Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Sci Immunol ; 9(100): eado0398, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365876

ABSTRACT

X chromosome inactivation (XCI) balances X-linked gene dosage between sexes. Unstimulated T cells lack cytological enrichment of X-inactive specific transcript (Xist) RNA and heterochromatic modifications on the inactive X chromosome (Xi), which are involved in maintenance of XCI, and these modifications return to the Xi after stimulation. Here, we examined allele-specific gene expression and epigenomic profiles of the Xi in T cells. We found that the Xi in unstimulated T cells is largely dosage compensated and enriched with the repressive H3K27me3 modification but not the H2AK119-ubiquitin (Ub) mark. Upon T cell stimulation mediated by both CD3 and CD28, the Xi accumulated H2AK119-Ub at gene regions of previous H3K27me3 enrichment. T cell receptor (TCR) engagement, specifically NF-κB signaling downstream of the TCR, was required for Xist RNA localization to the Xi. Disruption of NF-κB signaling in mouse and human T cells using genetic deletion, chemical inhibitors, and patients with immunodeficiencies prevented Xist/XIST RNA accumulation at the Xi and altered X-linked gene expression. Our findings reveal a previously undescribed connection between NF-κB signaling pathways, which affects XCI maintenance in T cells in females.


Subject(s)
Lymphocyte Activation , NF-kappa B , Signal Transduction , T-Lymphocytes , X Chromosome Inactivation , X Chromosome Inactivation/immunology , NF-kappa B/metabolism , NF-kappa B/immunology , Animals , Humans , Signal Transduction/immunology , T-Lymphocytes/immunology , Mice , Lymphocyte Activation/immunology , Female , Male , Mice, Inbred C57BL , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology
2.
Front Immunol ; 15: 1446937, 2024.
Article in English | MEDLINE | ID: mdl-39257589

ABSTRACT

Cancer treatment has long been fraught with challenges, including drug resistance, metastasis, and recurrence, making it one of the most difficult diseases to treat effectively. Traditional therapeutic approaches often fall short due to their inability to target cancer stem cells and the complex genetic and epigenetic landscape of tumors. In recent years, cancer immunotherapy has revolutionized the field, offering new hope and viable alternatives to conventional treatments. A particularly promising area of research focuses on non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), and their role in cancer resistance and the modulation of signaling pathways. To address these challenges, we performed a comprehensive review of recent studies on lncRNAs and their impact on cancer immunotherapy. Our review highlights the crucial roles that lncRNAs play in affecting both innate and adaptive immunity, thereby influencing the outcomes of cancer treatments. Key observations from our review indicate that lncRNAs can modify the tumor immune microenvironment, enhance immune cell infiltration, and regulate cytokine production, all of which contribute to tumor growth and resistance to therapies. These insights suggest that lncRNAs could serve as potential targets for precision medicine, opening up new avenues for developing more effective cancer immunotherapies. By compiling recent research on lncRNAs across various cancers, this review aims to shed light on their mechanisms within the tumor immune microenvironment.


Subject(s)
Immunotherapy , Neoplasms , RNA, Long Noncoding , Tumor Microenvironment , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Immunotherapy/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Animals , Gene Expression Regulation, Neoplastic , Immunity, Innate , Adaptive Immunity/genetics
3.
Adv Sci (Weinh) ; 11(34): e2400695, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981064

ABSTRACT

Tumor immune evasion relies on the crosstalk between tumor cells and adaptive/innate immune cells. Immune checkpoints play critical roles in the crosstalk, and immune checkpoint inhibitors have achieved promising clinical effects. The long non-coding RNA taurine-upregulated gene 1 (TUG1) is upregulated in hepatocellular carcinoma (HCC). However, how TUG1 is upregulated and the effects on tumor immune evasion are incompletely understood. Here, METTL3-mediated m6A modification led to TUG1 upregulation is demonstrated. Knockdown of TUG1 inhibited tumor growth and metastasis, increased the infiltration of CD8+ T cells and M1-like macrophages in tumors, promoted the activation of CD8+ T cells through PD-L1, and improved the phagocytosis of macrophages through CD47. Mechanistically, TUG1 regulated PD-L1 and CD47 expressions by acting as a sponge of miR-141 and miR-340, respectively. Meanwhile, TUG1 interacted with YBX1 to facilitate the upregulation of PD-L1 and CD47 transcriptionally, which ultimately regulated tumor immune evasion. Clinically, TUG1 positively correlated with PD-L1 and CD47 in HCC tissues. Moreover, the combination of Tug1-siRNA therapy with a Pdl1 antibody effectively suppressed tumor growth. Therefore, the mechanism of TUG1 in regulating tumor immune evasion is revealed and can inform existing strategies targeting TUG1 for enhancing HCC immune therapy and drug development.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Macrophages , Phagocytosis , RNA, Long Noncoding , Up-Regulation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/therapy , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Up-Regulation/genetics , Mice , Animals , Phagocytosis/genetics , Macrophages/immunology , Macrophages/metabolism , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , CD47 Antigen/genetics , CD47 Antigen/metabolism , CD47 Antigen/immunology , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics
4.
Fish Shellfish Immunol ; 152: 109768, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013534

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.


Subject(s)
Hepatopancreas , Penaeidae , RNA, Long Noncoding , Vibrio parahaemolyticus , Animals , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/microbiology , Vibrio parahaemolyticus/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Hepatopancreas/immunology , Computer Simulation , Immunity, Innate/genetics , Gene Expression Profiling/veterinary
5.
J Reprod Immunol ; 164: 104274, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865894

ABSTRACT

Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Infertility, Male , Spermatogenesis , Spermatozoa , Male , Humans , Infertility, Male/immunology , Infertility, Male/genetics , Infertility, Male/microbiology , Epigenesis, Genetic/immunology , DNA Methylation/immunology , Spermatozoa/immunology , Spermatogenesis/genetics , Spermatogenesis/immunology , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Bacterial Infections/immunology , Bacterial Infections/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics
6.
Fish Shellfish Immunol ; 151: 109716, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909636

ABSTRACT

Previous studies show that bisphenol A (BPA) and its analogs induce oxidative stress and promote inflammatory response. However, the key molecules in regulating this process remain unclear. Here, we report significant inductive effects of BPA and bisphenol AF (BPAF) on a newly found long non-coding RNA linc-93.2 accompanied by oxidative stress and activation of pro-inflammatory pathways in treated fish and fish primary macrophages. Silencing linc-93.2 in fish primary macrophages in vitro or fish in vivo significantly promotes the expression of anti-oxidative stress-related genes and anti-inflammatory cytokines. This inhibition of pro-inflammatory cytokine expression, showing cell status disruption towards to M2 polarization. Followed by exposure to BPA or BPAF, silencing linc-93.2 in vitro or in vivo significantly attenuates the increased production of reactive oxygen species and malondialdehyde level aroused by bisphenol treatment, possibly owing to the enhancement of total antioxidant capacity observed in cells and tissue after linc-93.2 knockdown. RNA-sequencing further revealed regulation of nuclear factor-kappa b (NF-κB) in linc-93.2's downstream network, combining with our previous observation on the upstream regulation of linc-93.2 via NF-κB, which together suggest a critical role of linc-93.2 in promoting NF-κB positive feedback loop that may be an important molecular event initiating the immunotoxicity of bisphenols.


Subject(s)
Benzhydryl Compounds , Carps , Macrophages , Oxidative Stress , Phenols , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Benzhydryl Compounds/toxicity , Phenols/toxicity , Oxidative Stress/drug effects , Carps/genetics , Carps/immunology , Macrophages/drug effects , Macrophages/immunology , Water Pollutants, Chemical/toxicity , Fluorocarbons
7.
PLoS Pathog ; 20(6): e1012296, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885278

ABSTRACT

The obligate endosymbiont Wolbachia induces pathogen interference in the primary disease vector Aedes aegypti, facilitating the utilization of Wolbachia-based mosquito control for arbovirus prevention, particularly against dengue virus (DENV). However, the mechanisms underlying Wolbachia-mediated virus blockade have not been fully elucidated. Here, we report that Wolbachia activates the host cytoplasmic miRNA biogenesis pathway to suppress DENV infection. Through the suppression of the long noncoding RNA aae-lnc-2268 by Wolbachia wAlbB, aae-miR-34-3p, a miRNA upregulated by the Wolbachia strains wAlbB and wMelPop, promoted the expression of the antiviral effector defensin and cecropin genes through the Toll pathway regulator MyD88. Notably, anti-DENV resistance induced by Wolbachia can be further enhanced, with the potential to achieve complete virus blockade by increasing the expression of aae-miR-34-3p in Ae. aegypti. Furthermore, the downregulation of aae-miR-34-3p compromised Wolbachia-mediated virus blockade. These findings reveal a novel mechanism by which Wolbachia establishes crosstalk between the cytoplasmic miRNA pathway and the Toll pathway via aae-miR-34-3p to strengthen antiviral immune responses against DENV. Our results will aid in the advancement of Wolbachia for arbovirus control by enhancing its virus-blocking efficiency.


Subject(s)
Aedes , Dengue Virus , Dengue , MicroRNAs , Wolbachia , Wolbachia/physiology , Aedes/microbiology , Aedes/virology , Aedes/immunology , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Toll-Like Receptors/metabolism , Toll-Like Receptors/immunology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Mosquito Vectors/immunology , Signal Transduction , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Immunity, Innate , Symbiosis
8.
J Cell Mol Med ; 28(8): e18282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647237

ABSTRACT

Research indicates that there are links between m6A, m5C and m1A modifications and the development of different types of tumours. However, it is not yet clear if these modifications are involved in the prognosis of LUAD. The TCGA-LUAD dataset was used as for signature training, while the validation cohort was created by amalgamating publicly accessible GEO datasets including GSE29013, GSE30219, GSE31210, GSE37745 and GSE50081. The study focused on 33 genes that are regulated by m6A, m5C or m1A (mRG), which were used to form mRGs clusters and clusters of mRG differentially expressed genes clusters (mRG-DEG clusters). Our subsequent LASSO regression analysis trained the signature of m6A/m5C/m1A-related lncRNA (mRLncSig) using lncRNAs that exhibited differential expression among mRG-DEG clusters and had prognostic value. The model's accuracy underwent validation via Kaplan-Meier analysis, Cox regression, ROC analysis, tAUC evaluation, PCA examination and nomogram predictor validation. In evaluating the immunotherapeutic potential of the signature, we employed multiple bioinformatics algorithms and concepts through various analyses. These included seven newly developed immunoinformatic algorithms, as well as evaluations of TMB, TIDE and immune checkpoints. Additionally, we identified and validated promising agents that target the high-risk mRLncSig in LUAD. To validate the real-world expression pattern of mRLncSig, real-time PCR was carried out on human LUAD tissues. The signature's ability to perform in pan-cancer settings was also evaluated. The study created a 10-lncRNA signature, mRLncSig, which was validated to have prognostic power in the validation cohort. Real-time PCR was applied to verify the actual manifestation of each gene in the signature in the real world. Our immunotherapy analysis revealed an association between mRLncSig and immune status. mRLncSig was found to be closely linked to several checkpoints, such as IL10, IL2, CD40LG, SELP, BTLA and CD28, which could be appropriate immunotherapy targets for LUAD. Among the high-risk patients, our study identified 12 candidate drugs and verified gemcitabine as the most significant one that could target our signature and be effective in treating LUAD. Additionally, we discovered that some of the lncRNAs in mRLncSig could play a crucial role in certain cancer types, and thus, may require further attention in future studies. According to the findings of this study, the use of mRLncSig has the potential to aid in forecasting the prognosis of LUAD and could serve as a potential target for immunotherapy. Moreover, our signature may assist in identifying targets and therapeutic agents more effectively.


Subject(s)
Biomarkers, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , RNA Methylation , RNA, Long Noncoding , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/genetics , Computational Biology/methods , Immunotherapy , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Nomograms , Precision Medicine , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Transcriptome/genetics , RNA Methylation/genetics , RNA Methylation/immunology
9.
Cytokine ; 179: 156585, 2024 07.
Article in English | MEDLINE | ID: mdl-38579428

ABSTRACT

The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.


Subject(s)
Autoimmune Diseases , Cell Differentiation , RNA, Long Noncoding , T-Lymphocytes, Regulatory , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , T-Lymphocytes, Regulatory/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Cell Differentiation/immunology , Cell Differentiation/genetics , Animals , Th17 Cells/immunology , Neoplasms/immunology , Neoplasms/genetics , Immune System Diseases/immunology , Immune System Diseases/genetics
10.
J Gen Virol ; 104(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748518

ABSTRACT

The lncRNA NEAT1 plays a vital role in mitochondrial function and antiviral response. We have previously identified NEAT1 as dysregulated lncRNAs and found an inverse correlation with interferon alpha-inducible protein 27 (IFI27) expression associated with developing dengue severity. However, the role of NEAT1 in dengue virus (DV) infection remains elusive. Here, we undertook a study to evaluate the functional consequences of NEAT1 and IFI27 modulation on antiviral response and viral replication in dengue infection. We observed that the knockdown of NEAT1 augmented IFI27 expression and antiviral response via the RIG-I pathway. Increased antiviral response leads to a decrease in dengue viral replication. Further study suggested that the knockdown of IFI27 augmented expression of the activating transcription factor 3 (ATF3), a negative regulator of antiviral response, and increased dengue virus replication suggesting an important role played by IFI27 in mediating antiviral response. RNA sequencing study confirmed several mitochondrial genes significantly altered upon knockdown of NEAT1 in DV-infected cells. We further verified the effect of NEAT1 knockdown on mitochondrial functions. We observed a reduced level of phospho-DRP1(S616) expression along with elongated mitochondria in DV2-infected cells. Further, NEAT1 knockdown or ectopic expression of IFI27 increased mitochondrial ROS production and cell death via activation of caspase 3. Our study points to the crucial role of NEAT1 and IFI27 in mediating antiviral response and mitochondrial dysfunction in dengue infection.


Subject(s)
Dengue , Membrane Proteins , RNA, Long Noncoding , Humans , Dengue/immunology , Dengue Virus/physiology , Virus Replication , Membrane Proteins/immunology , RNA, Long Noncoding/immunology
11.
Heart Lung Circ ; 32(4): 544-551, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36463076

ABSTRACT

AIM: Long non-coding RNA (lncRNA) can be used as a biological marker for the diagnosis and treatment of various diseases. The study aimed to detect changes in the expression of lncRNA for urothelial carcinoma associated 1 (UCA1) in patients with cardiopulmonary bypass (CPB)-induced acute respiratory distress syndrome (ARDS). Clinical values and cell function in ARDS were explored. METHOD: In total, 195 patients without CPB-induced ARDS were included in the control group, and 85 patients with ARDS were included in the ARDS group. Serum UCA1 levels were measured by quantitative real-time polymerase chain reaction. A549 was used for the cell experiments by establishing oxygen-glucose deprivation/reperfusion (OGD/R) cell models, and the cell viability and apoptosis were tested. The concentration of inflammatory factors was tested by an enzyme-linked immunosorbent assay. A luciferase reporting assay was applied for target gene analysis. RESULTS: Quantitative real-time polymerase chain reaction revealed a gradual increase in serum UCA1 in both control and ARDS cases, and patients with ARDS had higher levels of UCA1 than those in the control group. Serum UCA1 was positively correlated with serum tumour necrosis factor-α and interleukin-6 concentration in patients with ARDS. UCA1 had the ability to distinguish patients with ARDS from those without it. UCA1 inhibition protected against lung injury and inhibited cell inflammation in vitro. MicroRNA (miR-182-5p) was downregulated in OGD/R-induced cell models and sponged by UCA1. CONCLUSIONS: Elevated expression of UCA1 may be associated with the occurrence of ARDS after CPB surgery. The regulatory role of UCA1 in ARDS might be related to inflammation and downregulated miR-182-5p in alveolar epithelial cells.


Subject(s)
Cardiopulmonary Bypass , MicroRNAs , RNA, Long Noncoding , Respiratory Distress Syndrome , Humans , A549 Cells , Apoptosis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cardiopulmonary Bypass/adverse effects , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology
12.
Cells ; 11(24)2022 12 08.
Article in English | MEDLINE | ID: mdl-36552736

ABSTRACT

The evolutionary conserved NEAT1-MALAT1 gene cluster generates large noncoding transcripts remaining nuclear, while tRNA-like transcripts (mascRNA, menRNA) enzymatically generated from these precursors translocate to the cytosol. Whereas functions have been assigned to the nuclear transcripts, data on biological functions of the small cytosolic transcripts are sparse. We previously found NEAT1-/- and MALAT1-/- mice to display massive atherosclerosis and vascular inflammation. Here, employing selective targeted disruption of menRNA or mascRNA, we investigate the tRNA-like molecules as critical components of innate immunity. CRISPR-generated human ΔmascRNA and ΔmenRNA monocytes/macrophages display defective innate immune sensing, loss of cytokine control, imbalance of growth/angiogenic factor expression impacting upon angiogenesis, and altered cell-cell interaction systems. Antiviral response, foam cell formation/oxLDL uptake, and M1/M2 polarization are defective in ΔmascRNA/ΔmenRNA macrophages, defining first biological functions of menRNA and describing new functions of mascRNA. menRNA and mascRNA represent novel components of innate immunity arising from the noncoding genome. They appear as prototypes of a new class of noncoding RNAs distinct from others (miRNAs, siRNAs) by biosynthetic pathway and intracellular kinetics. Their NEAT1-MALAT1 region of origin appears as archetype of a functionally highly integrated RNA processing system.


Subject(s)
Immunity, Innate , Macrophages , RNA, Long Noncoding , RNA, Transfer , Humans , Genomics , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Transfer/genetics , RNA, Transfer/immunology
13.
Clin Transl Med ; 12(12): e1117, 2022 12.
Article in English | MEDLINE | ID: mdl-36447054

ABSTRACT

BACKGROUND: The aberrant differentiation of T follicular helper (Tfh) cells plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of regulating Tfh cells differentiation remains unclear. Long noncoding RNAs (lncRNAs) act as important regulators in the processes of innate and adaptive immune response. Whether lncRNAs are involved in regulating Tfh cell differentiation and autoimmune responses need to be further identified. METHODS: The characters and functions of human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were investigated by a series of biochemical assays and cell transfection assay. mIl21-AS1 regulating humoral immune response in vivo was explored by keyhole limpet haemocyanin (KLH) and chronic graft versus host disease (cGVHD) model. RESULTS: Human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were identified and cloned. We uncovered that IL21-AS1 was highly expressed in CD4+ T cells of SLE patients and Tfh cells, which promoted differentiation of Tfh cells. Mechanistically, IL21-AS1 bound heterogeneous nuclear ribonucleoprotein U and recruited acetyltransferases CREB-binding protein to the promoter of IL21, leading to the transcriptional activation of IL21 and Tfh cells differentiation through increasing Histone H3 acetylation level on IL21 promoter. Moreover, Tfh proportion and antibodies production were significantly increased in mIl21-AS knock-in mice immunized with KLH. mIl21-AS1 overexpression also exacerbated the lupus-like phenotype in cGVHD mice model. CONCLUSIONS: Our results demonstrate that IL21-AS1 activates IL21 transcription via epigenetic mechanism to promote germinal centre response, adding insight into the molecular regulation of autoimmune pathogenesis and providing a novel target for SLE treatment.


Subject(s)
Lupus Erythematosus, Systemic , RNA, Long Noncoding , T Follicular Helper Cells , Animals , Humans , Mice , Cell Differentiation/genetics , Cell Differentiation/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , T Follicular Helper Cells/immunology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology
14.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36214222

ABSTRACT

Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.


Subject(s)
CELF1 Protein , Colitis , Homeostasis , Intestinal Mucosa , RNA, Long Noncoding , Wound Healing , Animals , Apoptosis , CELF1 Protein/genetics , CELF1 Protein/immunology , Colitis/genetics , Colitis/immunology , Homeostasis/genetics , Homeostasis/immunology , Intestinal Mucosa/immunology , Mice , MicroRNAs/genetics , MicroRNAs/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Wound Healing/genetics , Wound Healing/immunology , Wounds and Injuries/genetics , Wounds and Injuries/immunology
15.
BMC Oral Health ; 22(1): 370, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045361

ABSTRACT

BACKGROUND: In periodontitis, noncoding RNAs may play a regulatory role in the immune microenvironment through competitive endogenous RNA. We aimed to profile noncoding RNA expression and construct immune-related ceRNA network in periodontitis. METHODS: Five inflamed periodontal tissue and five healthy gingivae were collected for whole-transcriptome sequencing. Differential gene, functional enrichment, and protein-protein interaction network analysis were performed to explore the function of differentially expressed genes. CIBERSORTx was used to analyze level of immune cell infiltration in the periodontal tissue. An immune-related competitive endogenous RNA network was constructed and expression of key regulators in the network was validated. RESULTS: Compared with healthy gingiva, 200 mRNAs, 90 long noncoding RNAs, 65 microRNAs, and 518 circular RNAs were differentially expressed, and cell chemotaxis was significantly enhanced in inflamed periodontal tissue. Immune cell infiltration analysis showed that neutrophils, macrophages M1, T follicular helper cells, and naive B cells were significantly increased in periodontitis. Key regulators including JUN, FOS, THBS1, KLF2, WIF1, were identified and their expression was then validated. CONCLUSION: We constructed an immune-related competitive endogenous RNA network in periodontal tissue, which provided new insights into immune homeostasis in periodontitis and laid a foundation for further study of noncoding RNAs. Key regulators in this network may be promising targets for future periodontitis treatment.


Subject(s)
Gene Regulatory Networks , MicroRNAs , Periodontitis , RNA, Long Noncoding , Gene Expression Profiling , Gene Regulatory Networks/genetics , Humans , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Periodontitis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism
16.
Dis Markers ; 2022: 6408879, 2022.
Article in English | MEDLINE | ID: mdl-35968498

ABSTRACT

Previous studies have confirmed long noncoding RNA LEMD1-AS1 (LEMD1-AS1) as a functional factor in several tumors. The present work is aimed at exploring the prognostic and diagnostic values of LEMD1-AS1 in patients with epithelial ovarian cancer (EOC). We examined the expressions of LEMD1-AS1 in pan-cancer from TCGA microarray datasets and GTEx Project. The expressions of LEMD1-AS1 were detected by qRT-PCR in EOC specimens and normal ovarian specimens from 30 EOC patients. The χ 2 test was applied to compare the clinicopathological characteristics of different groups. ROC curves were established to determine the diagnostic values of LEMD1-AS1 in screening EOC tissues. The association of LEMD1-AS1 expression with clinical outcome was determined by the Kaplan-Meier methods and COX assays. A decreased expression of LEMD1-AS1 was observed in EOC tissues compared to matched normal specimens (p < 0.01). Low LEMD1-AS1 expression could be used to distinguish EOC from adjacent normal specimens. A clinical study revealed that patients with low LEMD1-AS1 expression have a shorter overall survival (p = 0.035) and progress-free interval (p = 0.041) than those with high LEMD1-AS1 expression. The Spearman correlation test revealed that LEMD1-AS1 expressions were negatively associated with the expressions of neutrophil and myeloid dendritic cell. Overall, our finding suggested that LEMD1-AS1 may have potential roles as a potential biomarker and/or a therapeutic target in EOC.


Subject(s)
Carcinoma, Ovarian Epithelial , Neoplasm Proteins , Ovarian Neoplasms , RNA, Antisense , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Down-Regulation , Female , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Prognosis , RNA, Antisense/genetics , RNA, Antisense/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology
17.
J Immunol Res ; 2022: 9912732, 2022.
Article in English | MEDLINE | ID: mdl-35795530

ABSTRACT

Ovarian cancer (OC) is the main cause of deaths worldwide in female reproductive system malignancies. Growing studies have indicated that eRNAs could regulate cellular activities in various tumors. Yet the potential roles of eRNAs in OC progression have not been elucidated. Thus, comprehensive assays were needed to screen the critical eRNAs and to explore their possible function in OC. We used Kaplan-Meier methods to identify survival-associated eRNAs in OC based on TCGA datasets. The levels of ZFHX4-AS1 were examined using TCGA datasets. Further exploration was carried out based on the following assays: clinical and survival assays, GO terms, and KEGG assays. TIMER was applied to delve into the relationships between ZFHX4-AS1 and tumor immune infiltration. In this research, we observed 71 survival-related eRNAs in OC patients. ZFHX4-AS1 was highly expressed in OC specimens and predicted a poor prognosis of OC patients. In addition, high ZFHX4-AS1 expression was positively related to the advanced stages of OC specimens. Multivariate assays revealed that ZFHX4-AS1 was an independent prognostic factor for overall survival of OC patients. KEGG analysis indicated that ZFHX4-AS1 may play a regulatory effect on TGF-beta signaling, PI3K-Akt signaling, and proteoglycans in cancer. The pan-cancer validation indicated that ZFHX4-AS1 was related to survival in eight tumors, namely, UCEC, STAD, SARC, OV, ACC, KICH, KIRC, and BLCA. The expression of ZFHX4-AS1 was correlated with the levels of B cells, T cell CD8+, neutrophil, macrophage, and myeloid dendritic cells. Simultaneously, ZFHX4-AS1 may be a prognostic biomarker and a distinctly immunotherapy-related eRNA in OC.


Subject(s)
Homeodomain Proteins , Ovarian Neoplasms , RNA, Long Noncoding , Transcription Factors , Biomarkers, Tumor , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Transcription Factors/genetics , Transcription Factors/immunology
18.
J Immunol Res ; 2022: 7783481, 2022.
Article in English | MEDLINE | ID: mdl-35755169

ABSTRACT

To identify the effect of long noncoding RNA (lncRNA) FR215775 in regulating CD4+ T cells on murine models of allergic rhinitis (AR), the expression of lncRNA FR215775 in primary Th2 cells was detected through qRT-PCR. After knocking down the expression of lncRNA FR215775 via Sh-FR215775-Ads, Cell Counting Kit-8, cytometric bead array, and fluorescence-activated cell sorting were performed to determine its functions in vitro. Moreover, lncRNA FR215775-silencing or nonsilencing cells were injected intravenously into AR mice. Then, hematoxylin and eosin, Alcian blue-periodic acid Schiff, and toluidine blue staining were performed, and the levels of IL-2, IL-4, IL-5, IL-6, IL-10, IL-17A, IFN-γ, and TNF in the AR mice were also determined. We found that the expression of lncRNA FR215775 was specifically higher in the murine primary Th2 cells. After the knockdown of lncRNA FR215775, the proliferation of CD4+ T cells was inhibited, and the expressions of IL-4 and IL-5 in the cell culture supernatant were significantly decreased (P < 0.001), along with the percentage of Th2 cells (P < 0.05). The lncRNA FR215775-silencing AR group showed less serious allergic symptoms and a low level of ovalbumin-specific immunoglobulin E (P < 0.01). Meanwhile, the eosinophilia inflammation, goblet cell hyperplasia, and mast cell inflammation in the nasal mucosa all decreased, which indicated attenuated allergic inflammation in the lncRNA FR215775-silencing AR group. In addition, the Th2-related cytokines IL-4 and IL-5 were downregulated in the serum and nasal lavage fluid of this group (P < 0.01). In conclusion, lncRNA FR215775 may play a vital role in the function and differentiation of Th2 cells, which may encourage allergic inflammation. These results may provide significant insights into AR pathogenesis and offer new treatment targets for alleviating AR.


Subject(s)
RNA, Long Noncoding , Rhinitis, Allergic , Th2 Cells , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation/pathology , Interleukin-4/genetics , Interleukin-4/pharmacology , Interleukin-5/genetics , Interleukin-5/immunology , Mice , Mice, Inbred BALB C , Nasal Mucosa/pathology , Ovalbumin , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Rhinitis, Allergic/genetics , Rhinitis, Allergic/immunology , Th2 Cells/immunology , Th2 Cells/pathology
19.
J Immunol ; 208(8): 1978-1988, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35379744

ABSTRACT

The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.


Subject(s)
Antimicrobial Peptides , Drosophila Proteins , Drosophila , RNA, Long Noncoding , Animals , Antimicrobial Peptides/genetics , Antimicrobial Peptides/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Drosophila/genetics , Drosophila/immunology , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
20.
J Clin Lab Anal ; 36(6): e24392, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35441408

ABSTRACT

BACKGROUND: Sepsis is a highly life-threatening disease. Long non-coding RNA urothelial carcinoma associated 1 (lncRNA UCA1) participates in the processes of inflammation and organ injury in several diseases, whereas its role in sepsis patients is still unclear. The aim was to explore the clinical value of lncRNA UCA1 in sepsis patients. METHODS: One hundred seventy-four sepsis patients and 100 age and gender-matched controls were enrolled. LncRNA UCA1 in peripheral blood mononuclear cell samples was examined, and the level of inflammatory cytokines in serum samples was assessed. RESULTS: LncRNA UCA1 was highly expressed in sepsis patients compared with controls. LncRNA UCA1 was positively correlated with tumor necrosis factor-α, interleukin (IL)-6, IL-17, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in sepsis patients, while it was not correlated with these inflammatory cytokines in controls. lncRNA UCA1 upregulation was related to raised APACHE II score and SOFA score in sepsis patients. Moreover, lncRNA UCA1 was increased in sepsis deaths compared with sepsis survivors and was independently correlated with increased 28-day sepsis mortality risk. Further receiver operating characteristic curves presented that lncRNA UCA1 had a good value to predict 28-motality risk, while its combination with other independent factors (including age, history of chronic kidney disease, G+ bacterial infection, Fungus infection, C-reactive protein, and APACHE II score) exerted a great predictive value for 28-day mortality risk. CONCLUSION: LncRNA UCA1 is upregulated and correlates with multiple pro-inflammatory cytokines, terrible disease severity, and poor prognosis in sepsis patients.


Subject(s)
RNA, Long Noncoding , Sepsis , Case-Control Studies , Cytokines/blood , Cytokines/immunology , Humans , Interleukin-6 , Leukocytes, Mononuclear/pathology , Prognosis , RNA, Long Noncoding/blood , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Sepsis/blood , Sepsis/genetics , Sepsis/immunology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL