Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
RNA Biol ; 21(1): 28-39, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39385590

ABSTRACT

The vast majority of oxygen-utilizing eukaryotes need to express their own mitochondrial genome, mtDNA, to survive. In comparison to size of their nuclear genome, mtDNA is minimal, even in the most exceptional examples. Having evolved from bacteria in an endosymbiotic event, it might be expected that the process of mtDNA expression would be relatively simple. The aim of this short review is to illustrate just how wrong this assumption is. The production of functional mitochondrial RNA across species evolved in many directions. Organelles use a dizzying array of RNA processing, modifying, editing, splicing and maturation events that largely require the import of nuclear-encoded proteins from the cytosol. These processes are sometimes driven by the unusual behaviour of the mitochondrial genome from which the RNA is originally transcribed, but in many examples the complex processes that are essential for the production of functional RNA in the organelle, are fascinating and bewildering.


Subject(s)
RNA, Mitochondrial , RNA , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , RNA/metabolism , RNA/genetics , Humans , Animals , Mitochondria/genetics , Mitochondria/metabolism , RNA Processing, Post-Transcriptional , RNA Editing , RNA Splicing , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Genome, Mitochondrial
2.
BMC Plant Biol ; 24(1): 888, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343888

ABSTRACT

BACKGROUND: Cotton is one of the topmost fiber crops throughout the globe. During the last decade, abrupt changes in the climate resulted in drought, heat, and salinity. These stresses have seriously affected cotton production and significant losses all over the textile industry. The GhAGC kinase, a subfamily of AGC group and member of serine/threonine (Ser/Thr) protein kinases group and is highly conserved among eukaryotic organisms. The AGC kinases are compulsory elements of cell development, metabolic processes, and cell death in mammalian systems. The investigation of RNA editing sites within the organelle genomes of multicellular vascular plants, such as Gossypium hirsutum holds significant importance in understanding the regulation of gene expression at the post-transcriptional level. METHODS: In present work, we characterized twenty-eight GhAGC genes in cotton and constructed phylogenetic tree using nine different species from the most primitive to the most recent. RESULTS: In sequence logos analyses, highly conserved amino acid residues were found in G. hirsutum, G. arboretum, G. raimondii and A. thaliana. The occurrence of cis-acting growth and stress-related elements in the promoter regions of GhAGCs highlight the significance of these factors in plant development and abiotic stress tolerance. Ka/Ks levels demonstrated that purifying selection pressure resulting from segmental events was applied to GhAGC with little functional divergence. We focused on identifying RNA editing sites in G. hirsutum organelles, specifically in the chloroplast and mitochondria, across all 28 AGC genes. CONCLUSION: The positive role of GhAGCs was explored by quantifying the expression in the plant tissues under abiotic stress. These findings help in understanding the role of GhAGC genes under abiotic stresses which may further be used in cotton breeding for the development of climate smart varieties in abruptly changing climate.


Subject(s)
Chloroplasts , Gossypium , Phylogeny , RNA Editing , Stress, Physiological , Gossypium/genetics , Gossypium/physiology , RNA Editing/genetics , Stress, Physiological/genetics , Chloroplasts/genetics , Genome, Plant , Mitochondria/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Genome-Wide Association Study , Gene Expression Regulation, Plant , RNA, Mitochondrial/genetics , Genes, Plant
3.
Commun Biol ; 7(1): 1116, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261587

ABSTRACT

Metabolic syndrome is a growing concern in developed societies and due to its polygenic nature, the genetic component is only slowly being elucidated. Common mitochondrial DNA sequence variants have been associated with symptoms of metabolic syndrome and may, therefore, be relevant players in the genetics of metabolic syndrome. We investigate the effect of mitochondrial sequence variation on the metabolic phenotype in conplastic rat strains with identical nuclear but unique mitochondrial genomes, challenged by high-fat diet. We find that the variation in mitochondrial rRNA sequence represents risk factor in the insulin resistance development, which is associated with diacylglycerols accumulation, induced by tissue-specific reduction of the oxidative capacity. These metabolic perturbations stem from the 12S rRNA sequence variation affecting mitochondrial ribosome assembly and translation. Our work demonstrates that physiological variation in mitochondrial rRNA might represent a relevant underlying factor in the progression of metabolic syndrome.


Subject(s)
Haplotypes , Metabolic Syndrome , RNA, Ribosomal , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Animals , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Rats , Male , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Genetic Predisposition to Disease , Insulin Resistance/genetics , Diet, High-Fat/adverse effects , Mitochondria/metabolism , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism
4.
BMC Bioinformatics ; 25(1): 286, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223476

ABSTRACT

BACKGROUND: SmithRNAs (Small MITochondrial Highly-transcribed RNAs) are a novel class of small RNA molecules that are encoded in the mitochondrial genome and regulate the expression of nuclear transcripts. Initial evidence for their existence came from the Manila clam Ruditapes philippinarum, where they have been described and whose activity has been biologically validated through RNA injection experiments. Current evidence on the existence of these RNAs in other species is based only on small RNA sequencing. As a preliminary step to characterize smithRNAs across different metazoan lineages, a dedicated, unified, analytical workflow is needed. RESULTS: We propose a novel workflow specifically designed for smithRNAs. Sequence data (from small RNA sequencing) uniquely mapping to the mitochondrial genome are clustered into putative smithRNAs and prefiltered based on their abundance, presence in replicate libraries and 5' and 3' transcription boundary conservation. The surviving sequences are subsequently compared to the untranslated regions of nuclear transcripts based on seed pairing, overall match and thermodynamic stability to identify possible targets. Ample collateral information and graphics are produced to help characterize these molecules in the species of choice and guide the operator through the analysis. The workflow was tested on the original Manila clam data. Under basic settings, the results of the original study are largely replicated. The effect of additional parameter customization (clustering threshold, stringency, minimum number of replicates, seed matching) was further evaluated. CONCLUSIONS: The study of smithRNAs is still in its infancy and no dedicated analytical workflow is currently available. At its core, the SmithHunter workflow builds over the bioinformatic procedure originally applied to identify candidate smithRNAs in the Manila clam. In fact, this is currently the only evidence for smithRNAs that has been biologically validated and, therefore, the elective starting point for characterizing smithRNAs in other species. The original analysis was readapted using current software implementations and some minor issues were solved. Moreover, the workflow was improved by allowing the customization of different analytical parameters, mostly focusing on stringency and the possibility of accounting for a minimal level of genetic differentiation among samples.


Subject(s)
Bivalvia , Sequence Analysis, RNA , Workflow , Animals , Bivalvia/genetics , Sequence Analysis, RNA/methods , Software , Genome, Mitochondrial/genetics , RNA/genetics , RNA, Mitochondrial/genetics
5.
Nat Commun ; 15(1): 7378, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191740

ABSTRACT

The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence. Moreover, senescent cells are hypersensitized to mt-dsRNA-driven inflammation due to their reduced levels of PNPT1 and ADAR1, two proteins critical for mitigating the accumulation of mt-dsRNA and the inflammatory potency of dsRNA, respectively. We find that mitofusin MFN1, but not MFN2, is important for the activation of the mt-dsRNA/MAVS/SASP axis and, accordingly, genetic or pharmacologic MFN1 inhibition attenuates the SASP. Finally, we report that senescent cells within fibrotic and aged tissues present dsRNA foci, and inhibition of mitochondrial RNA polymerase reduces systemic inflammation associated to senescence. In conclusion, we uncover the mt-dsRNA/MAVS/MFN1 axis as a key driver of the SASP and we identify novel therapeutic strategies for senescence-associated diseases.


Subject(s)
Cellular Senescence , Cytosol , Inflammation , Mitochondria , RNA, Double-Stranded , RNA, Double-Stranded/metabolism , Humans , Cytosol/metabolism , Mitochondria/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Animals , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Senescence-Associated Secretory Phenotype , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Signal Transduction
6.
Nat Commun ; 15(1): 6914, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134548

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.


Subject(s)
Cyclooxygenase 1 , Electron Transport Complex IV , Inflammation , Liver , Oxidative Phosphorylation , Reactive Oxygen Species , Animals , Female , Humans , Male , Mice , DEAD Box Protein 58 , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/genetics , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Liver/metabolism , Liver/pathology , Membrane Proteins , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mutation , Protein Biosynthesis , Reactive Oxygen Species/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism
7.
Life Sci Alliance ; 7(11)2024 Nov.
Article in English | MEDLINE | ID: mdl-39209534

ABSTRACT

Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.


Subject(s)
Cell Cycle , Cell Proliferation , Homeostasis , Mitochondria , RNA, Double-Stranded , RNA, Mitochondrial , Humans , Homeostasis/genetics , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , Mitochondria/metabolism , Mitochondria/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Cell Line, Tumor , Nucleoside-Diphosphate Kinase/metabolism , Nucleoside-Diphosphate Kinase/genetics , Transcription, Genetic
8.
J Transl Med ; 22(1): 780, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175050

ABSTRACT

BACKGROUND: Mitochondrial tRNA (mt-tRNA) variants have been found to cause disease. Post-transcriptional queuosine (Q) modifications of mt-tRNA can promote efficient mitochondrial mRNA translation. Q modifications of mt-tRNAAsn have recently been identified. Here, the therapeutic effectiveness of queuine was investigated in cells from patients with mt-tRNAAsn variants. METHODS: Six patients (from four families) carrying mt-tRNAAsn variants were included in the study. Queuine levels were quantified by mass spectrometry. Clinical, genetic, histochemical, biochemical, and molecular analysis was performed on muscle tissues and lymphoblastoid cell lines (LCLs) from patients to investigate the pathogenicity of the novel m.5708 C > T variant. The use of queuine in mitigating mitochondrial dysfunction resulting from the mt-tRNAAsn variants was evaluated. RESULTS: The variants included the m.5701 delA, m.5708 C > T, m.5709 C > T, and m.5698 G > A variants in mt-tRNAAsn. The pathogenicity of the novel m.5708 C > T variant was confirmed, as demonstrated by a decreased steady-state level of mt-tRNAAsn, mtDNA-encoded protein levels, oxygen consumption rate (OCR), and the respiratory complex activity. Notably, the serum queuine level was significantly reduced in these patients and in vitro queuine supplementation was found to restore the reductions in mitochondrial protein activities, mitochondrial membrane potential, OCR, and increases in reactive oxygen species. CONCLUSIONS: The study not only confirmed the pathogenicity of the m.5708 C > T variant but also explored the therapeutic potential of queuine in individuals with mt-tRNAAsn variants. The recognition of the novel m.5708 C > T variant's pathogenic nature contributes to our comprehension of mitochondrial disorders. Furthermore, the results emphasize queuine supplementation as a promising approach to enhance the stability of mt-tRNAAsn and rescue mitochondrial dysfunction caused by mt-tRNAAsn variants, indicating potential implications for the development of targeted therapies for patients with mt-tRNAAsn variants.


Subject(s)
Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Male , Female , Adult , Middle Aged , DNA, Mitochondrial/genetics , Genetic Variation , Membrane Potential, Mitochondrial/drug effects , Nucleoside Q/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Transfer, Ala/genetics , RNA, Transfer, Ala/metabolism
9.
Nucleic Acids Res ; 52(17): 10575-10594, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38989621

ABSTRACT

tRNA genes exist in multiple copies in the genome of all organisms across the three domains of life. Besides the sequence differences across tRNA copies, extensive post-transcriptional modification adds a further layer to tRNA diversification. Whilst the crucial role of tRNAs as adapter molecules in protein translation is well established, whether all tRNAs are actually expressed, and whether the differences across isodecoders play any regulatory role is only recently being uncovered. Here we built upon recent developments in the use of NGS-based methods for RNA modification detection and developed tRAM-seq, an experimental protocol and in silico analysis pipeline to investigate tRNA expression and modification. Using tRAM-seq, we analysed the full ensemble of nucleo-cytoplasmic and mitochondrial tRNAs during embryonic development of the model vertebrate zebrafish. We show that the repertoire of tRNAs changes during development, with an apparent major switch in tRNA isodecoder expression and modification profile taking place around the start of gastrulation. Taken together, our findings suggest the existence of a general reprogramming of the expressed tRNA pool, possibly gearing the translational machinery for distinct stages of the delicate and crucial process of embryo development.


Subject(s)
Embryonic Development , RNA, Transfer , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , RNA, Transfer/metabolism , RNA, Transfer/genetics , Embryonic Development/genetics , RNA Processing, Post-Transcriptional , Gene Expression Regulation, Developmental , Embryo, Nonmammalian/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism
10.
Science ; 385(6706): eadm9238, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39024447

ABSTRACT

The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC's role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.


Subject(s)
Gene Expression Regulation , Genome, Mitochondrial , Mitochondrial Proteins , Neoplasm Proteins , RNA Folding , RNA, Messenger , RNA, Mitochondrial , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Biosynthesis/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Mitochondrial/chemistry , RNA, Mitochondrial/genetics , HEK293 Cells , High-Throughput Nucleotide Sequencing
11.
Mol Cell ; 84(15): 2935-2948.e7, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39019044

ABSTRACT

Mitochondria are essential regulators of innate immunity. They generate long mitochondrial double-stranded RNAs (mt-dsRNAs) and release them into the cytosol to trigger an immune response under pathological stress conditions. Yet the regulation of these self-immunogenic RNAs remains largely unknown. Here, we employ CRISPR screening on mitochondrial RNA (mtRNA)-binding proteins and identify NOP2/Sun RNA methyltransferase 4 (NSUN4) as a key regulator of mt-dsRNA expression in human cells. We find that NSUN4 induces 5-methylcytosine (m5C) modification on mtRNAs, especially on the termini of light-strand long noncoding RNAs. These m5C-modified RNAs are recognized by complement C1q-binding protein (C1QBP), which recruits polyribonucleotide nucleotidyltransferase to facilitate RNA turnover. Suppression of NSUN4 or C1QBP results in increased mt-dsRNA expression, while C1QBP deficiency also leads to increased cytosolic mt-dsRNAs and subsequent immune activation. Collectively, our study unveils the mechanism underlying the selective degradation of light-strand mtRNAs and establishes a molecular mark for mtRNA decay and cytosolic release.


Subject(s)
5-Methylcytosine , Cytosol , Mitochondria , RNA Stability , RNA, Double-Stranded , RNA, Mitochondrial , Humans , Cytosol/metabolism , 5-Methylcytosine/metabolism , Mitochondria/metabolism , Mitochondria/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , HEK293 Cells , HeLa Cells , Methyltransferases/metabolism , Methyltransferases/genetics , Immunity, Innate , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , CRISPR-Cas Systems
12.
Mol Biol Rep ; 51(1): 876, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083182

ABSTRACT

BACKGROUND: Mitochondria, essential for cellular energy production through oxidative phosphorylation (OXPHOS), integrate mt-DNA and nuclear-encoded genes. This cooperation extends to the mitochondrial translation machinery, involving crucial mtDNA-encoded RNAs: 22 tRNAs (mt-tRNAs) as adapters and two rRNAs (mt-rRNAs) for ribosomal assembly, enabling mitochondrial-encoded mRNA translation. Disruptions in mitochondrial gene expression can strongly impact energy generation and overall animal health. Our study investigates the tissue-specific expression patterns of mt-tRNAs and mt-rRNAs in buffalo. MATERIAL AND METHODS: To investigate the expression patterns of mt-tRNAs and mt-rRNAs in different tissues and gain a better understanding of tissue-specific variations, RNA-seq was performed on various tissues, such as the kidney, heart, brain, and ovary, from post-pubertal female buffaloes. Subsequently, we identified transcripts that were differentially expressed in various tissue comparisons. RESULTS: The findings reveal distinct expression patterns among specific mt-tRNA and mt-rRNA genes across various tissues, with some exhibiting significant upregulation and others demonstrating marked downregulation in specific tissue contexts. These identified variations reflect tissue-specific physiological roles, underscoring their significance in meeting the unique energy demands of each tissue. Notably, the brain exhibits the highest mtDNA copy numbers and an abundance of mitochondrial mRNAs of our earlier findings, potentially linked to the significant upregulation of mt-tRNAs in brain. This suggests a plausible association between mtDNA replication and the regulation of mtDNA gene expression. CONCLUSION: Overall, our study unveils the tissue-specific expression of mitochondrial-encoded non-coding RNAs in buffalo. As we proceed, our further investigations into tissue-specific mitochondrial proteomics and microRNA studies aim to elucidate the intricate mechanisms within mitochondria, contributing to tissue-specific mitochondrial attributes. This research holds promise to elucidate the critical role of mitochondria in animal health and disease.


Subject(s)
Buffaloes , Gene Expression Profiling , Genome, Mitochondrial , Mitochondria , Organ Specificity , RNA, Ribosomal , RNA, Transfer , Transcriptome , Animals , Buffaloes/genetics , Buffaloes/metabolism , RNA, Transfer/genetics , Organ Specificity/genetics , Gene Expression Profiling/methods , Genome, Mitochondrial/genetics , Female , Transcriptome/genetics , Mitochondria/genetics , Mitochondria/metabolism , RNA, Ribosomal/genetics , DNA, Mitochondrial/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Oxidative Phosphorylation , Gene Expression Regulation/genetics
13.
Cell Metab ; 36(7): 1433-1435, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959859

ABSTRACT

Small peptides have previously been reported to be encoded in mitochondrial rRNA and translated by cytosolic ribosomes. In this issue of Cell Metabolism, Hu et al. use mass spectrometry to identify a cytosolically translated protein, encoded instead in mitochondrial mRNA, that is surprisingly targeted back into the mitochondrial matrix.


Subject(s)
Mitochondria , RNA, Messenger , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mitochondria/metabolism , Mitochondria/genetics , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Protein Biosynthesis , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Humans , Cytosol/metabolism , Mass Spectrometry
14.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38955468

ABSTRACT

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Subject(s)
Cytosol , Mitochondria , Prohibitins , RNA, Double-Stranded , RNA, Mitochondrial , Humans , Cytosol/metabolism , Mitochondria/metabolism , RNA, Double-Stranded/metabolism , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Cell Line, Tumor , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA Transport , Exoribonucleases/metabolism , Exoribonucleases/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Mitochondrial Proteins
15.
Nat Commun ; 15(1): 4814, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862469

ABSTRACT

A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.


Subject(s)
CD36 Antigens , Cell-Free Nucleic Acids , DNA, Mitochondrial , Space Flight , Weightlessness , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Humans , Cell-Free Nucleic Acids/blood , Animals , Mice , CD36 Antigens/metabolism , CD36 Antigens/genetics , Mitochondria/metabolism , Mitochondria/genetics , Male , Astronauts , RNA/metabolism , RNA/genetics , Liquid Biopsy/methods , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Female , Middle Aged , Adult
16.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824131

ABSTRACT

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Subject(s)
Mitochondria , RNA, Transfer , Ribonuclease P , tRNA Methyltransferases , Humans , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , Mitochondria/metabolism , Ribonuclease P/metabolism , Ribonuclease P/genetics , Ribonuclease P/chemistry , tRNA Methyltransferases/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/chemistry , RNA Processing, Post-Transcriptional , Cryoelectron Microscopy , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/chemistry , Methylation , Nucleic Acid Conformation , Models, Molecular , RNA Precursors/metabolism , RNA Precursors/genetics
17.
Sci Rep ; 14(1): 12602, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824202

ABSTRACT

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/pathology , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , RNA Processing, Post-Transcriptional , Neoplasm Grading , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers, Tumor/genetics , Gene Expression Profiling , Multiomics
18.
Nature ; 630(8017): 720-727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839949

ABSTRACT

Spermatozoa harbour a complex and environment-sensitive pool of small non-coding RNAs (sncRNAs)1, which influences offspring development and adult phenotypes1-7. Whether spermatozoa in the epididymis are directly susceptible to environmental cues is not fully understood8. Here we used two distinct paradigms of preconception acute high-fat diet to dissect epididymal versus testicular contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) as sperm-borne factors. In humans, mt-tsRNAs in spermatozoa correlate with body mass index, and paternal overweight at conception doubles offspring obesity risk and compromises metabolic health. Sperm sncRNA sequencing of mice mutant for genes involved in mitochondrial function, and metabolic phenotyping of their wild-type offspring, suggest that the upregulation of mt-tsRNAs is downstream of mitochondrial dysfunction. Single-embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tRNAs at fertilization and suggested their involvement in the control of early-embryo transcription. Our study supports the importance of paternal health at conception for offspring metabolism, shows that mt-tRNAs are diet-induced and sperm-borne and demonstrates, in a physiological setting, father-to-offspring transfer of sperm mitochondrial RNAs at fertilization.


Subject(s)
Diet, High-Fat , Epigenesis, Genetic , Mitochondria , RNA, Mitochondrial , Spermatozoa , Animals , Female , Humans , Male , Mice , Body Mass Index , Diet, High-Fat/adverse effects , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Epididymis/cytology , Epigenesis, Genetic/genetics , Fertilization/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Obesity/genetics , Obesity/metabolism , Obesity/etiology , Oocytes/metabolism , Overweight/genetics , Overweight/metabolism , Paternal Inheritance/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Spermatozoa/metabolism , Testis/cytology , Transcription, Genetic
20.
Hum Mol Genet ; 33(R1): R19-R25, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779769

ABSTRACT

Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.


Subject(s)
DNA, Mitochondrial , Mitochondria , RNA Processing, Post-Transcriptional , RNA, Mitochondrial , Humans , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondria/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Transcription, Genetic , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL