Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 512
Filter
1.
J Med Chem ; 67(17): 15569-15585, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39208150

ABSTRACT

Allosteric modulators of the metabotropic group II receptors, mGluR2 and mGluR3, have been widely explored due to their ability to modulate cognitive and neurological functions in mood disorders, although none have been approved yet. In our search for new and selective mGluR2 negative allosteric modulators (NAMs), series of 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one derivatives were identified from our published series of 1,3,5-trisubstituted pyrazoles. SAR evolution of the initial hit resulted in 100-fold improvement in the mGluR2 NAM potency and subsequent selection of compound 11 based on its overall profile, including selectivity and ADMET properties. Further pharmacokinetic-pharmacodynamic (PK-PD) relationship built showed that compound 11 occupied the mGluR2 receptor in a dose-dependent manner. Additionally, the compound revealed in vivo activity in V-maze as a model of cognition from a dose of 0.32 mg/kg. Compound 11 was selected to be evaluated further.


Subject(s)
Cognition , Pyrazoles , Receptors, Metabotropic Glutamate , Animals , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation/drug effects , Cognition/drug effects , Structure-Activity Relationship , Rats , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Humans , Pyrazines/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Pyrazines/chemical synthesis , Male , Maze Learning/drug effects , Mice , Drug Discovery
2.
J Pharm Biomed Anal ; 251: 116445, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39214029

ABSTRACT

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) such as icotinib, osimertinib, and aumolertinib have emerged as promising treatment options for EGFR mutated Non-small cell lung cancer (NSCLC) patients. Additionally, anlotinib, an anti-angiogenic agent targeting VEGFR, FGFR, and PDGFR, has been used in combination with EGFR-TKIs in NSCLC cases. A method utilizing ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated for quantifying icotinib, osimertinib, aumolertinib and anlotinib simultaneously in clinical TDM. The chromatographic separation was performed using a Kinetex C18 column (100 mm × 2.1 mm) and an elution gradient of ammonium acetate in water acidified with 0.1 % formic acid and in acetonitrile. The assay was validated over a linear range of 4-2000 ng/mL for icotinib, 2-1000 ng/mL for osimertinib, 1-500 ng/mL for aumolertinib, and 0.8-400 ng/mL for anlotinib, following the guidelines on bioanalytical methods by FDA. The quantification method exhibited satisfactory performance in terms of selectivity, accuracy (from 91.3 % to 107 %), precision (intra- and inter-day coeffficients of variation ranged from 0.944 % to 7.48 %), linearity, recovery (from 86.0 % to 91.9 %), matrix effect (IS-normalized matrix factors were from 96.7 % to 102 %), and stability. Overall, the method proved to be sensitive, reliable, and straightforward, enabling successful simultaneous determination of blood concentrations of icotinib, osimertinib, aumolertinib, and anlotinib in patients. The validity of the method has been confirmed across various instruments.


Subject(s)
Acrylamides , Aniline Compounds , Crown Ethers , Drug Monitoring , Indoles , Quinazolines , Quinolines , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Quinolines/blood , Quinolines/therapeutic use , Quinolines/pharmacokinetics , Indoles/blood , Indoles/pharmacokinetics , Indoles/therapeutic use , Chromatography, High Pressure Liquid/methods , Drug Monitoring/methods , Acrylamides/blood , Aniline Compounds/blood , Quinazolines/blood , Quinazolines/therapeutic use , Quinazolines/pharmacokinetics , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Reproducibility of Results , Antineoplastic Agents/blood , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Pyrazines/blood , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/blood , Lung Neoplasms/drug therapy , Lung Neoplasms/blood , Liquid Chromatography-Mass Spectrometry , Benzamides , Pyrimidines
3.
Drugs R D ; 24(2): 263-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38965189

ABSTRACT

BACKGROUND AND OBJECTIVES: Tolebrutinib is a covalent BTK inhibitor designed and selected for potency and CNS exposure to optimize impact on BTK-dependent signaling in CNS-resident cells. We applied a translational approach to evaluate three BTK inhibitors in Phase 3 clinical development in MS with respect to their relative potency to block BTK-dependent signaling and exposure in the CNS METHODS: We used in vitro kinase and cellular activation assays, alongside pharmacokinetic sampling of cerebrospinal fluid (CSF) in the non-human primate cynomolgus to estimate the ability of these candidates (evobrutinib, fenebrutinib, and tolebrutinib) to block BTK-dependent signaling inside the CNS. RESULTS: In vitro kinase assays demonstrated that tolebrutinib reacted with BTK 65-times faster than evobrutinib, while fenebrutinib, a classical reversible antagonist with a Ki value of 4.7 nM and slow off-rate (1.54 x 10-5 s-1), also had an association rate 1760-fold slower (0.00245 µM-1 * s-1). Estimates of cellular potency were largely consistent with the in vitro kinase assays, with an estimated IC50 of 0.7 nM for tolebrutinib against 33.5 nM for evobrutinib and 2.9 nM for fenebrutinib. We then observed that evobrutinib, fenebrutinib, and tolebrutinib achieved similar levels of exposure in non-human primate CSF after oral doses of 10 mg/kg. However, tolebrutinib CSF exposure (4.8 ng/mL) (kp,uu CSF=0.40) exceeded the IC90 (the estimated concentration inhibiting 90% of kinase activity) value, while evobrutinib (3.2 ng/mL) (kp,uu CSF=0.13) and fenebrutinib (12.9 ng/mL) (kp,uu CSF=0.15) failed to reach the estimated IC90 values. CONCLUSIONS: Tolebrutinib was the only candidate of the three that attained relevant CSF exposure in non-human primates.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Macaca fascicularis , Multiple Sclerosis , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Multiple Sclerosis/drug therapy , Humans , Central Nervous System/drug effects , Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Piperazines , Piperidines , Pyridones , Pyrimidines
4.
J Pharm Sci ; 113(9): 2786-2794, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986870

ABSTRACT

Topical ocular sustained-release drug delivery systems represent an effective strategy for the treatment of ocular diseases, for which a suitable carrier has yet to be sufficiently developed. Herein, an eye-compatible sodium polystyrene sulfonate resin (SPSR) was synthesized with a uniform particle size of about 3 µm. Ligustrazine phosphate (LP) was adsorbed to SPSR by cation exchange to form LP@SPSR. LP@SPSR suspension eye drops were further developed using the combination of Carbopol 934P and xanthan gum as suspending agents. The LP@SPSR suspension showed a sustained release in vitro, which was consistent with the observed porcine corneal penetration ex vivo. Pharmacokinetics in tear fluid of rabits indicated that LP@SPSR suspension led to prolonged ocular retention of LP and a 2-fold improved the area under the drug concentration-time curve (AUC0-t). Pharmacokinetics in the aqueous humor of rabbits showed 2.8-fold enhancement in the AUC0-t compared to LP solution. The LP@SPSR suspension exhibited no cytotoxicity to human corneal epithelial cells, nor irritation was observed in rabbit eyes. Thus, the LP@SPSR suspension has been validated as a safe and sustained release system leading to enhanced ophthalmic bioavailability for treating ocular diseases.


Subject(s)
Biological Availability , Delayed-Action Preparations , Drug Carriers , Polystyrenes , Pyrazines , Animals , Rabbits , Pyrazines/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/chemistry , Delayed-Action Preparations/pharmacokinetics , Polystyrenes/chemistry , Polystyrenes/pharmacokinetics , Humans , Drug Carriers/chemistry , Ophthalmic Solutions/pharmacokinetics , Ophthalmic Solutions/administration & dosage , Swine , Male , Administration, Ophthalmic , Drug Delivery Systems/methods , Drug Liberation , Cornea/metabolism , Cornea/drug effects
5.
Int J Nanomedicine ; 19: 7399-7414, 2024.
Article in English | MEDLINE | ID: mdl-39071500

ABSTRACT

Background: Influenza A (H1N1) virus is a highly contagious respiratory disease that causes severe illness and death. Vaccines and antiviral drugs are limited by viral variation and drug resistance, so developing efficient integrated theranostic options appears significant in anti-influenza virus infection. Methods: In this study, we designed and fabricated covalent organic framework (COF) based theranostic platforms (T705@DATA-COF-Pro), which was composed of an RNA polymerase inhibitor (favipiravir, T705), the carboxyl-enriched COF (DATA-COF) nano-carrier and Cy3-labeled single DNA (ssDNA) probe. Results: The multi-porosity COF core provided an excellent micro-environment and smooth delivery for T705. The ssDNA probe coating bound to the nucleic acids of H1N1 selectively, thus controlling drug release and allowing fluorescence imaging. The combination of COF and probe triggered the synergism, promoting drug further therapeutic outcomes. With the aid of T705@DATA-COF-Pro platforms, the H1N1-infected mouse models lightly achieved diagnosis and significantly prolonged survival. Conclusion: This research underscores the distinctive benefits and immense potential of COF materials in nano-preparations for virus infection, offering novel avenues for the detection and treatment of H1N1 virus infection.


Subject(s)
Antiviral Agents , Influenza A Virus, H1N1 Subtype , Metal-Organic Frameworks , Orthomyxoviridae Infections , Theranostic Nanomedicine , Influenza A Virus, H1N1 Subtype/drug effects , Animals , Theranostic Nanomedicine/methods , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Orthomyxoviridae Infections/drug therapy , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Amides/chemistry , Amides/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Influenza, Human/drug therapy , Mice, Inbred BALB C , Madin Darby Canine Kidney Cells , Drug Carriers/chemistry , Dogs , Drug Liberation
6.
Int J Clin Pharmacol Ther ; 62(8): 345-352, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38920081

ABSTRACT

OBJECTIVE: There is limited information on favipiravir pharmacokinetics in critically ill patients and no studies on pharmacokinetics in patients with moderate and severe kidney dysfunction. The aim was to determine favipiravir pharmacokinetics (oral, 1,600 mg, q12h on day 1, then 600 mg, q12h for 4 days) in critically ill COVID-19 patients with kidney dysfunction and to compare those with observations reported in healthy adults. MATERIALS AND METHODS: In a descriptive study, blood samples taken from patients meeting the relevant criteria (estimated glomerular filtration rate < 60 mL/min) were collected and analyzed. Analysis of blood samples was done by high performance liquid chromatography (HPLC), and the maximal concentration (Cmax), the time of maximal concentration (tmax), half-life (T1/2) and area under the curve (AUC0-12h) of favipiravir were calculated (WinNonlin) and compared to reported data in healthy subjects after first administration. RESULTS: Based on analysis of samples collected in 7 patients, the Cmax (29.99 vs. 64.5 µg/mL) of favipiravir was decreased, T1/2 (5.8 vs. 4.8 hours) longer, tmax delayed, while total exposure was lower (AUC0-12: 192.53 vs. 446.09 µg/mL) compared to reported data in healthy subjects after first administration. Exposure remained lower up to day 5. CONCLUSION: In patients with kidney dysfunction related to COVID-19, favipiravir did not reach the expected exposure. This may be due to poorer and delayed absorption, and subsequent altered disposition. Population pharmacokinetic and mechanistic studies are needed to better explore the relevant covariates and to determine the optimal dose in these patients, as this drug is likely of relevance for other indications.


Subject(s)
Amides , Antiviral Agents , COVID-19 Drug Treatment , Pyrazines , Humans , Amides/pharmacokinetics , Pyrazines/pharmacokinetics , Pyrazines/administration & dosage , Male , Middle Aged , Female , Aged , Antiviral Agents/pharmacokinetics , Antiviral Agents/administration & dosage , Critical Illness , Half-Life , COVID-19/complications , Area Under Curve , Adult , SARS-CoV-2 , Glomerular Filtration Rate , Renal Insufficiency/metabolism , Renal Insufficiency/complications , Severity of Illness Index
7.
Cancer Chemother Pharmacol ; 94(2): 271-283, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38743253

ABSTRACT

BACKGROUND: The Ataxia Telangiectasia and Rad3-related (ATR) protein complex is an apical initiator of DNA damage response pathways. Several ATR inhibitors (ATRi) are in clinical development including berzosertib (formerly M6620, VX-970). Although clinical studies have examined plasma pharmacokinetics (PK) in humans, little is known regarding dose/exposure relationships and tissue distribution. To understand these concepts, we extensively characterized the PK of berzosertib in mouse plasma and tissues. METHODS: A highly sensitive LC-MS/MS method was utilized to quantitate berzosertib in plasma and tissues. Dose proportionality was assessed in female BALB/c mice following single IV doses (2, 6, 20 or 60 mg/kg). A more extensive PK study was conducted in tumor-bearing mice following a single IV dose of 20 mg/kg to evaluate distribution to tissues. PK parameters were calculated by non-compartmental analysis (NCA). A compartmental model was developed to describe the PK behavior of berzosertib. Plasma protein binding was determined in vitro. RESULTS: Increased doses of berzosertib were associated with less than proportional increases in early plasma concentrations and greater than proportional increase in tissue exposure, attributable to saturation of plasma protein binding. Berzosertib extensively distributed into bone marrow, tumor, thymus, and lymph nodes, however; brain and spinal cord exposure was less than plasma. CONCLUSION: The nonlinear PK of berzosertib displayed here can be attributed to saturation of plasma protein binding and occurred at concentrations close to those observed in clinical trials. Our results will help to understand preclinical pharmacodynamic and toxicity data and to inform optimal dosing and deployment of berzosertib.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Dose-Response Relationship, Drug , Mice, Inbred BALB C , Animals , Female , Mice , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Tissue Distribution , Pyrazines/pharmacokinetics , Pyrazines/administration & dosage , Tandem Mass Spectrometry , Humans , Pyrazoles/pharmacokinetics , Pyrazoles/administration & dosage , Nonlinear Dynamics , Administration, Intravenous , Isoxazoles
8.
BMC Pharmacol Toxicol ; 25(1): 31, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685129

ABSTRACT

In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.


Subject(s)
Amides , Antiviral Agents , Delayed-Action Preparations , Drug Liberation , Hydrogels , Pyrazines , Delayed-Action Preparations/chemistry , Hydrogels/chemistry , Amides/chemistry , Amides/administration & dosage , Hydrogen-Ion Concentration , Antiviral Agents/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Pyrazines/chemistry , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Polyethylene Glycols/chemistry , Cross-Linking Reagents/chemistry
9.
J Pharm Biomed Anal ; 245: 116155, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38652938

ABSTRACT

Favipiravir is a broad-spectrum antiviral that is metabolised intracellularly into the active form, favipiravir ribofuranosyl-5'-triphosphate (F-RTP). Measurement of the intracellular concentration of F-RTP in mononuclear cells is a crucial step to characterising the pharmacokinetics of F-RTP and to enable more appropriate dose selection for the treatment of COVID-19 and emerging infectious diseases. The described method was validated over the range 24 - 2280 pmol/sample. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and lysed using methanol-water (70:30, v/v) before cellular components were precipitated with acetonitrile and the supernatant further cleaned by weak anion exchange solid phase extraction. The method was found to be both precise and accurate and was successfully utilised to analyse F-RTP concentrations in patient samples collected as part of the AGILE CST-6 clinical trial.


Subject(s)
Amides , Antiviral Agents , Leukocytes, Mononuclear , Pyrazines , Humans , Amides/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/analysis , COVID-19 , COVID-19 Drug Treatment , Leukocytes, Mononuclear/metabolism , Liquid Chromatography-Mass Spectrometry , Pyrazines/pharmacokinetics , Pyrazines/analysis , Reproducibility of Results , SARS-CoV-2/drug effects , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods
10.
Clin Pharmacol Drug Dev ; 13(6): 672-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523571

ABSTRACT

This study aimed to assess the bioequivalence of 2 avapritinib tablets formulations. A randomized, open-label, single-center trial was conducted on fasting, healthy Chinese participants. The study utilized a partial replicated design with 3 sequences and 3 periods. Participants were assigned to 1 of 3 sequences, with each sequence receiving the reference formulation twice and the test formulation once. Plasma samples were collected and analyzed to determine pharmacokinetic parameters. The bioequivalence of the 2 avapritinib formulations was assessed using reference-scaled average bioequivalence for the maximum plasma concentration (Cmax) and the average bioequivalence analysis for the area under the concentration-time curve (AUC). Out of 39 participants, 38 completed the study. For Cmax, the 1-sided 95% upper confidence interval (CI) bound from the scaled approach was -0.035 (<0) and the point estimate value was 0.958, falling inside the acceptance range of 0.8-1.25. For both the AUC over all concentrations measured (AUC0-t) and the AUC from time 0 to infinity (AUC0-inf), the 90% CIs of geometric mean ratios (0.87-1.01) also met the bioequivalence criteria of 0.8-1.25. Consequently, the study demonstrated that the 2 avapritinib formulations were bioequivalent under fasting conditions.


Subject(s)
Area Under Curve , Fasting , Tablets , Therapeutic Equivalency , Humans , Male , Adult , Young Adult , Female , Cross-Over Studies , Asian People , Healthy Volunteers , Administration, Oral , Pyrazines/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/blood , Middle Aged , East Asian People
11.
Adv Healthc Mater ; 13(14): e2303659, 2024 06.
Article in English | MEDLINE | ID: mdl-38386849

ABSTRACT

Sustainable retinal codelivery poses significant challenges technically, although it is imperative for synergistic treatment of wet age-related macular degeneration (wAMD). Here, a microemulsion-doped hydrogel (Bor/PT-M@TRG) is engineered as an intravitreal depot composing of temperature-responsive hydrogel (TRG) and borneol-decorated paeoniflorin (PF) & tetramethylpyrazine (TMP)-coloaded microemulsions (Bor/PT-M). Bor/PT-M@TRG, functioning as the "ammunition depot", resides in the vitreous and continuously releases Bor/PT-M as the therapeutic "bullet", enabling deep penetration into the retina for 21 days. A single intravitreal injection of Bor/PT-M@TRG yields substantial reductions in choroidal neovascularization (CNV, a hallmark feature of wAMD) progression and mitigates oxidative stress-induced damage in vivo. Combinational PF&TMP regulates the "reactive oxygen species/nuclear factor erythroid-2-related factor 2/heme oxygenase-1" pathway and blocks the "hypoxia inducible factor-1α/vascular endothelial growth factor" signaling in retina, synergistically cutting off the loop of CNV formation. Utilizing fluorescence resonance energy transfer and liquid chromatography-mass spectrometry techniques, they present compelling multifaceted evidence of sustainable retinal codelivery spanning formulations, ARPE-19 cells, in vivo eye balls, and ex vivo section/retina-choroid complex cell levels. Such codelivery approach is elucidated as the key driving force behind the exceptional therapeutic outcomes of Bor/PT-M@TRG. These findings highlight the significance of sustainable retinal drug codelivery and rational combination for effective treatment of wAMD.


Subject(s)
Pyrazines , Animals , Pyrazines/chemistry , Pyrazines/administration & dosage , Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Retina/drug effects , Retina/metabolism , Macular Degeneration/drug therapy , Drug Delivery Systems/methods , Humans , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Oxidative Stress/drug effects , Camphanes/chemistry , Camphanes/pharmacology , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
12.
Haematologica ; 109(7): 2165-2176, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38235512

ABSTRACT

Sovleplenib (HMPL-523) is a selective spleen tyrosine kinase (Syk) inhibitor with anti-tumor activity in preclinical models of B-cell malignancy. We conducted a dose-escalation and dose-expansion phase I study of sovleplenib in patients with relapsed/ refractory mature B-cell tumors. Dose escalation followed a 3+3 design; patients received oral sovleplenib (200-800 mg once daily [q.d.] or 200 mg twice daily [b.i.d.], 28-day cycles). During dose expansion, patients were enrolled into four cohorts per lymphoma classification and treated at the recommended phase II dose (RP2D) (clinicaltrials gov. Identifier: NCT02857998). Overall, 134 Chinese patients were enrolled (dose escalation, N=27; dose expansion, N=107). Five patients experienced dose-limiting toxicities: one each of amylase increased (200 mg q.d.), febrile neutropenia (800 mg q.d.), renal failure (800 mg q.d.), hyperuricemia and blood creatine phosphokinase increased (200 mg b.i.d.) and blood bilirubin increased and pneumonia (200 mg b.i.d.). RP2D was determined as 600 mg (>65 kg) or 400 mg (≤65 kg) q.d.. The primary efficacy end point of independent review committee-assessed objective response rate in indolent B-cell lymphoma was 50.8% (95% confidence interval: 37.5- 64.1) in 59 evaluable patients at RP2D (follicular lymphoma: 60.5%, marginal zone lymphoma: 28.6%, lymphoplasmacytic lymphoma/Waldenström macroglobulinemia, 0%). The most common (≥10% patients) grade ≥3 treatment-related adverse events in the dose-expansion phase were decreased neutrophil count (29.9%), pneumonia (12.1%) and decreased white blood cell count (11.2%). Pharmacokinetic exposures increased dose-proportionally with ascending dose levels from 200-800 mg, without observed saturation. Sovleplenib showed anti-tumor activity in relapsed/refractory B-cell lymphoma with acceptable safety. Further studies are warranted.


Subject(s)
Lymphoma, B-Cell , Protein Kinase Inhibitors , Syk Kinase , Humans , Middle Aged , Male , Female , Syk Kinase/antagonists & inhibitors , Aged , Adult , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/adverse effects , Young Adult , Aged, 80 and over , Treatment Outcome , Drug Resistance, Neoplasm/drug effects , Maximum Tolerated Dose , Pyrazines/administration & dosage , Pyrazines/therapeutic use , Pyrazines/pharmacokinetics , Pyrazines/adverse effects , Recurrence , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Indazoles , Morpholines
13.
J Mol Graph Model ; 124: 108549, 2023 11.
Article in English | MEDLINE | ID: mdl-37339569

ABSTRACT

The quest in finding an everlasting panacea to the pernicious impact of sickle cell disease (SCD) in the society hit a turn of success since the recent discovery of a small molecule reversible covalent inhibitor, Voxelotor. A drug that primarily promotes the stability of oxygenated hemoglobin and inhibit the polymerization of HbS by enhancing hemoglobin's affinity for oxygen has opened a new frontier in drug discovery and development. Despite eminent efforts made to reproduce small molecules with better therapeutic targets, none has been successful. To this end, we employed the use of structure-based computational techniques with emphasis on the electrophilic warhead group of Voxelotor to harness novel covalent binders that could elicit better therapeutic response against HbS. The PubChem database and DataWarrior software were used to design random molecules using Voxelotor's electrophilic functionality. Following the compilation of these chemical entities, a high-throughput covalent docking-based virtual screening campaign was conducted which revealed three (Compound_166, Compound_2301, and Compound_2335) putative druglike candidates with higher baseline energy value compared to the standard drug. Subsequently, in silico ADMET profiling was carried out to evaluate their pharmacokinetics and pharmacodynamics properties, and their stability was evaluated for 1 µs (1 µs) using molecular dynamics simulation. Finally, to prioritize these compounds for further development in drug discovery, MM/PBSA calculations was employed to evaluate their molecular interactions and solvation energy within the HbS protein. Despite the admirable druglike and stability properties of these compounds, further experimental validations are required to establish their preclinical relevance for drug development.


Subject(s)
Anemia, Sickle Cell , Humans , Anemia, Sickle Cell/drug therapy , Benzaldehydes/pharmacokinetics , Benzaldehydes/therapeutic use , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Molecular Dynamics Simulation , Hemoglobins/therapeutic use , Molecular Docking Simulation
14.
Clin Pharmacol Drug Dev ; 11(11): 1294-1307, 2022 11.
Article in English | MEDLINE | ID: mdl-36029150

ABSTRACT

Acalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved to treat adults with chronic lymphocytic leukemia, small lymphocytic lymphoma, or previously treated mantle cell lymphoma. As the bioavailability of the acalabrutinib capsule (AC) depends on gastric pH for solubility and is impaired by acid-suppressing therapies, coadministration with proton-pump inhibitors (PPIs) is not recommended. Three studies in healthy subjects (N = 30, N = 66, N = 20) evaluated the pharmacokinetics (PKs), pharmacodynamics (PDs), safety, and tolerability of acalabrutinib maleate tablet (AT) formulated with pH-independent release. Subjects were administered AT or AC (orally, fasted state), AT in a fed state, or AT in the presence of a PPI, and AT or AC via nasogastric (NG) route. Acalabrutinib exposures (geometric mean [% coefficient of variation, CV]) were comparable for AT versus AC (AUCinf 567.8 ng h/mL [36.9] vs 572.2 ng h/mL [38.2], Cmax 537.2 ng/mL [42.6] vs 535.7 ng/mL [58.4], respectively); similar results were observed for acalabrutinib's active metabolite (ACP-5862) and for AT-NG versus AC-NG. The geometric mean Cmax for acalabrutinib was lower when AT was administered in the fed versus the fasted state (Cmax 255.6 ng/mL [%CV, 46.5] vs 504.9 ng/mL [49.9]); AUCs were similar. For AT + PPI, geometric mean Cmax was lower (371.9 ng/mL [%CV, 81.4] vs 504.9 ng/mL [49.9]) and AUCinf was higher (AUCinf 694.1 ng h/mL [39.7] vs 559.5 ng h/mL [34.6]) than AT alone. AT and AC were similar in BTK occupancy. Most adverse events were mild with no new safety concerns. Acalabrutinib formulations were comparable and AT could be coadministered with PPIs, food, or via NG tube without affecting the PKs or PDs.


Subject(s)
Proton Pump Inhibitors , Pyrazines , Adult , Humans , Biological Availability , Therapeutic Equivalency , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/pharmacokinetics , Pyrazines/adverse effects , Pyrazines/pharmacokinetics , Tablets , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics
15.
Pharm Biol ; 60(1): 1-8, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34860644

ABSTRACT

CONTEXT: As an inhibitor cytochrome P450 family 2 subfamily C polypeptide 8 (CYP2C8), quercetin is a naturally occurring flavonoid with its glycosides consumed at least 100 mg per day in food. However, it is still unknown whether quercetin and selexipag interact. OBJECTIVE: The study investigated the effect of quercetin on the pharmacokinetics of selexipag and ACT-333679 in beagles. MATERIALS AND METHODS: The ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to investigate the pharmacokinetics of orally administered selexipag (2 mg/kg) with and without quercetin (2 mg/kg/day for 7 days) pre-treatment in beagles. The effect of quercetin on the pharmacokinetics of selexipag and its potential mechanism was studied through the pharmacokinetic parameters. RESULTS: The assay method was validated for selexipag and ACT-333679, and the lower limit of quantification for both was 1 ng/mL. The recovery and the matrix effect of selexipag were 84.5-91.58% and 94.98-99.67%, while for ACT-333679 were 81.21-93.90% and 93.17-99.23%. The UPLC-MS/MS method was sensitive, accurate and precise, and had been applied to the herb-drug interaction study of quercetin with selexipag and ACT-333679. Treatment with quercetin led to an increased in Cmax and AUC0-t of selexipag by about 43.08% and 26.92%, respectively. While the ACT-333679 was about 11.11% and 18.87%, respectively. DISCUSSION AND CONCLUSION: The study indicated that quercetin could inhibit the metabolism of selexipag and ACT-333679 when co-administration. Therefore, the clinical dose of selexipag should be used with caution when co-administered with foods high in quercetin.


Subject(s)
Acetamides/pharmacokinetics , Acetates/pharmacokinetics , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Pyrazines/pharmacokinetics , Quercetin/pharmacology , Animals , Antihypertensive Agents/pharmacokinetics , Area Under Curve , Chromatography, High Pressure Liquid , Dogs , Female , Herb-Drug Interactions , Male , Tandem Mass Spectrometry
16.
Br J Clin Pharmacol ; 88(2): 846-852, 2022 02.
Article in English | MEDLINE | ID: mdl-34265100

ABSTRACT

This analysis aimed to describe the pharmacokinetics (PK) of acalabrutinib and its active metabolite, ACP-5862. A total of 8935 acalabrutinib samples from 712 subjects and 2394 ACP-5862 samples from 304 subjects from 12 clinical studies in patients with B-cell malignancies and healthy subjects were analysed by nonlinear mixed-effects modelling. Acalabrutinib PK was characterized by a 2-compartment model with first-order elimination. The large variability in absorption was adequately described by transit compartment chain and first-order absorption, with between-occasion variability on the mean transit time and relative bioavailability. The PK of ACP-5862 was characterized by a 2-compartment model with first-order elimination, and the formation rate was defined as the acalabrutinib clearance multiplied by the fraction metabolized. Health status, Eastern Cooperative Oncology Group performance status, and coadministration of proton-pump inhibitors were significant covariates. However, none of the investigated covariates led to clinically meaningful changes in exposure, supporting a flat dosing of acalabrutinib.


Subject(s)
Benzamides , Neoplasms , Benzamides/pharmacokinetics , Healthy Volunteers , Humans , Models, Biological , Pyrazines/pharmacokinetics
17.
J Med Chem ; 64(16): 12304-12321, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34384024

ABSTRACT

Using a novel physiologically relevant in vitro human whole blood neutrophil shape change assay, an aminopyrazine series of selective PI3Kγ inhibitors was identified and prioritized for further optimization. Severe solubility limitations associated with the series leading to low oral bioavailability and poor exposures, especially at higher doses, were overcome by moving to an aminopyridine core. Compound 33, with the optimal balance of on-target activity, selectivity, and pharmacokinetic parameters, progressed into in vivo studies and demonstrated good efficacy (10 mg/kg) in a rat model of airway inflammation. Sufficient exposures were achieved at high doses to support toxicological studies, where unexpected inflammatory cell infiltrates in cardiovascular tissue prevented further compound development.


Subject(s)
Aminopyridines/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Inflammation/drug therapy , Protein Kinase Inhibitors/therapeutic use , Aminopyridines/chemical synthesis , Aminopyridines/pharmacokinetics , Aminopyridines/toxicity , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/toxicity , Female , Humans , Molecular Structure , No-Observed-Adverse-Effect Level , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/toxicity , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyrazines/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Article in English | MEDLINE | ID: mdl-34365291

ABSTRACT

A simple, fast and precise LC-MS/MS method for the quantitation of the tyrosine kinase inhibitor gilteritinib was developed and validated for micro-volumes of mouse plasma. The assay procedure involved a one-step extraction of gilteritinib and the internal standard [2H5]-gilteritinib with acetonitrile. An Accucore aQ column was used to separate analytes using a gradient elution delivered at a flow rate of 0.4 mL/min, and a total run time of 2.5 min. Validation studies with quality control samples processed on consecutive days revealed that values for intra-day and inter-day precision were <7.04%, with an accuracy of 101-108%. Linear responses were observed over the entire calibration curve range (up to 500 ng/mL), and the lower limit of quantification was 5 ng/mL. The developed method was successfully used to examine the pharmacokinetics of oral gilteritinib in wild-type mice and mice lacking the organic cation transporters OCT1, OCT2, and MATE1 to further understand mechanisms contributing to drug-drug interactions and causes of inter-individual pharmacokinetic variability.


Subject(s)
Aniline Compounds/blood , Chromatography, Liquid/methods , Pyrazines/blood , Tandem Mass Spectrometry/methods , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Animals , Female , HEK293 Cells , Humans , Limit of Detection , Linear Models , Mice , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Reproducibility of Results
19.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Article in English | MEDLINE | ID: mdl-34315764

ABSTRACT

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Subject(s)
Benzimidazoles/pharmacology , Glioblastoma/drug therapy , Leiomyosarcoma/drug therapy , Pyrazines/pharmacology , Tubulin Modulators/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Benzimidazoles/pharmacokinetics , Cell Proliferation , Female , Glioblastoma/pathology , Humans , Leiomyosarcoma/pathology , Male , Maximum Tolerated Dose , Mice , Mice, Nude , Middle Aged , Prognosis , Pyrazines/pharmacokinetics , Tissue Distribution , Tubulin Modulators/pharmacokinetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Mol Pharm ; 18(8): 3108-3115, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34250805

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the ß-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , Ionic Liquids/chemistry , Pyrazines/administration & dosage , Administration, Oral , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacokinetics , Animals , Female , Mice , Mice, Inbred BALB C , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Solubility , Tissue Distribution , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL