Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.610
Filter
1.
Chemosphere ; 362: 142780, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971437

ABSTRACT

Lipophilic shellfish toxins (LSTs) are widely distributed in marine environments worldwide, potentially threatening marine ecosystem health and aquaculture safety. In this study, two large-scale cruises were conducted in the Bohai Sea and the Yellow Sea, China, in spring and summer 2023 to clarify the composition, concentration, and spatial distribution of LSTs in the water columns and sediments. Results showed that okadaic acid (OA), dinophysistoxin-1 (DTX1) and/or pectenotoxin-2 (PTX2) were detected in 249 seawater samples collected in spring and summer. The concentrations of ∑LSTs in seawater were ranging of ND (not detected) -13.86, 1.60-17.03, 2.73-17.39, and 1.26-30.21 pmol L-1 in the spring surface, intermediate, bottom water columns and summer surface water layers, respectively. The detection rates of LSTs in spring and summer seawater samples were 97% and 100%, respectively. The high concentrations of ∑LSTs were mainly distributed in the north Yellow Sea and the northeast Bohai Sea in spring, and in the northeast Yellow Sea, the waters around Laizhou Bay and Rongcheng Bay in summer. Similarly, only OA, DTX1 and PTX2 were detected in the surface sediments. Overall, the concentration of ∑LSTs in the surface sediments of the northern Yellow Sea was higher than that in other regions. In sediment cores, PTX2 was mainly detected in the upper sediment samples, whereas OA and DTX1 were detected in deeper sediments, and LSTs can persist in the sediments for a long time. Overall, OA, DTX1 and PTX2 were widely distributed in the water column and surface sediments in the Bohai Sea and the Yellow Sea, China. The results of this study contribute to the understanding of spatial distribution of LSTs in seawater and sediment environmental media and provide basic information for health risk assessment of phycotoxins.


Subject(s)
Environmental Monitoring , Geologic Sediments , Marine Toxins , Okadaic Acid , Pyrans , Seawater , China , Seawater/chemistry , Geologic Sediments/chemistry , Marine Toxins/analysis , Okadaic Acid/analysis , Okadaic Acid/analogs & derivatives , Pyrans/analysis , Shellfish/analysis , Water Pollutants, Chemical/analysis , Seasons , Animals , Oceans and Seas , Macrolides/analysis , Polyether Toxins , Furans
2.
Mol Biol Rep ; 51(1): 807, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002036

ABSTRACT

BACKGROUND: Acute Myeloid Leukemia (AML) is a fast-developing invading cancer that impacts the blood and bone marrow, marked by the rapid proliferation of abnormal white blood cells. Chemotherapeutic agents, a primary treatment for AML, encounter clinical limitations such as poor solubility and low bioavailability. Previous studies have highlighted antibiotics as effective in inducing cancer cell death and potentially preventing metastasis. Besides, insulin is known to activate the PI3K/Akt pathway, often disrupted in cancers, leading to enhanced cell survival and resistance to apoptosis. In light of the above-mentioned points, we examined the anti-cancer impact of antibiotics Ciprofloxacin (CP) and Salinomycin (SAL) and their combination on KG1-a cells in the presence and absence of insulin. METHODS: This was accomplished by exposing KG1-a cells to different doses of CP and SAL alone, in combination, and with or without insulin for 24-72 h. Cell viability was evaluated using the MTT assay. Besides, apoptotic effects were examined using Hoechst staining and Annexin-V/PI flow cytometry. The expression levels of Bax, p53, BIRC5, Akt, PTEN, and FOXO1 were analyzed through Real-Time PCR. RESULTS: CP and SAL demonstrated cytotoxic and notable pro-apoptotic impact on KG1-a cells by upregulating Bax and p53 and downregulating BIRC5, leading to G0/G1 cell cycle arrest and prevention of the PI3K-Akt signaling pathway. Our findings demonstrated that combination of CP and SAL promote apoptosis in the KG1-a cell line by down-regulating BIRC5 and Akt, as well as up-regulating Bax, p53, PTEN, and FOXO1. Additionally, the findings strongly indicated that insulin effectively mitigates apoptosis by enhancing Akt expression and reducing FOXO1 and PTEN gene expression in the cells treated with CP and SAL. CONCLUSION: Our findings showed that the combined treatment of CP and SAL exhibit a strong anti-cancer effect on leukemia KG1-a cells. Moreover, it was discovered that the PI3K-Akt signaling can be a promising target in leukemia treatment particularly in hyperinsulinemia condition.


Subject(s)
Apoptosis , Cell Survival , Ciprofloxacin , Insulin , Pyrans , Humans , Ciprofloxacin/pharmacology , Apoptosis/drug effects , Pyrans/pharmacology , Cell Line, Tumor , Insulin/metabolism , Cell Survival/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Forkhead Box Protein O1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/drug effects , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Leukemia/drug therapy , Leukemia/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Polyether Polyketides
3.
Eur J Med Chem ; 276: 116701, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39067438

ABSTRACT

Salinomycin (Sal) has attracted considerable attention in the field of tumor treatment, especially for its inhibitory effect on cancer stem cells (CSCs) and drug-resistant tumor cells. However, its solubility and targeting specificity pose significant challenges to its pharmaceutical development. Sal-A6, a novel peptide-drug conjugate (PDC), was formed by linking the peptide A6 targeting the CSC marker CD44 with Sal using a specific linker. This conjugation markedly enhances the physicochemical properties of Sal and compared to Sal, Sal-A6 demonstrated a significantly increased activity against ovarian cancer. Furthermore, Sal-A6, employing a disulfide bond as a linker, exhibited bystander killing effect. Moreover, it induces substantial cytotoxic effect on both cancer stem cells and drug-resistant cells in addition to enhance chemosensitivity of resistant ovarian cancer cells. In summary, the results indicated that Sal-A6, a novel PDC derived from Sal, has potential therapeutic applications in the treatment of ovarian cancer and drug-resistant patients. Additionally, this discovery offers insights for developing PDC-type drugs using Sal as a foundation.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Neoplastic Stem Cells , Ovarian Neoplasms , Peptides , Pyrans , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Pyrans/pharmacology , Pyrans/chemistry , Pyrans/chemical synthesis , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Bystander Effect/drug effects , Molecular Structure , Drug Resistance, Neoplasm/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Cell Survival/drug effects , Polyether Polyketides
4.
J Hazard Mater ; 477: 135363, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39084006

ABSTRACT

Lipophilic shellfish toxins (LSTs) threaten the ecosystem health and seafood safety. To comprehensively investigate the spatiotemporal distribution of common LSTs in phytoplankton, zooplankton and economic shellfish, three cruises were conducted in five typical offshore aquaculture regions of Shandong province, China, including Haizhou Bay, Jiaozhou Bay, Sanggou Bay, Sishili Bay and Laizhou Bay, in spring (March-April), summer (July-August) and autumn (November-December). This study revealed significant variability in the composition and content of LSTs in phytoplankton samples collected from different regions. Pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1) and okadaic acid (OA) were mainly detected in the ranges of not detected (nd)-5045 pmol g-1 dry weight (dw), nd-159 pmol g-1 dw, and nd-154 pmol g-1 dw, respectively. In zooplankton, DTX1 and OA were the predominant components of LSTs, with the highest levels of ∑LSTs in spring ranging from nd to 406 pmol g-1 dw. Spearman's correlation analysis between LSTs and environmental factors indicated significant correlations for the contents of homo-yessotoxin (hYTX), gymnodimine-A (GYM-A), and spirolide-1 (SPX1) with these factors. Totally relatively low levels of LSTs with dominative DTX1 were detected in economic shellfish, which showed a low risk to seafood safety for human health.


Subject(s)
Environmental Monitoring , Marine Toxins , Okadaic Acid , Phytoplankton , Pyrans , Shellfish , Zooplankton , Marine Toxins/analysis , China , Animals , Shellfish/analysis , Okadaic Acid/analysis , Okadaic Acid/analogs & derivatives , Pyrans/analysis , Spatio-Temporal Analysis , Seasons , Food Contamination/analysis , Polyether Toxins , Furans , Macrolides
5.
J Med Chem ; 67(15): 13089-13105, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39044437

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly lethal malignancy, and its clinical management encounters severe challenges due to its high metastatic propensity and the absence of effective therapeutic targets. To improve druggability of aurovertin B (AVB), a natural polyketide with a significant antiproliferative effect on TNBC, a series of NO donor/AVB hybrids were synthesized and tested for bioactivities. Among them, compound 4d significantly inhibited the proliferation and metastasis of TNBC in vitro and in vivo with better safety than that of AVB. The structure-activity relationship analysis suggested that the types of NO donor and the linkers had considerable effects on the activities. Mechanistic investigations unveiled that 4d induced apoptosis and ferroptosis by the reduction of mitochondrial membrane potential and the down-regulation of GPX4, respectively. The antimetastatic effect of 4d was associated with the upregulation of DUSP1. Overall, these compelling results underscore the tremendous potential of 4d for treating TNBC.


Subject(s)
Antineoplastic Agents , Apoptosis , Ferroptosis , Nitric Oxide Donors , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , Ferroptosis/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/therapeutic use , Nitric Oxide Donors/chemical synthesis , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Pyrans/chemistry , Pyrans/pharmacology
6.
Biomacromolecules ; 25(8): 4728-4748, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39058483

ABSTRACT

To address lymphatic metastasis in lung cancer, we developed the Au@Gd-SiO2-HA-LyP-1 nanoprobe, assessing its diagnostic and therapeutic capabilities. This nanoprobe integrates a Au core with a Gd-SiO2 shell and dual-targeting HA-LyP-1 molecules. We evaluated its size, shape, and functional properties using various characterization techniques, alongside in vivo and in vitro toxicity tests. The spherical nanoprobes have a 50 nm diameter and contain 1.37% Gd. They specifically target lymphatic metastasis sites and tumor cells, showing enhanced MRI contrast and effective, targeted DOX delivery with reduced normal tissue toxicity. The Au@Gd-SiO2-HA-LyP-1 nanoprobe is a promising tool for diagnosing and treating lung cancer lymphatic metastasis, featuring dual-targeting and superior imaging capabilities.


Subject(s)
Doxorubicin , Gold , Lymphatic Metastasis , Silicon Dioxide , Humans , Gold/chemistry , Animals , Mice , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Silicon Dioxide/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Magnetic Resonance Imaging/methods , Gadolinium/chemistry , Pyrans/chemistry , Pyrans/pharmacology , Cell Line, Tumor , Peptides, Cyclic
7.
Biomed Pharmacother ; 177: 117026, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936197

ABSTRACT

Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.


Subject(s)
Cyclophosphamide , Glucagon-Like Peptide 1 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pyrans , Signal Transduction , Animals , Cyclophosphamide/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Rats , Phosphatidylinositol 3-Kinases/metabolism , Glucagon-Like Peptide 1/metabolism , Pyrans/pharmacology , Lung/drug effects , Lung/metabolism , Lung/pathology , Anthocyanins/pharmacology , Oxidative Stress/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Rats, Wistar , Pyrimidines/pharmacology , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Forkhead Box Protein O1 , Heterocyclic Compounds, 2-Ring
8.
Antiviral Res ; 228: 105938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897317

ABSTRACT

We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012-2013 and 2019-2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, P < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.


Subject(s)
Antiviral Agents , Dibenzothiepins , Fever , Guanidines , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Morpholines , Oseltamivir , Pyrans , Pyridones , Sialic Acids , Triazines , Zanamivir , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Influenza B virus/drug effects , Influenza B virus/genetics , Child , Zanamivir/therapeutic use , Zanamivir/analogs & derivatives , Zanamivir/pharmacology , Triazines/therapeutic use , Triazines/pharmacology , Guanidines/therapeutic use , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H1N1 Subtype/drug effects , Pyridones/therapeutic use , Dibenzothiepins/therapeutic use , Japan , Female , Male , Child, Preschool , Oseltamivir/therapeutic use , Fever/drug therapy , Fever/virology , Adolescent , Morpholines/therapeutic use , Infant , Seasons , Thiepins/therapeutic use , Thiepins/pharmacology , Oxazines/therapeutic use , Time Factors , Benzoxazines/therapeutic use
9.
J Antimicrob Chemother ; 79(7): 1590-1596, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38775746

ABSTRACT

BACKGROUND: An analysis was conducted in Japan to determine the most cost-effective neuraminidase inhibitor for the treatment of influenza virus infections from the healthcare payer's standpoint. OBJECTIVE: This study reanalysed the findings of a previous study that had some limitations (no probabilistic sensitivity analysis and quality of life scores measured by the EQ-5D-3L instead of the EQ-5D-5L) and used a decision tree model with only three health conditions. METHODS: This study incorporated new data from a network meta-analysis study into the first examination. The second examination involved constructing a new decision tree model encompassing seven health conditions and identifying costs, which consisted of medical costs and drug prices based on the 2020 version of the Japanese medical fee index. Effectiveness outcomes were measured using EQ-5D-5L questionnaires for adult patients with a history of influenza virus infections within a 14-day time horizon. Deterministic and probabilistic sensitivity analyses were performed to examine the uncertainty. RESULTS: In the first examination, the base-case cost-effectiveness analysis confirmed that oseltamivir outperformed laninamivir, zanamivir and peramivir, making it the most cost-effective neuraminidase inhibitor. The second examination revealed that oseltamivir dominated the other agents. Both deterministic and probabilistic sensitivity analyses showed robust results that validated oseltamivir as the most cost effective among the four neuraminidase inhibitors. CONCLUSIONS: This study thus reaffirms oseltamivir's position as the most cost-effective neuraminidase inhibitor for the treatment of influenza virus infections in Japan from the perspective of healthcare payment. These findings can help decision makers and healthcare providers in Japan.


Subject(s)
Antiviral Agents , Cost-Benefit Analysis , Economics, Pharmaceutical , Influenza, Human , Network Meta-Analysis , Humans , Influenza, Human/drug therapy , Influenza, Human/economics , Antiviral Agents/economics , Antiviral Agents/therapeutic use , Japan , Neuraminidase/antagonists & inhibitors , Oseltamivir/economics , Oseltamivir/therapeutic use , Adult , Decision Trees , Zanamivir/therapeutic use , Zanamivir/economics , Pyrans/economics
10.
J Phys Chem B ; 128(23): 5630-5641, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38814052

ABSTRACT

Alzheimer's disease (AD) and other taupathies are neurodegenerative disorders associated with the amyloid deposition of the Tau protein in the brain. This amyloid formation may be inhibited by small molecules, which is recognized as one of the best therapeutic strategies to stop the progression of the disease. This work focuses on the small nucleating segment, hexapeptide-paired helical filament 6 (PHF6), responsible for Tau aggregation. Using computational modeling and classical molecular dynamics simulations, we show that PHF6 monomers collapse in water to form ß-sheet rich structures, and the main olive oil polyphenol oleuropein aglycone (OleA) prevents peptide aggregation significantly. We gradually increase the ratio of the PHF6-OleA from 1:1 to 1:3 and find that for the 1:1 ratio, the peptide monomers are prone to form aggregated structures, while for the 1:2 ratio, the formation of the extended ß-sheet structure is significantly less. For a 1:3 ratio of protein/OleA, the peptide residues are sufficiently crowded by OleA molecules through hydrogen bonding, hydrophobic interactions, and π-π stacking; hence, the peptide chains prefer to exist in a monomeric random coil conformation.


Subject(s)
Molecular Dynamics Simulation , Olive Oil , tau Proteins , Olive Oil/chemistry , tau Proteins/chemistry , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors , Oligopeptides/chemistry , Humans , Iridoid Glucosides/chemistry , Iridoid Glucosides/pharmacology , Cyclopentane Monoterpenes , Acetates , Pyrans
11.
Mol Plant ; 17(7): 1054-1072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38807366

ABSTRACT

Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant. SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 to enhance their protein stability by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were then identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1, which is independent of the EAR motif, had a global effect on gene expression. Taken together, these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Furans , Gene Expression Regulation, Plant , Light , Seedlings , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Seedlings/genetics , Seedlings/radiation effects , Seedlings/growth & development , Seedlings/metabolism , Gene Expression Regulation, Plant/radiation effects , Furans/pharmacology , Furans/metabolism , Pyrans/pharmacology , Pyrans/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Mutation , Red Light , Intracellular Signaling Peptides and Proteins
12.
Biomed Chromatogr ; 38(8): e5904, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38811368

ABSTRACT

Omarigliptin (OMG) is an antidiabetic drug indicated for the treatment of type 2 diabetes mellitus. Forced degradation studies are practical experiments to evaluate the stability of drugs and to establish degradation profiles. Herein, we present the investigation of the degradation products (DPs) of OMG formed under various stress conditions. OMG was subjected to hydrolytic (alkaline and acidic), oxidative, thermal, and photolytic forced degradation. A stability-indicating ultra-fast liquid chromatography method was applied to separate and quantify OMG and its DPs. Five DPs were adequately separated and detected in less than 6 min, while other published methods detected four DPs. MS was applied to identify and obtain information on the structural elucidation of the DPs. Three m/z DPs confirmed previously published research, and two novel DPs were described in this paper. The toxicity of OMG and its DPs were investigated for the first time using in vitro cytotoxicity assays, and the sample under oxidative conditions presented significant cytotoxicity. Based on the results from forced degradation studies, OMG was found to be labile to hydrolysis, oxidation, photolytic, and thermal stress conditions. The results of this study contribute to the quality control and stability profile of OMG.


Subject(s)
Drug Stability , Heterocyclic Compounds, 2-Ring , Pyrans , Chromatography, High Pressure Liquid/methods , Pyrans/chemistry , Pyrans/analysis , Pyrans/toxicity , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/analysis , Heterocyclic Compounds, 2-Ring/toxicity , Mass Spectrometry/methods , Humans , Cell Survival/drug effects , Reproducibility of Results , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/analysis , Oxidation-Reduction , Linear Models
13.
J Chromatogr A ; 1728: 465031, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38815477

ABSTRACT

In counter-current chromatography (CCC), linear scale-up is an ideal amplification strategy. However, when transferring from analytical to predictable preparative processes with high throughput, linear scale-up would be challenging due to limitations imposed by differences in instrument parameters, such as gravitational forces, tubing cross-section area, tubing length, column volume and flow rate. Some effective scale-up strategies have been studied for different instrument parameters, but so far, these scale-up works have only been tested on standard circular (SC) tubing. The previous research of our group found that rectangular horizontal (RH) tubing can double the separation efficiency compared with conventional SC tubing, and has industrial production potential. This paper used the separation of tilianin from Dracocephalum moldavica L. as an example to demonstrate how to scale up the optimized process from analytical SC tubing to preparative RH tubing. After systematic optimization of solvent systems, sample concentration and flow rate on the analytical CCC, the optimized parameters obtained were successfully transferred to the preparative CCC. The results showed that a crude sample of 2.07 g was successfully separated using a solvent system of n-hexane - ethyl acetate - ethanol - water (1:4:1:5, v/v/v/v) in reversed phase mode, and the three consecutive separations produced a total of 380 mg tilianin in 75 min with high purities of 98.3%, as analyzed by HPLC. The total throughput achieved from the analytical to semi-preparative scale was improved by 138 times (from 12 mg/h to 1.66 g/h), while the column volume was increased by only 46.5 times (from 15.5 mL to 720 mL). This is the successful application of CCC for the separation and purification of tilianin. Given that SC tubing is the traditional configuration for CCC columns, this study is a necessary step to prove the applicability of RH tubing columns for routine use and potential large-scale industrial applications.


Subject(s)
Countercurrent Distribution , Countercurrent Distribution/methods , Countercurrent Distribution/instrumentation , Glycosides/isolation & purification , Glycosides/analysis , Glycosides/chemistry , Pyrans/isolation & purification , Pyrans/analysis , Solvents/chemistry , Hexanes/chemistry , Lamiaceae/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Ethanol/chemistry , Acetates/chemistry , Flavonoids
14.
Chem Biodivers ; 21(8): e202400920, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38818615

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative condition characterized by both motor and non-motor symptoms. Although PD is commonly associated with a decline of dopaminergic neurons in the substantia nigra, other diagnostic criteria and biomarkers also exist. In the search for novel therapeutic agents, chromene and pyran derivatives have shown potential due to their diverse pharmacological activities. This study utilizes a comprehensive computational approach to investigate the viability of chromene/pyran compounds as potential treatments for PD. The drug-likeness characteristics of these molecules were analyzed using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies. Molecular docking was performed against PDB ID: 2V5Z. The best three molecules chosen were compound 7, compound 24, and compound 67 have a binding energy of -6.7, -8.6, and -10.9 kcal/mol. Molecules demonstrating positive blood-brain barrier permeability, good solubility, and favorable binding affinity were further evaluated using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations to assess their electronic structure and stability. DFT calculations indicated that molecule 82 has a dipole moment of 15.70 D. RMSD and RMSF results confirmed the stability of the complexes over a 100 ns simulation, with a maximum of 3 hydrogen bonds formed.


Subject(s)
Benzopyrans , Density Functional Theory , Molecular Docking Simulation , Molecular Dynamics Simulation , Parkinson Disease , Pyrans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Pyrans/chemistry , Pyrans/pharmacology , Pyrans/metabolism , Humans , Benzopyrans/chemistry , Benzopyrans/metabolism , Benzopyrans/pharmacology , Molecular Structure , Blood-Brain Barrier/metabolism , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacology , Antiparkinson Agents/metabolism
15.
Biochem Biophys Res Commun ; 716: 150038, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704891

ABSTRACT

Hyperuricemia (HUA) is caused by increased synthesis and/or insufficient excretion of uric acid (UA). Long-lasting HUA may lead to a number of diseases including gout and kidney injury. Harpagoside (Harp) is a bioactive compound with potent anti-inflammatory activity from the roots of Scrophularia ningpoensis. Nevertheless, its potential effect on HUA was not reported. The anti-HUA and nephroprotective effects of Harp on HUA mice were assessed by biochemical and histological analysis. The proteins responsible for UA production and transportation were investigated to figure out its anti-HUA mechanism, while proteins related to NF-κB/NLRP3 pathway were evaluated to reveal its nephroprotective mechanism. The safety was evaluated by testing its effect on body weight and organ coefficients. The results showed that Harp significantly reduced the SUA level and protected the kidney against HUA-induced injury but had no negative effect on safety. Mechanistically, Harp significantly reduced UA production by acting as inhibitors of xanthine oxidase (XOD) and adenosine deaminase (ADA) and decreased UA excretion by acting as activators of ABCG2, OAT1 and inhibitors of GLUT9 and URAT1. Moreover, Harp markedly reduced infiltration of inflammatory cells and down-regulated expressions of TNF-α, NF-κB, NLRP3 and IL-1ß in the kidney. Harp was a promising anti-HUA agent.


Subject(s)
Glycosides , Hyperuricemia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyrans , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Uric Acid/blood , Male , Glycosides/pharmacology , Glycosides/therapeutic use , Pyrans/pharmacology , Pyrans/therapeutic use , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , NF-kappa B/metabolism , Mice, Inbred C57BL
16.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724836

ABSTRACT

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Apoptosis , Drug Carriers , Epithelial-Mesenchymal Transition , Nanoparticles , Prostatic Neoplasms , Pyrans , Rats, Wistar , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Pyrans/pharmacology , Pyrans/administration & dosage , Apoptosis/drug effects , Humans , Rats , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Movement/drug effects , PC-3 Cells , Drug Delivery Systems/methods , Polyether Polyketides
17.
Curr Pharm Des ; 30(18): 1398-1403, 2024.
Article in English | MEDLINE | ID: mdl-38623973

ABSTRACT

BACKGROUND: Influenza virus is a kind of RNA virus. Nowadays, the high incidence of influenza and the morbidity and mortality of epidemic influenza are substantial. It has been reported that one hundred million people in the world are infected with influenza viruses, and two hundred and fifty thousand to five hundred thousand people die from the flu per year. In 2021, the number of infected persons in China was reported to be 654,700, and 0.07% of the infected persons died. The flu has caused a serious threat to human survival. Although several drugs, such as Zanamivir, Oseltamivir, Peramivir, and Laninamivir, have been used in clinics for the treatment of the influenza virus, there are some shortcomings of these drugs. The strain of influenza H5N1 (avian influenza) has been found to resist the effective drug Oseltamivir. Thus, there is an urgent demand to discover new influenza virus inhibitors to overcome the emergence of influenza antigens. AIMS: This study aimed to develop new influenza virus inhibitors based on the rupestonic acid parent core. OBJECTIVE: The rupestonic acid L-ephedrine ester (A) and rupestonic acid L-ephedrine complex (B) were synthesized in this work for the development of influenza virus inhibitors. METHODS: The target compounds were synthesized using rupestonic acid and L-ephedrine as starting materials. Their structures were characterized by 1H NMR and 13C NMR, and the purity was determined by HPLC. Then, their preliminary in vitro influenza activity was evaluated using Oseltamivir as a reference drug. RESULTS: The results showed that the synthesized rupestonic acid L-ephedrine derivatives A and B were more potent influenza virus inhibitors against the strains of A/PR/8/34 (H1N1) and A/FM/1/47 (H1N1) with the IC50 values of 51.0, 51.0 µM and 441.0, 441.0 µM, respectively, than that of rupestonic acid. By comparing the IC50 of compounds A and B, compound A can be regarded as a very promising lead compound for the development of influenza virus inhibitors. CONCLUSION: The rupestonic acid L-ephedrine ester (A) and rupestonic acid L-ephedrine complex (B) were synthesized and characterized using 1H NMR and 13C NMR. Moreover, their purity was determined by HPLC. Both compounds A and B exhibited more potent activities against the strains of A/PR/8/34 (H1N1) and A/FM/1/47 (H1N1) than rupestonic acid. Compound A can be regarded as a very promising lead compound for the development of influenza virus inhibitors. Based on these results, more rupestonic acid derivatives will be designed and synthesized in the future for the development of influenza virus inhibitors.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship , Madin Darby Canine Kidney Cells , Animals , Molecular Structure , Dose-Response Relationship, Drug , Pyrans/pharmacology , Pyrans/chemical synthesis , Pyrans/chemistry , Dogs , Influenza, Human/drug therapy , Influenza, Human/virology , Dibenzothiepins/pharmacology , Dibenzothiepins/chemical synthesis , Sesquiterpenes , Azulenes
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124330, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38685160

ABSTRACT

The development of near-infrared organic fluorescent dyes with tunable emission profiles is highly required in the field of biological sensing and imaging. In this paper, we designed and synthesized two organic fluorescent dyes, DCM-1 and DCM-2, through the hybridization of indolizine and dicyanomethylene-4H-pyran skeleton. These two compounds show near-infrared fluorescence with emission maximum approximately at 640 and 680 nm, respectively. Notably, both DCM-1 and DCM-2 have specific responses to viscosity without being interfered by biological relevant species. Cell experiments demonstrate that DCM-1 and DCM-2 can detect dynamic changes in viscosity within living cells, suggesting their potential applications in chemical biology research.


Subject(s)
Fluorescent Dyes , Indolizines , Pyrans , Indolizines/chemistry , Indolizines/chemical synthesis , Viscosity , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Pyrans/chemistry , Spectrometry, Fluorescence , HeLa Cells , Spectroscopy, Near-Infrared/methods
19.
J Diabetes ; 16(4): e13526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584148

ABSTRACT

BACKGROUND: Bexagliflozin and dapagliflozin are sodium-glucose cotransporter-2 (SGLT2) inhibitors. No direct comparison of SGLT2 inhibitors in a randomized controlled trial has been reported to date. METHODS: This was a multicenter, randomized, double-blind, active-controlled trial comparing bexagliflozin to dapagliflozin for the treatment of type 2 diabetes mellitus in adults with disease inadequately controlled by metformin. Subjects (n = 406) were randomized to receive bexagliflozin (20 mg) or dapagliflozin (10 mg) plus metformin. The primary endpoint was noninferiority of bexagliflozin to dapagliflozin for the change in glycated hemoglobin (HbA1c) from baseline to week 24. Secondary endpoints included intergroup differences in fasting plasma glucose (FPG), 2-h-postprandial glucose (PPG), body weight, and systolic blood pressure (SBP) from baseline to week 24. The trial also evaluated the safety profiles. RESULTS: The model-adjusted mean change from baseline to week 24 HbA1c was -1.08% for bexagliflozin and -1.10% for dapagliflozin. The intergroup difference of 0.03% (95% confidence interval [CI] -0.14% to 0.19%) was below the prespecified margin of 0.4%, confirming the noninferiority of bexagliflozin. The changes from baseline in FPG, PPG, body weight, and SBP were -1.95 mmol/L, -3.24 mmol/L, -2.52 kg, and -6.4 mm Hg in the bexagliflozin arm and -1.87 mmol/L, -3.07 mmol/L, -2.22 kg, and -6.3 mm Hg in the dapagliflozin arm. Adverse events were experienced in 62.6% and 65.0% and serious adverse events affected 4.4% and 3.5% of subjects in the bexagliflozin and dapagliflozin arm, respectively. CONCLUSIONS: Bexagliflozin showed nearly identical effects and a similar safety profile to dapagliflozin when used in Chinese patients on metformin.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Metformin , Pyrans , Adult , Humans , Metformin/adverse effects , Hypoglycemic Agents/adverse effects , Glycated Hemoglobin , Body Weight , Double-Blind Method , Drug Therapy, Combination , Glucose , China , Blood Glucose , Treatment Outcome
20.
Avian Dis ; 68(1): 52-55, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687108

ABSTRACT

In the current study, we investigated decreased hatchability and increased embryonic mortality in two farms of layer breeders (flocks A1 and B1) and a farm of broiler breeders (flocks C1 and C2) from Austria, which also presented discoloration of eggshells in 2% of the eggs. After conducting clinical evaluations and the approval that the feed operator was common for flocks A1 and B1, and C1 and C2, it was decided to investigate the feed. Our findings revealed that the feed contained levels of nicarbazin and narasin up to five and 14 times, respectively, above the maximum limits allowed by the European Union for nontarget species. On the other hand, there were no significant abnormalities in vitamin levels, which were also described as the etiology of the noticed abnormalities. Switching to a noncontaminated feed resulted in the clinical signs and production parameters returning to expected ranges. This report emphasizes the significance of considering feed contamination by nicarbazin and narasin as a potential cause of hatchery losses in nontarget species, even in the absence of other clinical signs.


Reporte de caso- Pérdidas en la eclosión de parvadas de reproductoras ponedoras y pollos de engorde debido a la contaminación del alimento con nicarbazina y narasina: Reporte de un caso. En el presente estudio, se investigó la disminución de la incubabilidad y el aumento de la mortalidad embrionaria en dos granjas de reproductoras ponedoras (parvadas A1 y B1) y una granja de reproductoras de pollos de engorde (parvadas C1 y C2) de Austria, que también presentaron decoloración del cascarón en el 2% de los huevos. Luego de realizar evaluaciones clínicas y la aprobación de que el operador de alimento era común para las parvadas A1 y B1, y C1 y C2, se decidió investigar el alimento. Nuestros hallazgos revelaron que el alimento contenía niveles de nicarbazina y narasina de hasta cinco y 14 veces, respectivamente, por encima de los límites máximos permitidos por la Unión Europea para especies no objetivo. Por otro lado, no se observaron anomalías significativas en los niveles de vitaminas, lo que también se describió como la etiología de las anomalías observadas. El cambio a un alimento no contaminado provocó que los signos clínicos y los parámetros de producción regresaran a los rangos esperados. Este informe enfatiza la importancia de considerar la contaminación del alimento por nicarbazina y narasina como una causa potencial de pérdidas en la eclosión de especies no objetivo, incluso en ausencia de otros signos clínicos.


Subject(s)
Animal Feed , Chickens , Nicarbazin , Pyrans , Animals , Female , Animal Feed/analysis , Austria/epidemiology , Food Contamination/analysis , Nicarbazin/analysis , Nicarbazin/administration & dosage , Poultry Diseases
SELECTION OF CITATIONS
SEARCH DETAIL