Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 785
Filter
1.
J Vector Borne Dis ; 61(2): 211-219, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922655

ABSTRACT

BACKGROUND OBJECTIVES: Peptides isolated from different sources of plants have the advantages of specificity, lower toxicity, and increased therapeutic effects; hence, it is necessary to search for newer antivirals from plant sources for the treatment of dengue viral infections. METHODS: In silico screening of selected plant peptides against the non-structural protein 1, NS3 protease domain (NS2B-NS3Pro) with the cofactor and ATPase/helicase domain (NS3 helicase domain/NS3hel) of dengue virus was performed. The physicochemical characteristics of the peptides were calculated using Protparam tools, and the allergenicity and toxicity profiles were assessed using allergenFP and ToxinPred, respectively. RESULTS: Among the tested compounds, Ginkbilobin demonstrated higher binding energy against three tested nonstructural protein targets. Kalata B8 demonstrated maximum binding energy against NSP-1 and NSP-2, whereas Circulin A acted against the NSP3 protein of dengue virus. INTERPRETATION CONCLUSION: The three compounds identified by in silico screening can be tested in vitro, which could act as potential leads as they are involved in hampering the replication of the dengue virus by interacting with the three prime non-structural proteins.


Subject(s)
Antiviral Agents , Computer Simulation , Dengue Virus , Peptides , Viral Nonstructural Proteins , Viral Nonstructural Proteins/chemistry , Dengue Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Plant Proteins/pharmacology , Plant Proteins/chemistry , Molecular Docking Simulation , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , RNA Helicases/chemistry , RNA Helicases/metabolism , Viral Proteases
2.
Gigascience ; 132024 01 02.
Article in English | MEDLINE | ID: mdl-38869150

ABSTRACT

Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.


Subject(s)
Molecular Dynamics Simulation , SARS-CoV-2 , SARS-CoV-2/enzymology , Zika Virus/enzymology , Workflow , RNA Helicases/chemistry , RNA Helicases/metabolism , Humans , DNA Helicases/chemistry , DNA Helicases/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Binding Sites , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
3.
Nucleic Acids Res ; 52(13): 7809-7824, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38874491

ABSTRACT

RNA helicases-central enzymes in RNA metabolism-often feature intrinsically disordered regions (IDRs) that enable phase separation and complex molecular interactions. In the bacterial pathogen Pseudomonas aeruginosa, the non-redundant RhlE1 and RhlE2 RNA helicases share a conserved REC catalytic core but differ in C-terminal IDRs. Here, we show how the IDR diversity defines RhlE RNA helicase specificity of function. Both IDRs facilitate RNA binding and phase separation, localizing proteins in cytoplasmic clusters. However, RhlE2 IDR is more efficient in enhancing REC core RNA unwinding, exhibits a greater tendency for phase separation, and interacts with the RNase E endonuclease, a crucial player in mRNA degradation. Swapping IDRs results in chimeric proteins that are biochemically active but functionally distinct as compared to their native counterparts. The RECRhlE1-IDRRhlE2 chimera improves cold growth of a rhlE1 mutant, gains interaction with RNase E and affects a subset of both RhlE1 and RhlE2 RNA targets. The RECRhlE2-IDRRhlE1 chimera instead hampers bacterial growth at low temperatures in the absence of RhlE1, with its detrimental effect linked to aberrant RNA droplets. By showing that IDRs modulate both protein core activities and subcellular localization, our study defines the impact of IDR diversity on the functional differentiation of RNA helicases.


Subject(s)
Bacterial Proteins , Endoribonucleases , Intrinsically Disordered Proteins , Pseudomonas aeruginosa , RNA Helicases , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Endoribonucleases/metabolism , Endoribonucleases/chemistry , Endoribonucleases/genetics , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Protein Binding
4.
Nucleic Acids Res ; 52(13): 7447-7464, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38884215

ABSTRACT

The Orthoflavivirus NS3 helicase (NS3h) is crucial in virus replication, representing a potential drug target for pathogenesis. NS3h utilizes nucleotide triphosphate (ATP) for hydrolysis energy to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. Intermediate states along the ATP hydrolysis cycle and conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. Extensive molecular dynamics simulations of West Nile virus NS3h+ssRNA in the apo, ATP, ADP+Pi and ADP bound states were used to model the conformational ensembles along this cycle. Energetic and structural clustering analyses depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). Based on these results, MVIL mutants (D471L, D471N and D471E) were found to have a substantial reduction in ATPase activity and RNA replication compared to the wild-type. Simulations of the mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.


Subject(s)
Adenosine Triphosphate , Molecular Dynamics Simulation , RNA Helicases , Viral Nonstructural Proteins , West Nile virus , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , West Nile virus/enzymology , West Nile virus/genetics , RNA Helicases/metabolism , RNA Helicases/chemistry , RNA Helicases/genetics , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/chemistry , Amino Acid Motifs , Mutation , Nucleotides/metabolism , Nucleotides/chemistry , Hydrolysis , Virus Replication/genetics , Protein Conformation , Viral Proteases , Serine Endopeptidases , Nucleoside-Triphosphatase , DEAD-box RNA Helicases
5.
J Chem Theory Comput ; 20(9): 3359-3378, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38703105

ABSTRACT

Despite the recent advancements by deep learning methods such as AlphaFold2, in silico protein structure prediction remains a challenging problem in biomedical research. With the rapid evolution of quantum computing, it is natural to ask whether quantum computers can offer some meaningful benefits for approaching this problem. Yet, identifying specific problem instances amenable to quantum advantage and estimating the quantum resources required are equally challenging tasks. Here, we share our perspective on how to create a framework for systematically selecting protein structure prediction problems that are amenable for quantum advantage, and estimate quantum resources for such problems on a utility-scale quantum computer. As a proof-of-concept, we validate our problem selection framework by accurately predicting the structure of a catalytic loop of the Zika Virus NS3 Helicase, on quantum hardware.


Subject(s)
Quantum Theory , Zika Virus/chemistry , Protein Conformation , Proteins/chemistry , Viral Nonstructural Proteins/chemistry , RNA Helicases/chemistry , RNA Helicases/metabolism
6.
Nucleic Acids Res ; 52(10): 6036-6048, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38709891

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a conserved co-translational mRNA surveillance and turnover pathway across eukaryotes. NMD has a central role in degrading defective mRNAs and also regulates the stability of a significant portion of the transcriptome. The pathway is organized around UPF1, an RNA helicase that can interact with several NMD-specific factors. In human cells, degradation of the targeted mRNAs begins with a cleavage event that requires the recruitment of the SMG6 endonuclease to UPF1. Previous studies have identified functional links between SMG6 and UPF1, but the underlying molecular mechanisms have remained elusive. Here, we used mass spectrometry, structural biology and biochemical approaches to identify and characterize a conserved short linear motif in SMG6 that interacts with the cysteine/histidine-rich (CH) domain of UPF1. Unexpectedly, we found that the UPF1-SMG6 interaction is precluded when the UPF1 CH domain is engaged with another NMD factor, UPF2. Based on cryo-EM data, we propose that the formation of distinct SMG6-containing and UPF2-containing NMD complexes may be dictated by different conformational states connected to the RNA-binding status of UPF1. Our findings rationalize a key event in metazoan NMD and advance our understanding of mechanisms regulating activity and guiding substrate recognition by the SMG6 endonuclease.


Subject(s)
Endonucleases , Nonsense Mediated mRNA Decay , RNA Helicases , RNA-Binding Proteins , Trans-Activators , Humans , Cryoelectron Microscopy , Endonucleases/metabolism , Endonucleases/genetics , Endoribonucleases , Models, Molecular , Protein Binding , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Trans-Activators/metabolism , Trans-Activators/genetics , Trans-Activators/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , RNA-Binding Motifs
7.
Elife ; 132024 May 15.
Article in English | MEDLINE | ID: mdl-38747717

ABSTRACT

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Double-Stranded , Ribonuclease III , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/chemistry , Ribonuclease III/genetics , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/chemistry
8.
Biophys Chem ; 310: 107247, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663122

ABSTRACT

In Drosophila melanogaster, Dcr-2:R2D2 heterodimer binds to the 21 nucleotide siRNA duplex to form the R2D2/Dcr-2 Initiator (RDI) complex, which is critical for the initiation of siRNA-induced silencing complex (RISC) assembly. During RDI complex formation, R2D2, a protein that contains three dsRNA binding domains (dsRBD), senses two aspects of the siRNA: thermodynamically more stable end (asymmetry sensing) and the 5'-phosphate (5'-P) recognition. Despite several detailed studies to date, the molecular determinants arising from R2D2 for performing these two tasks remain elusive. In this study, we have performed structural, biophysical, and biochemical characterization of R2D2 dsRBDs. We found that the solution NMR-derived structure of R2D2 dsRBD1 yielded a canonical α1-ß1-ß2-ß3-α2 fold, wherein two arginine salt bridges provide additional stability to the R2D2 dsRBD1. Furthermore, we show that R2D2 dsRBD1 interacts with thermodynamically asymmetric siRNA duplex independent of its 5'-phosphorylation state, whereas R2D2 dsRBD2 prefers to interact with 5'-P siRNA duplex. The mutation of key arginine residues, R53 and R101, in concatenated dsRBDs of R2D2 results in a significant loss of siRNA duplex recognition. Our study deciphers the active roles of R2D2 dsRBDs by showing that dsRBD1 initiates siRNA recognition, whereas dsRBD2 senses 5'-phosphate as an authentic mark on functional siRNA.


Subject(s)
Arginine , Drosophila Proteins , Drosophila melanogaster , RNA Interference , RNA, Small Interfering , Animals , Drosophila melanogaster/metabolism , Arginine/chemistry , Arginine/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA Helicases/metabolism , RNA Helicases/chemistry , RNA Helicases/genetics , Protein Domains , RNA-Binding Proteins
9.
Antiviral Res ; 226: 105878, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582134

ABSTRACT

Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.


Subject(s)
Antiviral Agents , Flavivirus , Serine Endopeptidases , Viral Nonstructural Proteins , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Flavivirus/drug effects , Flavivirus/enzymology , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , RNA Helicases/metabolism , RNA Helicases/chemistry , RNA Helicases/genetics , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Viral Proteases , Nucleoside-Triphosphatase , DEAD-box RNA Helicases
10.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38517341

ABSTRACT

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Subject(s)
Ribonucleoproteins, Small Nuclear , Spliceosomes , Humans , Adenosine Triphosphatases/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , RNA/metabolism , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Ribonucleoproteins, Small Nuclear/metabolism
11.
ChemMedChem ; 19(10): e202400095, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38456332

ABSTRACT

We have assembled a computational pipeline based on virtual screening, docking techniques, and nonequilibrium molecular dynamics simulations, with the goal of identifying possible inhibitors of the SARS-CoV-2 NSP13 helicase, catalyzing by ATP hydrolysis the unwinding of double or single-stranded RNA in the viral replication process inside the host cell. The druggable sites for broad-spectrum inhibitors are represented by the RNA binding sites at the 5' entrance and 3' exit of the central channel, a structural motif that is highly conserved across coronaviruses. Potential binders were first generated using structure-based ligand techniques. Their potency was estimated by using four popular docking scoring functions. Common docking hits for NSP13 were finally tested using advanced nonequilibrium alchemical techniques for binding free energy calculations on a high-performing parallel cluster. Four potential NSP13 inhibitors with potency from submicrimolar to nanomolar were finally identified.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , SARS-CoV-2 , Humans , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Binding Sites , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Ligands , Methyltransferases , Molecular Dynamics Simulation , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA Helicases/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
12.
Biochem Biophys Res Commun ; 703: 149682, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38377942

ABSTRACT

UAP56 and URH49 are closely related RNA helicases that function in selective mRNA processing and export pathways to fine-tune gene expression through distinct complex formations. The complex formation of UAP56 and URH49 is believed to play a crucial role in regulating target mRNAs. However, the mechanisms underlying this complex formation have not been fully elucidated. Here we identified the regions essential for the complex formation of both helicases. The terminal regions of UAP56 and the C-terminal region of URH49 were indispensable for their respective complex formation. Further analysis revealed that a specific amino acid at the C-terminus of UAP56 is critical for its complex formation. Alanine substitution of this amino acid impairs its complex formation and subsequently affected its mRNA processing and export activity. Our study provides a deeper understanding of the basis for the complex formation between UAP56 and URH49.


Subject(s)
DEAD-box RNA Helicases , RNA Helicases , RNA Processing, Post-Transcriptional , Amino Acids/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , RNA Helicases/chemistry , RNA Helicases/metabolism
13.
J Phys Chem B ; 128(2): 492-503, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38175211

ABSTRACT

In response to the emergence of COVID-19, caused by SARS-CoV-2, there has been a growing interest in understanding the functional mechanisms of the viral proteins to aid in the development of new therapeutics. Nonstructural protein 13 (nsp13) helicase is an attractive target for antivirals because it is essential for viral replication and has a low mutation rate, yet the structural mechanisms by which this enzyme binds and hydrolyzes ATP to cause unidirectional RNA translocation remain elusive. Using Gaussian accelerated molecular dynamics (GaMD), we generated comprehensive conformational ensembles of all substrate states along the ATP-dependent cycle. Shape-GMM clustering of the protein yields four protein conformations that describe an opening and closing of both the ATP pocket and the RNA cleft that is achieved through a combination of conformational selection and induction along the ATP hydrolysis cycle. Furthermore, three protein-RNA conformations are observed that implicate motifs Ia, IV, and V as playing a pivotal role in an ATP-dependent inchworm translocation mechanism. Finally, based on a linear discriminant analysis of protein conformations, we identify L405 as a pivotal residue for the opening and closing mechanism and propose a L405D mutation as a way to disrupt translocation. This research enhances our understanding of nsp13's role in viral replication and could contribute to the development of antiviral strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Hydrolysis , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , Viral Nonstructural Proteins/chemistry , Adenosine Triphosphate/metabolism , RNA
14.
Biochemistry ; 63(1): 159-170, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38085597

ABSTRACT

Mtr4 is an essential RNA helicase involved in nuclear RNA processing and degradation and is a member of the Ski2-like helicase family. Ski2-like helicases share a common core architecture that includes two RecA-like domains, a winged helix, and a helical bundle (HB) domain. In Mtr4, a short C-terminal tail immediately follows the HB domain and is positioned at the interface of the RecA-like domains. The tail ends with a SLYΦ sequence motif that is highly conserved in a subset of Ski2-like helicases. Here, we show that this sequence is critical for Mtr4 function. Mutations in the C-terminus result in decreased RNA unwinding activity. Mtr4 is a key activator of the RNA exosome complex, and mutations in the SLYΦ motif produce a slow growth phenotype when combined with a partial exosome defect in S. cerevisiae, suggesting an important role of the C-terminus of Mtr4 and the RNA exosome. We further demonstrate that C-terminal mutations impair RNA degradation activity by the major RNA exosome nuclease Rrp44 in vitro. These data demonstrate a role for the Mtr4 C-terminus in regulating helicase activity and coordinating Mtr4-exosome interactions.


Subject(s)
Exosomes , Saccharomyces cerevisiae Proteins , Exosomes/genetics , Exosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , DEAD-box RNA Helicases/chemistry , RNA Helicases/chemistry , DNA Helicases/metabolism
15.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37832548

ABSTRACT

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , RNA , Humans , RNA/genetics , Cryoelectron Microscopy , RNA Helicases/genetics , RNA Helicases/chemistry , Multifunctional Enzymes/genetics , DNA/genetics , Homeostasis , DNA Helicases/genetics
16.
Nucleic Acids Res ; 51(17): 9279-9293, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37602378

ABSTRACT

Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements.


Subject(s)
RNA Helicases , Humans , Codon, Initiator , Exoribonucleases/metabolism , Interferons/genetics , RNA/metabolism , RNA Helicases/chemistry , RNA Helicases/genetics
17.
Biol Chem ; 404(8-9): 781-789, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37233600

ABSTRACT

During their biogenesis, the ribosomal subunits undergo numerous structural and compositional changes to achieve their final architecture. RNA helicases are a key driving force of such remodelling events but deciphering their particular functions has long been challenging due to lack of knowledge of their molecular functions and RNA substrates. Advances in the biochemical characterisation of RNA helicase activities together with new insights into RNA helicase binding sites on pre-ribosomes and structural snapshots of pre-ribosomal complexes containing RNA helicases now open the door to a deeper understanding of precisely how different RNA helicases contribute to ribosomal subunit maturation.


Subject(s)
RNA Helicases , Saccharomyces cerevisiae Proteins , RNA Helicases/chemistry , Ribosomes/metabolism , Ribosome Subunits/metabolism , RNA/metabolism , Binding Sites , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae Proteins/metabolism
18.
J Am Chem Soc ; 145(20): 11056-11066, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37159397

ABSTRACT

Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.


Subject(s)
Cytoplasmic Granules , DNA Helicases , DNA Helicases/chemistry , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Cytoplasmic Granules/metabolism , RNA Recognition Motif Proteins/metabolism , Proteomics , RNA Helicases/chemistry
19.
J Chem Inf Model ; 63(11): 3474-3485, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37222704

ABSTRACT

UPF1 is a core protein in the nonsense mRNA degradation (NMD) surveillance pathway that degrades aberrant mRNA. UPF1 has both ATPase and RNA helicase activities, but it exhibits mutually exclusive binding of ATP and RNA. This suggests intricate allosteric coupling between ATP and RNA binding that remains unresolved. In this study, we used molecular dynamics simulations and dynamic network analyses to probe the dynamics and free energy landscapes covering UPF1 crystal structures resolved in the Apo state, the ATP bound state, and the ATP-RNA bound (catalytic transition) state. Free energy calculations show that in the presence of ATP and RNA, the transition from the Apo state to the ATP bound state is an uphill process but becomes a downhill process when transitioning to the catalytic transition state. Allostery potential analyses reveal that the Apo and catalytic transition states are mutually allosterically activated toward each other, reflecting the intrinsic ATPase function of UPF1. The Apo state is also allosterically activated toward the ATP bound state. However, binding ATP alone leads to an allosterically trapped state that is difficult to revert to either the Apo or the catalytic transition state. The high allostery potential of Apo UPF1 toward different states results in a "first come, first served" mechanism that requires the synergistic binding of ATP and RNA to drive the ATPase cycle. Our results reconcile UPF1's ATPase and RNA helicase activities within an allostery framework and may apply to other SF1 helicases, as we demonstrate that UPF1's allostery signaling pathways prefer the RecA1 domain over the equally fold-conserved RecA2 domain, and this preference coincides with higher sequence conservation in the RecA1 domain across typical human SF1 helicases.


Subject(s)
Adenosine Triphosphatases , RNA Helicases , Humans , RNA Helicases/chemistry , RNA/metabolism , RNA, Messenger/metabolism , Adenosine Triphosphate/metabolism , Trans-Activators/chemistry , Trans-Activators/genetics , Trans-Activators/metabolism
20.
Science ; 379(6637): 1149-1156, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36927025

ABSTRACT

Therapeutic manipulation of the gut microbiota holds great potential for human health. The mechanisms bacteria use to colonize the gut therefore present valuable targets for clinical intervention. We now report that bacteria use phase separation to enhance fitness in the mammalian gut. We establish that the intrinsically disordered region (IDR) of the broadly and highly conserved transcription termination factor Rho is necessary and sufficient for phase separation in vivo and in vitro in the human commensal Bacteroides thetaiotaomicron. Phase separation increases transcription termination by Rho in an IDR-dependent manner. Moreover, the IDR is critical for gene regulation in the gut. Our findings expose phase separation as vital for host-commensal bacteria interactions and relevant for novel clinical applications.


Subject(s)
Bacterial Proteins , Bacteroides thetaiotaomicron , Gastrointestinal Microbiome , Genetic Fitness , Intrinsically Disordered Proteins , RNA Helicases , Rho Factor , Animals , Humans , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/physiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/physiology , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/physiology , Rho Factor/chemistry , Rho Factor/genetics , Rho Factor/physiology , Transcription Termination, Genetic , Protein Domains , Mice , Germ-Free Life , Mice, Inbred C57BL , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL