Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.137
Filter
1.
Elife ; 132024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116184

ABSTRACT

Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.


Subject(s)
Protein Binding , Protein Conformation , RNA, Double-Stranded , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Protein Domains , Humans , Nucleic Acid Conformation , Models, Molecular
2.
J Comput Aided Mol Des ; 38(1): 25, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014124

ABSTRACT

Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.


Subject(s)
Adenosine Deaminase , Molecular Dynamics Simulation , RNA-Binding Proteins , Adenosine Deaminase/chemistry , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Humans , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mutation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , Protein Conformation , RNA Editing
3.
Anal Methods ; 16(30): 5146-5153, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39011770

ABSTRACT

dsRNA is a product related impurity produced during the mRNA manufacturing process. The established immuno-based detection methods lack the flexibility and speed required to be applied throughout the manufacturing process. The RP-HPLC method developed outperforms these in terms of precision, broader detection range, LOD and LOQ, as well as in output variance. Using this method, dsRNA can be quantified in under 30 min for a single sample.


Subject(s)
RNA, Double-Stranded , mRNA Vaccines , Chromatography, High Pressure Liquid/methods , RNA, Double-Stranded/analysis , RNA, Double-Stranded/chemistry , Drug Contamination/prevention & control , Limit of Detection , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/analysis , Spectrophotometry, Ultraviolet/methods , Humans
4.
Molecules ; 29(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999177

ABSTRACT

A short 19 bp dsRNA with 3'-trinucleotide overhangs acting as immunostimulating RNA (isRNA) demonstrated strong antiproliferative action against cancer cells, immunostimulatory activity through activation of cytokines and Type-I IFN secretion, as well as anti-tumor and anti-metastatic effects in vivo. The aim of this study was to determine the tolerance of chemical modifications (2'-F, 2'-OMe, PS, cholesterol, and amino acids) located at different positions within this isRNA to its ability to activate the innate immune system. The obtained duplexes were tested in vivo for their ability to activate the synthesis of interferon-α in mice, and in tumor cell cultures for their ability to inhibit their proliferation. The obtained data show that chemical modifications in the composition of isRNA have different effects on its individual functions, including interferon-inducing and antiproliferative effects. The effect of modifications depends not only on the type of modification but also on its location and the surrounding context of the modifications. This study made it possible to identify leader patterns of modifications that enhance the properties of isRNA: F2/F2 and F2_S/F2 for interferon-inducing activity, as well as F2_S5/F2_S5, F2-NH2/F2-NH2, and Ch-F2/Ch-F2 for antiproliferative action. These modifications can improve the pharmacokinetic and pharmacodynamic properties, as well as increase the specificity of isRNA action to obtain the desired effect.


Subject(s)
Cell Proliferation , RNA, Double-Stranded , RNA, Double-Stranded/pharmacology , RNA, Double-Stranded/chemistry , Animals , Cell Proliferation/drug effects , Mice , Humans , Cell Line, Tumor , Interferon-alpha/metabolism , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Interferons/metabolism
5.
Phys Chem Chem Phys ; 26(31): 20739-20744, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39049620

ABSTRACT

Electrostatics can alter the RNA-binding properties of proteins that display structure selectivity without sequence specificity. Loquacious-PD relies on this broad scope response to mediate the interaction of endonucleases with double stranded RNAs. Multimodal spectroscopic probes with in situ perturbations reveal an efficient and stable binding mechanism that disfavors high protein density complexes and is sensitive to local electrostatics.


Subject(s)
RNA, Double-Stranded , Static Electricity , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Protein Binding , Binding Sites
6.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891911

ABSTRACT

The wide use of mono- or bis-styryl fluorophores in biomedical applications prompted the presented design and study of a series of trimeric and tetrameric homo-analogues, styryl moieties arranged around a central aromatic core. The interactions with the most common biorelevant targets, ds-DNA and ds-RNA, were studied by a set of spectrophotometric methods (UV-VIS, fluorescence, circular dichroism, thermal denaturation). All studied dyes showed strong light absorption in the 350-420 nm range and strongly Stokes-shifted (+100-160 nm) emission with quantum yields (Φf) up to 0.57, whereby the mentioned properties were finely tuned by the type of the terminal cationic substituent and number of styryl components (tetramers being red-shifted in respect to trimers). All studied dyes strongly interacted with ds-DNA and ds-RNA with 1-10 nM-1 affinity, with dye emission being strongly quenched. The tetrameric analogues did not show any particular selectivity between ds-DNA or ds-RNA due to large size and consequent partial, non-selective insertion into DNA/RNA grooves. However, smaller trimeric styryl series showed size-dependent selective stabilization of ds-DNA vs. ds-RNA against thermal denaturation and highly selective or even specific recognition of several particular ds-DNA or ds-RNA structures by induced circular dichroism (ICD) bands. The chiral (ICD) selectivity was controlled by the size of a terminal cationic substituent. All dyes entered efficiently live human cells with negligible cytotoxic activity. Further prospects in the transfer of ICD-based selectivity into fluorescence-chiral methods (FDCD and CPL) is proposed, along with the development of new analogues with red-shifted absorbance properties.


Subject(s)
Cations , Circular Dichroism , DNA , Fluorescent Dyes , RNA, Double-Stranded , Humans , DNA/chemistry , Fluorescent Dyes/chemistry , RNA, Double-Stranded/chemistry , Cations/chemistry , Spectrometry, Fluorescence , Styrenes/chemistry , Nucleic Acid Denaturation
7.
Sci Signal ; 17(837): eadi9844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771918

ABSTRACT

Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.


Subject(s)
2',5'-Oligoadenylate Synthetase , Endoribonucleases , RNA, Double-Stranded , Zika Virus , Endoribonucleases/metabolism , Endoribonucleases/genetics , Endoribonucleases/chemistry , Humans , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Zika Virus/metabolism , Animals , Dengue Virus/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , RNA Stability , West Nile virus/metabolism , West Nile virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Enzyme Activation , HeLa Cells , HEK293 Cells
8.
J Agric Food Chem ; 72(22): 12508-12515, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788129

ABSTRACT

Nanotechnology-based RNA interference (RNAi) offers a promising approach to pest control. However, current methods for producing RNAi nanopesticides are mainly implemented in a batch-to-batch manner, lacking consistent quality control. Herein, we present a microfluidic-based nanoplatform for RNA nanopesticide preparation using lipid nanoparticles (LNPs) as nanocarriers, taking advantage of the enhanced mass transfer and continuous processing capabilities of microfluidic technology. The dsRNA@LNPs were rapidly formed within seconds, which showed uniform size distribution, improved leaf wettability, and excellent dispersion properties. The delivery efficiency of dsRNA@LNPs was evaluated by targeting the chitin synthetase B (CHSB) gene ofSpodoptera exigua. The dsRNA@LNPs can effectively resist nuclease-rich midgut fluid degradation. Importantly, dsCHSB@LNPs exhibited increased mortality rates, significant reduction of larvae growth, and enhanced gene suppression efficiency. Therefore, a continuous nanoplatform for RNAi nanopesticide preparation is demonstrated by utilizing microfluidic technology, representing a new route to produce RNAi nanopesticides with enhanced quality control and might accelerate their practical applications.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Spodoptera , Animals , Spodoptera/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Larva/growth & development , Larva/genetics , Nanoparticles/chemistry , Microfluidics/instrumentation , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Control/methods
9.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38761636

ABSTRACT

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Subject(s)
Encephalomyocarditis virus , Protein Multimerization , RNA, Double-Stranded , RNA, Viral , eIF-2 Kinase , eIF-2 Kinase/metabolism , eIF-2 Kinase/chemistry , Humans , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Encephalomyocarditis virus/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Poly I-C/pharmacology , Nucleic Acid Conformation
10.
Nucleic Acids Res ; 52(11): 6718-6727, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38742627

ABSTRACT

The nucleic acid transport properties of the systemic RNAi-defective (SID) 1 family make them attractive targets for developing RNA-based therapeutics and drugs. However, the molecular basis for double-stranded (ds) RNA recognition by SID1 family remains elusive. Here, we report the cryo-EM structures of Caenorhabditis elegans (c) SID1 alone and in complex with dsRNA, both at a resolution of 2.2 Å. The dimeric cSID1 interacts with two dsRNA molecules simultaneously. The dsRNA is located at the interface between ß-strand rich domain (BRD)1 and BRD2 and nearly parallel to the membrane plane. In addition to extensive ionic interactions between basic residues and phosphate backbone, several hydrogen bonds are formed between 2'-hydroxyl group of dsRNA and the contact residues. Additionally, the electrostatic potential surface shows three basic regions are fitted perfectly into three major grooves of dsRNA. These structural characteristics enable cSID1 to bind dsRNA in a sequence-independent manner and to distinguish between DNA and RNA. The cSID1 exhibits no conformational changes upon binding dsRNA, with the exception of a few binding surfaces. Structural mapping of dozens of loss-of-function mutations allows potential interpretation of their diverse functional mechanisms. Our study marks an important step toward mechanistic understanding of the SID1 family-mediated dsRNA uptake.


Subject(s)
Caenorhabditis elegans Proteins , RNA, Double-Stranded , Animals , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Cryoelectron Microscopy , Models, Molecular , Protein Binding , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Static Electricity
12.
Biochem Cell Biol ; 102(4): 305-318, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38603810

ABSTRACT

The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.


Subject(s)
2',5'-Oligoadenylate Synthetase , Protein Domains , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/chemistry , Humans , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Animals
13.
Nat Struct Mol Biol ; 31(7): 1095-1104, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664565

ABSTRACT

RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cryoelectron Microscopy , RNA, Double-Stranded , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Humans , Models, Molecular , RNA Interference , Membrane Proteins
14.
Nucleic Acids Res ; 52(5): 2519-2529, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38321947

ABSTRACT

The subtle differences in the chemical structures of double-stranded (ds) RNA and DNA lead to significant variations in their biological roles and medical implications, largely due to their distinct biophysical properties, such as bending stiffness. Although it is well known that A-form dsRNA is stiffer than B-form dsDNA under physiological salt conditions, the underlying cause of this difference remains unclear. In this study, we employ high-precision magnetic-tweezer experiments along with molecular dynamics simulations and reveal that the relative bending stiffness between dsRNA and dsDNA is primarily determined by the structure- and salt-concentration-dependent ion distribution around their helical structures. At near-physiological salt conditions, dsRNA shows a sparser ion distribution surrounding its phosphate groups compared to dsDNA, causing its greater stiffness. However, at very high monovalent salt concentrations, phosphate groups in both dsRNA and dsDNA become fully neutralized by excess ions, resulting in a similar intrinsic bending persistence length of approximately 39 nm. This similarity in intrinsic bending stiffness of dsRNA and dsDNA is coupled to the analogous fluctuations in their total groove widths and further coupled to the similar fluctuation of base-pair inclination, despite their distinct A-form and B-form helical structures.


Subject(s)
DNA , RNA, Double-Stranded , Base Pairing , DNA/chemistry , Nucleic Acid Conformation , Phosphates , RNA, Double-Stranded/chemistry , Molecular Biology/methods , Molecular Dynamics Simulation
15.
FEBS J ; 291(14): 3072-3079, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38151772

ABSTRACT

Dicer, a multi-domain ribonuclease III (RNase III) protein, is crucial for gene regulation via RNA interference. It processes hairpin-like precursors into microRNAs (miRNAs) and long double-stranded RNAs (dsRNAs) into small interfering RNAs (siRNAs). During the "dicing" process, the miRNA or siRNA substrate is stably anchored and cleaved by Dicer's RNase III domain. Although numerous studies have investigated long dsRNA cleavage by Dicer, the specific mechanism by which human Dicer (hDICER) processes pre-miRNA remains unelucidated. This review introduces the recently revealed hDICER structure bound to pre-miRNA uncovered through cryo-electron microscopy and compares it with previous reports describing Dicer. The domain-wise movements of the helicase and dsRNA-binding domain (dsRBD) and specific residues involved in substrate sequence recognition have been identified. During RNA substrate binding, the hDICER apical domains and dsRBD recognize the pre-miRNA termini and cleavage site, respectively. Residue rearrangements in positively charged pockets within the apical domain influence substrate recognition and cleavage site determination. The specific interactions between dsRBD positively charged residues and nucleotide bases near the cleavage site emphasize the significance of cis-acting elements in the hDICER processing mechanism. These findings provide valuable insights for understanding hDICER-related diseases.


Subject(s)
Cryoelectron Microscopy , DEAD-box RNA Helicases , MicroRNAs , Ribonuclease III , Humans , Ribonuclease III/chemistry , Ribonuclease III/metabolism , Ribonuclease III/genetics , Ribonuclease III/ultrastructure , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/chemistry , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/ultrastructure , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Models, Molecular , RNA Precursors/metabolism , RNA Precursors/genetics , RNA Precursors/chemistry , RNA Precursors/ultrastructure , Substrate Specificity , Protein Domains , Protein Binding , Binding Sites
16.
Nature ; 621(7978): 423-430, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674078

ABSTRACT

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Subject(s)
Codon, Initiator , Nucleic Acid Conformation , RNA, Double-Stranded , RNA, Messenger , Humans , Arabidopsis/genetics , Arabidopsis/immunology , Codon, Initiator/genetics , Innate Immunity Recognition , Open Reading Frames/genetics , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Ribosomes/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , Transcriptome , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Deep Learning
17.
J Mol Biol ; 435(14): 167978, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37356908

ABSTRACT

The sequence-dependent statistical mechanics of double-stranded nucleic acid, or dsNA, is believed to be essential in its biological functions. In turn, the equilibrium statistical mechanics behaviour of dsNA depends strongly both on sequence-dependent perturbations in its ground state shape away from an idealised, uniform, double-helical configuration, and on its fluctuations as governed by its sequence-dependent stiffness. We here describe the cgNA+web browser-based interactive tool for visualising the sequence-dependent ground states of dsNA fragments of arbitrary sequences, as predicted by the underlying cgNA+ coarse-grain model. Parameter sets are provided to model dsDNA, including the possibility of epigenetically modified CpG dinucleotide steps, dsRNA, and DNA:RNA Hybrid double helical fragments. The cgNA+web interface is specifically designed to compare ground state shapes of different sequences of the same dsNA, or analogous sequences of different dsNAs. The cgNA+web server is freely available at cgDNAweb.epfl.ch without any login requirement.


Subject(s)
DNA , RNA, Double-Stranded , DNA/chemistry , Nucleic Acid Conformation , RNA, Double-Stranded/chemistry , Epigenesis, Genetic , CpG Islands
18.
Nature ; 615(7951): 323-330, 2023 03.
Article in English | MEDLINE | ID: mdl-36813957

ABSTRACT

RNA silencing relies on specific and efficient processing of double-stranded RNA by Dicer, which yields microRNAs (miRNAs) and small interfering RNAs (siRNAs)1,2. However, our current knowledge of the specificity of Dicer is limited to the secondary structures of its substrates: a double-stranded RNA of approximately 22 base pairs with a 2-nucleotide 3' overhang and a terminal loop3-11. Here we found evidence pointing to an additional sequence-dependent determinant beyond these structural properties. To systematically interrogate the features of precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with pre-miRNA variants and human DICER (also known as DICER1). Our analyses revealed a deeply conserved cis-acting element, termed the 'GYM motif' (paired G, paired pyrimidine and mismatched C or A), near the cleavage site. The GYM motif promotes processing at a specific position and can override the previously identified 'ruler'-like counting mechanisms from the 5' and 3' ends of pre-miRNA3-6. Consistently, integrating this motif into short hairpin RNA or Dicer-substrate siRNA potentiates RNA interference. Furthermore, we find that the C-terminal double-stranded RNA-binding domain (dsRBD) of DICER recognizes the GYM motif. Alterations in the dsRBD reduce processing and change cleavage sites in a motif-dependent fashion, affecting the miRNA repertoire in cells. In particular, the cancer-associated R1855L substitution in the dsRBD strongly impairs GYM motif recognition. This study uncovers an ancient principle of substrate recognition by metazoan Dicer and implicates its potential in the design of RNA therapeutics.


Subject(s)
DEAD-box RNA Helicases , MicroRNAs , Nucleic Acid Conformation , RNA Precursors , RNA, Small Interfering , Ribonuclease III , Humans , Base Pairing , DEAD-box RNA Helicases/metabolism , MicroRNAs/biosynthesis , MicroRNAs/genetics , MicroRNAs/metabolism , Ribonuclease III/metabolism , RNA Interference , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA Precursors/biosynthesis , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , Base Sequence
19.
Proc Natl Acad Sci U S A ; 119(33): e2204235119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939694

ABSTRACT

Mammalian cells respond to dsRNA in multiple manners. One key response to dsRNA is the activation of PKR, an eIF2α kinase, which triggers translational arrest and the formation of stress granules. However, the process of PKR activation in cells is not fully understood. In response to increased endogenous or exogenous dsRNA, we observed that PKR forms novel cytosolic condensates, referred to as dsRNA-induced foci (dRIFs). dRIFs contain dsRNA, form in proportion to dsRNA, and are enhanced by longer dsRNAs. dRIFs enrich several other dsRNA-binding proteins, including ADAR1, Stau1, NLRP1, and PACT. Strikingly, dRIFs correlate with and form before translation repression by PKR and localize to regions of cells where PKR activation is initiated. We hypothesize that dRIF formation is a mechanism that cells use to enhance the sensitivity of PKR activation in response to low levels of dsRNA or to overcome viral inhibitors of PKR activation.


Subject(s)
RNA, Double-Stranded , RNA, Viral , Virus Diseases , eIF-2 Kinase , Enzyme Activation , Humans , Immunity, Innate , Phosphorylation , Protein Biosynthesis , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/immunology , RNA, Viral/chemistry , RNA, Viral/immunology , RNA-Binding Proteins/chemistry , Stress Granules , Virus Diseases/enzymology , Virus Diseases/immunology , eIF-2 Kinase/chemistry
20.
J Biol Chem ; 298(9): 102311, 2022 09.
Article in English | MEDLINE | ID: mdl-35921898

ABSTRACT

Global agriculture loses over $100 billion of produce annually to crop pests such as insects. Many of these crop pests either are not currently controlled by artificial means or have developed resistance against chemical pesticides. Long dsRNAs are capable of inducing RNAi in insects and are emerging as novel, highly selective alternatives for sustainable insect management strategies. However, there are significant challenges associated with RNAi efficacy in insects. In this study, we synthesized a range of chemically modified long dsRNAs in an approach to improve nuclease resistance and RNAi efficacy in insects. Our results showed that dsRNAs containing phosphorothioate modifications demonstrated increased resistance to southern green stink bug saliva nucleases. Phosphorothioate-modified and 2'-fluoro-modified dsRNA also demonstrated increased resistance to degradation by soil nucleases and increased RNAi efficacy in Drosophila melanogaster cell cultures. In live insects, we found chemically modified long dsRNAs successfully resulted in mortality in both stink bug and corn rootworm. These results provide further mechanistic insight into the dependence of RNAi efficacy on nucleotide modifications in the sense or antisense strand of the dsRNA in insects and demonstrate for the first time that RNAi can successfully be triggered by chemically modified long dsRNAs in insect cells or live insects.


Subject(s)
Heteroptera , Insect Control , Pest Control, Biological , Plant Diseases , RNA Interference , RNA, Double-Stranded , Animals , Drosophila melanogaster , Heteroptera/genetics , Insect Control/methods , Nucleotides/metabolism , Pest Control, Biological/methods , Pesticides/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL