pterygium , China , Conjunctiva/abnormalities , Fibronectins/genetics , Gene Expression Profiling/methods , Gene Ontology , Humans , Laminin/genetics , Proto-Oncogene Proteins c-jun/genetics , Pterygium/genetics
18.
Invest Ophthalmol Vis Sci ; 63(4): 17, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35472218

ABSTRACT

Background: The progression and recurrence of pterygium mainly occur due to the abnormal proliferation and migration of stromal pterygium fibroblasts. This research explores the aberrant expression of small nucleolar RNA U3 (U3 snoRNA) in pterygium and elucidates the molecular mechanisms of U3 snoRNA in pterygium development. Methods: Primary human conjunctival fibroblasts (HCFs) and human pterygium fibroblasts (HPFs) were separated and cultured from fresh conjunctiva grafts and pterygium tissues. The PLKO.1 lentiviral system and CRISPR/Cas9 recombinant construct were, respectively, used to overexpress and silence U3 snoRNA in HPFs and HCFs for further specific phenotype analysis. RNA-seq and TMT-labeled quantitative protein mass spectrometry were utilized to evaluate the effect of U3 snoRNA on mRNA transcripts and protein synthesis. Results: Reduced U3 snoRNA in pterygium promotes HCF or HPF cells' proliferation, migration, and cell cycle but has no significant effect on apoptosis. U3 snoRNA modulates 18S rRNA synthesis through shearing precursor ribosomal RNA 47S rRNA at the 5' external transcribed spacer (5' ETS). Moreover, the altered U3 snoRNA causes mRNA and protein differential expression in HCF or HPF cells. Conclusions: The atypical U3 snoRNA regulates the translation of specific proteins to exert a suppressive function in pterygium through modulating the 18S rRNA synthesis. Here, we uncover a novel insight into U3 snoRNA biology in the development of pterygium.


Subject(s)
Pterygium , RNA, Small Nucleolar , Base Sequence , Conjunctiva/abnormalities , Conjunctiva/metabolism , Humans , Pterygium/genetics , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism
19.
Exp Eye Res ; 219: 109034, 2022 06.
Article in English | MEDLINE | ID: mdl-35304111

ABSTRACT

A sight threatening, pterygium is a common proliferative and degenerative disease of the ocular surface. LncRNAs have been widely studied in the occurrence and development of various diseases, however, the study of lncRNAs in pterygium has just relatively lacking. In the present study, we performed the high-throughput RNA sequencing (HTS) technology to identify differentially expressed lncRNAs in pterygium. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out to forecast the regulatory and functional role of lncRNAs in pterygium. Notably, we identified a novel lncRNA, LOC102724238, which we named pterygium positively-related lncRNA (lnc-PPRL), was up-regulated in pterygium. Lnc-PPRL showed to be preferentially accumulated in cytoplasm, and it can promote cell proliferation, migration and invasion of human pterygium epithelium cells (hPECs). Further study of underlying mechanisms demonstrated that lnc-PPRL may exert its biological effect by activating canonical PI3K/PDK1 pathway, and subsequently promoting the activation of Akt/mTOR signaling pathway and its downstream effectors. Interestingly, lnc-PPRL was also proved to influence YAP nuclear localization. Taken together, our study firstly suggested that the "big molecule" lnc-PPRL have potential as a novel therapeutic target for the prevention and treatment of pterygium.


Subject(s)
Pterygium , RNA, Long Noncoding , Conjunctiva/abnormalities , Humans , Phosphatidylinositol 3-Kinases/metabolism , Pterygium/genetics , Pterygium/metabolism , RNA, Long Noncoding/genetics , Signal Transduction
20.
Sci Rep ; 12(1): 286, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997134

ABSTRACT

Pterygium is a common ocular surface condition frequently associated with irritative symptoms. The precise identity of its critical triggers as well as the hierarchical relationship between all the elements involved in the pathogenesis of this disease are not yet elucidated. Meta-analysis of gene expression studies represents a novel strategy capable of identifying key pathogenic mediators and therapeutic targets in complex diseases. Samples from nine patients were collected during surgery after photo documentation and clinical characterization of pterygia. Gene expression experiments were performed using Human Clariom D Assay gene chip. Differential gene expression analysis between active and atrophic pterygia was performed using limma package after adjusting variables by age. In addition, a meta-analysis was performed including recent gene expression studies available at the Gene Expression Omnibus public repository. Two databases including samples from adults with pterygium and controls fulfilled our inclusion criteria. Meta-analysis was performed using the Rank Production algorithm of the RankProd package. Gene set analysis was performed using ClueGO and the transcription factor regulatory network prediction was performed using appropriate bioinformatics tools. Finally, miRNA-mRNA regulatory network was reconstructed using up-regulated genes identified in the gene set analysis from the meta-analysis and their interacting miRNAs from the Brazilian cohort expression data. The meta-analysis identified 154 up-regulated and 58 down-regulated genes. A gene set analysis with the top up-regulated genes evidenced an overrepresentation of pathways associated with remodeling of extracellular matrix. Other pathways represented in the network included formation of cornified envelopes and unsaturated fatty acid metabolic processes. The miRNA-mRNA target prediction network, also reconstructed based on the set of up-regulated genes presented in the gene ontology and biological pathways network, showed that 17 target genes were negatively correlated with their interacting miRNAs from the Brazilian cohort expression data. Once again, the main identified cluster involved extracellular matrix remodeling mechanisms, while the second cluster involved formation of cornified envelope, establishment of skin barrier and unsaturated fatty acid metabolic process. Differential expression comparing active pterygium with atrophic pterygium using data generated from the Brazilian cohort identified differentially expressed genes between the two forms of presentation of this condition. Our results reveal differentially expressed genes not only in pterygium, but also in active pterygium when compared to the atrophic ones. New insights in relation to pterygium's pathophysiology are suggested.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , Pterygium/genetics , RNA, Messenger/genetics , Transcriptome , Adult , Aged , Databases, Genetic , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Pterygium/physiopathology , Pterygium/surgery
SELECTION OF CITATIONS
SEARCH DETAIL