Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 868
Filter
1.
Drug Dev Res ; 85(7): e70003, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39404003

ABSTRACT

Cervical cancer is a common malignant tumor in women with high morbidity and mortality. Chemotherapy drugs such as cisplatin (DDP) are easy to cause chemotherapy resistance and affect the therapeutic effect. Hence, it is critical to design new therapies that can reverse chemotherapy resistance and increase sensitivity to chemotherapy drugs. This study investigated the function of RecQ protein-like 4 (RECQL4) in DDP-resistant cervical cancer cells and its regulatory mechanism. By constructing DDP-resistant Hela and CaSki cell lines, it was found that RECQL4 expression was elevated. RECQL4 knockdown is able to promote apoptosis, DNA damage, and increase the DDP sensitivity in cervical cancer cells. In vivo experiments have demonstrated that knockdown of RECQL4 suppresses tumor growth and promotes tumor apoptosis. Next, we investigated the potential regulatory relationship of RECQL4 to Annexin A2 (ANXA2). The results demonstrated that RECQL4 binds to ANXA2. Knockdown of RECQL4 downregulates the ANXA2 expression via promoting ubiquitination. Furthermore, we also found that ANXA2 overexpression partially abolished the role of RECQL4 knockdown in promoting apoptosis and DNA damage of cervical cancer cells, suggesting that RECQL4 plays a role in DDP sensitivity of cervical cancer cells by mediating ANXA2. In conclusion, the present study suggests that knocking down RECQL4 reduces DDP sensitivity in cervical cancer cells by modulating ANXA2. Targeting RECQL4 therapy may be a new strategy to improve chemosensitivity of cervical cancer cells.


Subject(s)
Annexin A2 , Antineoplastic Agents , Apoptosis , Cisplatin , Drug Resistance, Neoplasm , RecQ Helicases , Uterine Cervical Neoplasms , Humans , Cisplatin/pharmacology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Female , Antineoplastic Agents/pharmacology , RecQ Helicases/metabolism , RecQ Helicases/genetics , Annexin A2/metabolism , Annexin A2/genetics , Apoptosis/drug effects , Cell Line, Tumor , Animals , HeLa Cells , Mice, Nude , DNA Damage , Mice , Mice, Inbred BALB C , Gene Knockdown Techniques
2.
Nature ; 634(8033): 482-491, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39261729

ABSTRACT

The licensing step of DNA double-strand break repair by homologous recombination entails resection of DNA ends to generate a single-stranded DNA template for assembly of the repair machinery consisting of the RAD51 recombinase and ancillary factors1. DNA end resection is mechanistically intricate and reliant on the tumour suppressor complex BRCA1-BARD1 (ref. 2). Specifically, three distinct nuclease entities-the 5'-3' exonuclease EXO1 and heterodimeric complexes of the DNA endonuclease DNA2, with either the BLM or WRN helicase-act in synergy to execute the end resection process3. A major question concerns whether BRCA1-BARD1 directly regulates end resection. Here, using highly purified protein factors, we provide evidence that BRCA1-BARD1 physically interacts with EXO1, BLM and WRN. Importantly, with reconstituted biochemical systems and a single-molecule analytical tool, we show that BRCA1-BARD1 upregulates the activity of all three resection pathways. We also demonstrate that BRCA1 and BARD1 harbour stand-alone modules that contribute to the overall functionality of BRCA1-BARD1. Moreover, analysis of a BARD1 mutant impaired in DNA binding shows the importance of this BARD1 attribute in end resection, both in vitro and in cells. Thus, BRCA1-BARD1 enhances the efficiency of all three long-range DNA end resection pathways during homologous recombination in human cells.


Subject(s)
BRCA1 Protein , DNA Breaks, Double-Stranded , Exodeoxyribonucleases , Homologous Recombination , RecQ Helicases , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA/metabolism , DNA/genetics , DNA Helicases , DNA Repair , DNA Repair Enzymes , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Protein Binding , Rad51 Recombinase/metabolism , Recombinational DNA Repair , RecQ Helicases/metabolism , RecQ Helicases/genetics , Single Molecule Imaging , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Up-Regulation , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/genetics
3.
Nat Commun ; 15(1): 8102, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284827

ABSTRACT

Mammalian DNA replication relies on various DNA helicase and nuclease activities to ensure accurate genetic duplication, but how different helicase and nuclease activities are properly directed remains unclear. Here, we identify the ubiquitin-specific protease, USP50, as a chromatin-associated protein required to promote ongoing replication, fork restart, telomere maintenance, cellular survival following hydroxyurea or pyridostatin treatment, and suppression of DNA breaks near GC-rich sequences. We find that USP50 supports proper WRN-FEN1 localisation at or near stalled replication forks. Nascent DNA in cells lacking USP50 shows increased association of the DNA2 nuclease and RECQL4 and RECQL5 helicases and replication defects in cells lacking USP50, or FEN1 are driven by these proteins. Consequently, suppression of DNA2 or RECQL4/5 improves USP50-depleted cell resistance to agents inducing replicative stress and restores telomere stability. These data define an unexpected regulatory protein that promotes the balance of helicase and nuclease use at ongoing and stalled replication forks.


Subject(s)
DNA Helicases , DNA Replication , RecQ Helicases , Werner Syndrome Helicase , Humans , Chromatin/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , DNA Replication/drug effects , Flap Endonucleases/metabolism , Flap Endonucleases/genetics , HEK293 Cells , HeLa Cells , RecQ Helicases/metabolism , RecQ Helicases/genetics , Telomere/metabolism , Telomere/genetics , Telomere Homeostasis/drug effects , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/genetics
4.
Sci Rep ; 14(1): 20476, 2024 09 03.
Article in English | MEDLINE | ID: mdl-39227621

ABSTRACT

Single-strand DNA-binding proteins SSB/RPA are ubiquitous and essential proteins that bind ssDNA in bacteria/eukaryotes and coordinate DNA metabolic processes such as replication, repair, and recombination. SSB protects ssDNA from degradation by nucleases, while also facilitating/regulating the activity of multiple partner proteins involved in DNA processes. Using Spi- assay, which detects aberrantly excised λ prophage from the E. coli chromosome as a measure of illegitimate recombination (IR) occurrence, we have shown that SSB inhibits IR in several DSB resection pathways. The conditional ssb-1 mutation produced a higher IR increase at the nonpermissive temperature than the recQ inactivation. A double ssb-1 recQ mutant had an even higher level of IR, while showing reduced homologous recombination (HR). Remarkably, the ssb gene overexpression complemented recQ deficiency in suppressing IR, indicating that the SSB function is epistatic to RecQ. Overproduced truncated SSBΔC8 protein, which binds to ssDNA, but does not interact with partner proteins, only partially complemented recQ and ssb-1 mutations, while causing an IR increase in otherwise wild-type bacteria, suggesting that ssDNA binding of SSB is required but not sufficient for effective IR inhibition, which rather entails interaction with RecQ and likely some other protein(s). Our results depict SSB as the main genome caretaker in E. coli, which facilitates HR while inhibiting IR. In enabling high-fidelity DSB repair under physiological conditions SSB is assisted by RecQ helicase, whose activity it controls. Conversely, an excess of SSB renders RecQ redundant for IR suppression.


Subject(s)
DNA, Single-Stranded , DNA-Binding Proteins , Escherichia coli Proteins , Escherichia coli , RecQ Helicases , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , RecQ Helicases/metabolism , RecQ Helicases/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Recombination, Genetic , Mutation , Homologous Recombination
5.
Nat Commun ; 15(1): 7797, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242676

ABSTRACT

Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.


Subject(s)
DNA, Ribosomal , Genomic Instability , Rad51 Recombinase , RecQ Helicases , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Humans , RecQ Helicases/metabolism , RecQ Helicases/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Homologous Recombination , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA Repair
6.
Nucleic Acids Res ; 52(16): 9695-9709, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39082275

ABSTRACT

Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.


Subject(s)
Rad51 Recombinase , RecQ Helicases , Recombinational DNA Repair , Shelterin Complex , Telomere-Binding Proteins , Telomere , Telomeric Repeat Binding Protein 2 , Telomeric Repeat Binding Protein 2/metabolism , Telomeric Repeat Binding Protein 2/genetics , Rad51 Recombinase/metabolism , RecQ Helicases/metabolism , RecQ Helicases/genetics , Telomere/metabolism , Shelterin Complex/metabolism , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Humans , Protein Binding , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
7.
BMC Geriatr ; 24(1): 603, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009979

ABSTRACT

BACKGROUND: High-grade endometrial stromal sarcoma (HG-ESS) is a rare malignant tumor with poor prognosis. To overcome the limitations of current treatment for advanced patients, the intervention of targeted drug therapy is urgently needed. CASE PRESENTATION: A 74-year-old married woman who presented with abdominal distension and lower abdominal pain was admitted to Hebei General Hospital. After surgery, immunohistochemical staining revealed a malignant tumor which was consistent with HG-ESS. Tumor recurrence occurred 2 months after surgery. Then the patient underwent chemotherapy with two courses but responded poorly. Subsequently we observed ATM, BLM, and CDH1 co-mutations by Next Generation Sequencing (NGS). Then the patient received pamiparib, which resulted in a 10-month progression-free survival (PFS) and is now stable with the administration of sintilimab in combination with pamiparib and anlotinib. CONCLUSIONS: Due to the successful use of poly ADP-ribose polymerase inhibitor (PARPi) on HG-ESS, we suggest that the selection of effective targeted drugs combined with anti- programmed death-1 (PD-1) drug therapy based on genetic testing may become a new option for the treatment of homologous repair deficient (HR-deficient) HG-ESS.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Cadherins , Endometrial Neoplasms , RecQ Helicases , Sarcoma, Endometrial Stromal , Humans , Female , Aged , Endometrial Neoplasms/genetics , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/pathology , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/drug therapy , Sarcoma, Endometrial Stromal/diagnosis , Ataxia Telangiectasia Mutated Proteins/genetics , RecQ Helicases/genetics , Cadherins/genetics , Antigens, CD/genetics , Mutation
8.
Commun Biol ; 7(1): 829, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977904

ABSTRACT

Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.


Subject(s)
Arabidopsis , Chromosome Mapping , Quantitative Trait Loci , Recombination, Genetic , Arabidopsis/genetics , Chromosome Mapping/methods , Arabidopsis Proteins/genetics , Phenotype , RecQ Helicases/genetics , Plant Breeding/methods , Chromosomes, Plant/genetics , Crossing Over, Genetic
9.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994931

ABSTRACT

James German's work to establish the natural history and cancer risk associated with Bloom syndrome (BS) has had a strong influence on the generation of scientists and clinicians working to understand other RECQ deficiencies and heritable cancer predisposition syndromes. I summarize work by us and others below, inspired by James German's precedents with BS, to understand and compare BS with the other heritable RECQ deficiency syndromes with a focus on Werner syndrome (WS). What we know, unanswered questions and new opportunities are discussed, as are potential ways to treat or modify WS-associated disease mechanisms and pathways.


Subject(s)
Bloom Syndrome , RecQ Helicases , Werner Syndrome , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , RecQ Helicases/deficiency , Bloom Syndrome/genetics , Werner Syndrome/genetics , History, 20th Century
10.
EMBO J ; 43(14): 3027-3043, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839993

ABSTRACT

The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.


Subject(s)
Homologous Recombination , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/genetics , RecQ Helicases/metabolism , RecQ Helicases/genetics , Signal Transduction , Phosphorylation , Chromosome Aberrations , Gene Rearrangement
11.
Biochem Biophys Res Commun ; 723: 150214, 2024 09 03.
Article in English | MEDLINE | ID: mdl-38850810

ABSTRACT

Generation of O6-methylguanine (O6-meG) by DNA-alkylating agents such as N-methyl N-nitrosourea (MNU) activates the multiprotein mismatch repair (MMR) complex and the checkpoint response involving ATR/CHK1 and ATM/CHK2 kinases, which may in turn trigger cell cycle arrest and apoptosis. The Bloom syndrome DNA helicase BLM interacts with the MMR complex, suggesting functional relevance to repair and checkpoint responses. We observed a strong interaction of BLM with MMR proteins in HeLa cells upon treatment with MNU as evidenced by co-immunoprecipitation as well as colocalization in the nucleus as revealed by dual immunofluorescence staining. Knockout of BLM sensitized HeLa MR cells to MNU-induced cell cycle disruption and enhanced expression of the apoptosis markers cleaved caspase-9 and PARP1. MNU-treated BLM-deficient cells also exhibited a greater number of 53BP1 foci and greater phosphorylation levels of H2AX at S139 and RPA32 at S8, indicating the accumulation of DNA double-strand breaks. These findings suggest that BLM prevents double-strand DNA breaks during the MMR-dependent DNA damage response and mitigates O6-meG-induced apoptosis.


Subject(s)
Apoptosis , DNA Mismatch Repair , RecQ Helicases , Humans , RecQ Helicases/metabolism , RecQ Helicases/genetics , HeLa Cells , DNA Breaks, Double-Stranded , Methylnitrosourea/toxicity , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Bloom Syndrome/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics
12.
DNA Repair (Amst) ; 140: 103709, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861762

ABSTRACT

To identify new molecular components of the Brh2-governed homologous recombination (HR)-network in the highly radiation-resistant fungus Ustilago maydis, we undertook a genetic screen for suppressors of blm-KR hydroxyurea (HU)-sensitivity. Twenty DNA-damage sensitive mutants were obtained, three of which showing slow-growth phenotypes. Focusing on the "normally" growing candidates we identified five mutations, two in previously well-defined genes (Rec2 and Rad51) and the remaining three in completely uncharacterized genes (named Rec3, Bls9 and Zdr1). A common feature among these novel factors is their prominent role in DNA repair. Rec3 contains the P-loop NTPase domain which is most similar to that found in U. maydis Rec2 protein, and like Rec2, Rec3 plays critical roles in induced allelic recombination, is crucial for completion of meiosis, and with regard to DNA repair Δrec3 and Δrec2 are epistatic to one another. Importantly, overexpression of Brh2 in Δrec3 can effectively restore DNA-damage resistance, indicating a close functional connection between Brh2 and Rec3. The Bls9 does not seem to have any convincing domains that would give a clue as to its function. Nevertheless, we present evidence that, besides being involved in DNA-repair, Bls9 is also necessary for HR between chromosome homologs. Moreover, Δbls9 showed epistasis with Δbrh2 with respect to killing by DNA-damaging agents. Both, Rec3 and Bls9, play an important role in protecting the genome from mutations. Zdr1 is Cys2-His2 zinc finger (C2H2-ZF) protein, whose loss does not cause a detectable change in HR. Also, the functions of both Bls9 and Zdr1 genes are dispensable in meiosis and sporulation. However, Zdr1 appears to have overlapping activities with Blm and Mus81 in protecting the organism from methyl methanesulfonate- and diepoxybutane-induced DNA-damage. Finally, while deletion of Rec3 and Zdr1 can suppress HU-sensitivity of blm-KR, Δgen1, and Δmus81 mutants, interestingly loss of Bls9 does not rescue HU-sensitivity of Δgen1.


Subject(s)
DNA Repair , Fungal Proteins , RecQ Helicases , Fungal Proteins/metabolism , Fungal Proteins/genetics , RecQ Helicases/metabolism , RecQ Helicases/genetics , Hydroxyurea/pharmacology , DNA Damage , Mutation , Homologous Recombination , Meiosis , Basidiomycota
13.
Nucleic Acids Res ; 52(13): 7401-7413, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38869071

ABSTRACT

Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.


Subject(s)
G-Quadruplexes , Homologous Recombination , Rad51 Recombinase , Sister Chromatid Exchange , YY1 Transcription Factor , Humans , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , Homologous Recombination/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Sister Chromatid Exchange/genetics , RecQ Helicases/metabolism , RecQ Helicases/genetics , Chromatin/metabolism , Chromatin/genetics , DNA Breaks, Double-Stranded , Genomic Instability/genetics
14.
Mol Biol Rep ; 51(1): 754, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874681

ABSTRACT

BACKGROUND: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS: Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION: These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.


Subject(s)
Leukocytes, Mononuclear , RecQ Helicases , Adult , Female , Humans , Male , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair/genetics , Leukocytes, Mononuclear/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Telomere/metabolism , Telomere/genetics , Telomere Homeostasis/genetics
15.
Nat Commun ; 15(1): 5044, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890315

ABSTRACT

Homology-dependent targeted DNA integration, generally referred to as gene targeting, provides a powerful tool for precise genome modification; however, its fundamental mechanisms remain poorly understood in human cells. Here we reveal a noncanonical gene targeting mechanism that does not rely on the homologous recombination (HR) protein Rad51. This mechanism is suppressed by Rad52 inhibition, suggesting the involvement of single-strand annealing (SSA). The SSA-mediated gene targeting becomes prominent when DSB repair by HR or end-joining pathways is defective and does not require isogenic DNA, permitting 5% sequence divergence. Intriguingly, loss of Msh2, loss of BLM, and induction of a target-site DNA break all significantly and synergistically enhance SSA-mediated targeted integration. Most notably, SSA-mediated integration is cell cycle-independent, occurring in the G1 phase as well. Our findings provide unequivocal evidence for Rad51-independent targeted integration and unveil multiple mechanisms to regulate SSA-mediated targeted as well as random integration.


Subject(s)
Cell Cycle , Gene Targeting , MutS Homolog 2 Protein , Rad51 Recombinase , Rad52 DNA Repair and Recombination Protein , Humans , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Cell Cycle/genetics , MutS Homolog 2 Protein/metabolism , MutS Homolog 2 Protein/genetics , RecQ Helicases/metabolism , RecQ Helicases/genetics , Homologous Recombination , DNA Breaks, Double-Stranded , DNA Repair , DNA End-Joining Repair , G1 Phase/genetics
16.
Mol Genet Genomics ; 299(1): 59, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796829

ABSTRACT

RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.


Subject(s)
Genomic Instability , RecQ Helicases , Saccharomyces cerevisiae , Transcription, Genetic , Saccharomyces cerevisiae/genetics , Genomic Instability/genetics , RecQ Helicases/genetics , RecQ Helicases/metabolism , Humans , Transcription, Genetic/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
17.
Genetics ; 227(2)2024 06 05.
Article in English | MEDLINE | ID: mdl-38577877

ABSTRACT

Complex chromosomal rearrangements (CCRs) are often observed in clinical samples from patients with cancer and congenital diseases but are difficult to induce experimentally. Here, we report the first success in establishing animal models for CCRs. Mutation in Recql5, a crucial member of the DNA helicase RecQ family involved in DNA replication, transcription, and repair, enabled CRISPR/Cas9-mediated CCRs, establishing a mouse model containing triple fusion genes and megabase-sized inversions. Some of these structural features of individual chromosomal rearrangements use template switching and microhomology-mediated break-induced replication mechanisms and are reminiscent of the newly described phenomenon "chromoanasynthesis." These data show that Recql5 mutant mice could be a powerful tool to analyze the pathogenesis of CCRs (particularly chromoanasynthesis) whose underlying mechanisms are poorly understood. The Recql5 mutants generated in this study are to be deposited at key animal research facilities, thereby making them accessible for future research on CCRs.


Subject(s)
CRISPR-Cas Systems , Chromosome Aberrations , RecQ Helicases , Zygote , Animals , Mice , Mutation , RecQ Helicases/genetics , RecQ Helicases/metabolism , Zygote/metabolism , Chromosomes/genetics , Chromosomes/metabolism
18.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38593805

ABSTRACT

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Subject(s)
DNA Damage , DNA Replication , RecQ Helicases , Telomere Homeostasis , Telomere , RecQ Helicases/metabolism , RecQ Helicases/genetics , Humans , Telomere/metabolism , Telomere/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Bloom Syndrome/enzymology , Bloom Syndrome/pathology , Cell Line, Tumor
19.
Sci Rep ; 14(1): 7708, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565932

ABSTRACT

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Subject(s)
RecQ Helicases , Replication Origin , Animals , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA Replication , Xenopus laevis/metabolism , DNA/metabolism
20.
Int J Hematol ; 119(5): 603-607, 2024 May.
Article in English | MEDLINE | ID: mdl-38489090

ABSTRACT

Bloom syndrome (BS) is an autosomal recessive genetic disorder caused by variants in the BLM gene. BS is characterized by distinct facial features, elongated limbs, and various dermatological complications including photosensitivity, poikiloderma, and telangiectatic erythema. The BLM gene encodes a RecQ helicase critical for genome maintenance, stability, and repair, and a deficiency in functional BLM protein leads to genomic instability and high predisposition to various types of cancers, particularly hematological and gastrointestinal malignancies. Here, we report a case of BS with a previously unreported variant in the BLM gene. The patient was a 34-year-old woman who presented with short stature, prominent facial features, and a history of malignancies, including lymphoma, breast cancer, and myelodysplastic syndromes (MDS). She was initially treated with azacitidine for MDS and showed transient improvement, but eventually died at age of 35 due to progression of MDS. Genetic screening revealed compound heterozygous variants in the BLM gene, with a recurrent variant previously reported in BS in one allele and a previously unreported variant in the other allele. Based on her characteristic clinical features and the presence of heterozygous variants in the BLM gene, she was diagnosed with BS harboring compound heterozygous BLM variants.


Subject(s)
Bloom Syndrome , Myelodysplastic Syndromes , RecQ Helicases , Humans , Bloom Syndrome/genetics , Female , RecQ Helicases/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/drug therapy , Adult , Azacitidine/adverse effects , Azacitidine/therapeutic use , Fatal Outcome , Mutation , Heterozygote
SELECTION OF CITATIONS
SEARCH DETAIL