Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
J Headache Pain ; 25(1): 126, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085771

ABSTRACT

BACKGROUND: Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide pivotal in migraine pathophysiology and is considered a promising new migraine drug target. Although intravenous PACAP triggers migraine attacks and a recent phase II trial with a PACAP-inhibiting antibody showed efficacy in migraine prevention, targeting the PACAP receptor PAC1 alone has been unsuccessful. The present study investigated the role of three PACAP receptors (PAC1, VPAC1 and VPAC2) in inducing migraine-relevant hypersensitivity in mice. METHODS: Hindpaw hypersensitivity was induced by repeated PACAP38 injections. Tactile sensitivity responses were quantified using von Frey filaments in three knockout (KO) mouse strains, each lacking one of the PACAP-receptors (Ntotal = 160). Additionally, ex vivo wire myography was used to assess vasoactivity of the carotid artery, and gene expression of PACAP receptors was examined by qPCR. RESULTS: PACAP38 induced hypersensitivity in WT controls (p < 0.01) that was diminished in VPAC1 and VPAC2 KO mice (p < 0.05). In contrast, PAC1 KO mice showed similar responses to WT controls (p > 0.05). Myograph experiments supported these findings showing diminished vasoactivity in VPAC1 and VPAC2 KO mice. We found no upregulation of the non-modified PACAP receptors in KO mice. CONCLUSIONS: This study assessed all three PACAP receptors in a migraine mouse model and suggests a significant role of VPAC receptors in migraine pathophysiology. The lack of hypersensitivity reduction in PAC1 KO mice suggests the involvement of other PACAP receptors or compensatory mechanisms. The results indicate that targeting only individual PACAP receptors may not be an effective migraine treatment.


Subject(s)
Disease Models, Animal , Mice, Knockout , Migraine Disorders , Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Vasoactive Intestinal Peptide, Type II , Receptors, Vasoactive Intestinal Polypeptide, Type I , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Migraine Disorders/chemically induced , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Mice , Carotid Arteries/drug effects , Carotid Arteries/physiopathology , Hyperalgesia/physiopathology , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Male , Vasodilation/drug effects , Vasodilation/physiology , Mice, Inbred C57BL , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Hindlimb/physiopathology
2.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656542

ABSTRACT

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Subject(s)
Exploratory Behavior , Hippocampus , Neuronal Plasticity , Receptors, Vasoactive Intestinal Polypeptide, Type I , Vasoactive Intestinal Peptide , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Exploratory Behavior/physiology , Hippocampus/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Rats, Wistar , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Vasoactive Intestinal Peptide/metabolism
3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069018

ABSTRACT

The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.


Subject(s)
Hemostatics , Pituitary Adenylate Cyclase-Activating Polypeptide , Rats , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Hemostatics/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
4.
J Mol Neurosci ; 73(9-10): 724-737, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37646964

ABSTRACT

Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.


Subject(s)
Receptors, Pituitary Hormone , Spinal Cord Injuries , Female , Rats , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rats, Sprague-Dawley , Receptors, Pituitary Hormone/genetics , Receptors, Pituitary Hormone/metabolism , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Spinal Cord Injuries/metabolism , Brain/metabolism
5.
J Transl Med ; 20(1): 379, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038907

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant tumors to threaten human life, and the survival rate remains low due to delayed diagnosis. Meanwhile, lncRNAs have great potential for application in tumor prognosis, therefore relevant research in hepatocellular carcinoma is indispensable. METHODS: Based on the EZH2 expression, the differentially expressed lncRNAs DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified in hepatocellular carcinoma by using the TCGA database. Bioinformatics technology was utilized to determine the effect of key genes in HCC progression. The methylation and immune infiltration analyses were performed to explore the underlying function of hub genes. Finally, cellular function experiments were performed to investigate the association between identified genes and biological phenotypes in HCC. RESULTS: lncRNA-AC079061.1, hsa-miR-765, and VIPR1 were identified as independent factors that affect the prognosis of hepatocellular carcinoma. The immune infiltration analyses revealed that lncRNA-AC079061.1 can alter the immune microenvironment and thus inhibit the development of HCC by regulating the expression of an immune-related gene (VIPR1). Methylation analyses demonstrated that VIPR1 expression is negatively related to the methylation level in HCC. Experimental results suggested that lncRNA-AC079061.1 and VIPR1 were frequently downregulated in HCC cells, while hsa-miR-765 was significantly upregulated. Moreover, the lncRNA-AC079061.1/VIPR1 axis suppressed the proliferation and invasion of HCC cells. CONCLUSION: The present study identified the lncRNA-AC079061.1/VIPR1 axis as a novel biomarker that inhibited the proliferation and invasion of hepatocellular carcinoma, affecting the ultimate disease outcome.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinoma, Hepatocellular/pathology , Computational Biology , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Tumor Microenvironment
6.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955723

ABSTRACT

Few studies have considered immune-mediated inflammatory disorders (IMID) together, which is necessary to adequately understand them given they share common mechanisms. Our goal was to investigate the expression of vasoactive intestinal peptide (VIP) and its receptors VPAC1 and VPAC2 in selected IMID, analyze the effect of biological therapies on them, and identify miRNA signatures associated with their expression. Serum VIP levels and mRNA of VPAC and miRNA expression in peripheral blood mononuclear cells were analyzed from 52 patients with psoriasis, rheumatoid arthritis, Graves' disease, or spondyloarthritis and from 38 healthy subjects. IMID patients showed higher levels of VIP and increased expression of VPAC2 compared to controls (p < 0.0001 and p < 0.0192, respectively). Receiver operating characteristic curve analysis showed that the levels of VIP or VPAC2 expression were adequate discriminators capable of identifying IMID. Treatment of IMID patients with anti-TNFα and anti-IL12/23 significantly affected serum VIP levels. We identified miRNA signatures associated with levels of serum VIP and VPAC2 expression, which correlated with IMID diagnosis of the patients. The results indicate that the expression of VIP/VPAC2 is able of identify IMIDs and open up a line of research based on the association between the VIP/VPAC axis and miRNA signatures in immune-mediated diseases.


Subject(s)
Arthritis, Rheumatoid , MicroRNAs , Arthritis, Rheumatoid/metabolism , Humans , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , RNA, Messenger , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897648

ABSTRACT

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Vasoactive Intestinal Peptide , Amino Acid Sequence , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Signal Transduction , Vasoactive Intestinal Peptide/metabolism
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(7): 957-965, 2022 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-35869757

ABSTRACT

OBJECTIVE: To explore the transcriptional regulation mechanism and biological function of low expression of vasoactive intestinal peptide receptor 1 (VIPR1) in hepatocellular carcinoma (HCC). METHODS: We constructed plasmids carrying wild-type VIPR1 promoter or two mutant VIPR1 promoter sequences for transfection of the HCC cell lines Hep3B and Huh7, and examined the effect of AP-2α expression on VIPR1 promoter activity using dual-luciferase reporter assay. Pyrosequencing was performed to detect the changes in VIPR1 promoter methylation level in HCC cells treated with a DNA methyltransferase inhibitor (DAC). Chromatin immunoprecipitation was used to evaluate the binding ability of AP-2α to VIPR1 promoter. Western blotting was used to assess the effect of AP-2α knockdown on VIPR1 expression and examine the differential expression of VIPR1 in the two cell lines. The effects of VIPR1 overexpression and knockdown on the proliferation, cell cycle and apoptosis of HCC cells were analyzed using CCK8 assay and flow cytometry. We also observed the growth of HCC xenograft with lentivirus-mediated over-expression of VIPR1 in nude mice. RESULTS: Compared with the wild-type VIPR1 promoter group, co-transfection with the vector carrying two promoter mutations and the AP-2α-over-expressing plasmid obviously restored the luciferase activity in HCC cells (P < 0.05). DAC treatment of the cells significantly decreased the methylation level of VIPR1 promoter and inhibited the binding of AP-2α to VIPR1 promoter (P < 0.01). The HCC cells with AP-2α knockdown showed increased VIPR1 expression, which was lower in Huh7 cells than in Hep3B cells. VIPR1 overexpression in HCC cells caused significant cell cycle arrest in G2/M phase (P < 0.01), promoted cell apoptosis (P < 0.001), and inhibited cell proliferation (P < 0.001), while VIPR1 knockdown produced the opposite effects. In the tumor-bearing nude mice, VIPR1 overexpression in the HCC cells significantly suppressed the increase of tumor volume (P < 0.001) and weight (P < 0.05). CONCLUSION: VIPR1 promoter methylation in HCC promotes the binding of AP-2α and inhibits VIPR1 expression, while VIPR1 overexpression causes cell cycle arrest, promotes cell apoptosis, and inhibits cell proliferation and tumor growth.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Luciferases/genetics , Methylation , Mice , Mice, Nude , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism
9.
Front Endocrinol (Lausanne) ; 12: 711906, 2021.
Article in English | MEDLINE | ID: mdl-34867774

ABSTRACT

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two neuropeptides that contribute to the regulation of intestinal motility and secretion, exocrine and endocrine secretions, and homeostasis of the immune system. Their biological effects are mediated by three receptors named VPAC1, VPAC2 and PAC1 that belong to class B GPCRs. VIP and PACAP receptors have been identified as potential therapeutic targets for the treatment of chronic inflammation, neurodegenerative diseases and cancer. However, pharmacological use of endogenous ligands for these receptors is limited by their lack of specificity (PACAP binds with high affinity to VPAC1, VPAC2 and PAC1 receptors while VIP recognizes both VPAC1 and VPAC2 receptors), their poor oral bioavailability (VIP and PACAP are 27- to 38-amino acid peptides) and their short half-life. Therefore, the development of non-peptidic small molecules or specific stabilized peptidic ligands is of high interest. Structural similarities between VIP and PACAP receptors are major causes of difficulties in the design of efficient and selective compounds that could be used as therapeutics. In this study we performed structure-based virtual screening against the subset of the ZINC15 drug library. This drug repositioning screen provided new applications for a known drug: ticagrelor, a P2Y12 purinergic receptor antagonist. Ticagrelor inhibits both VPAC1 and VPAC2 receptors which was confirmed in VIP-binding and calcium mobilization assays. A following analysis of detailed ticagrelor binding modes to all three VIP and PACAP receptors with molecular dynamics revealed its allosteric mechanism of action. Using a validated homology model of inactive VPAC1 and a recently released cryo-EM structure of active VPAC1 we described how ticagrelor could block conformational changes in the region of 'tyrosine toggle switch' required for the receptor activation. We also discuss possible modifications of ticagrelor comparing other P2Y12 antagonist - cangrelor, closely related to ticagrelor but not active for VPAC1/VPAC2. This comparison with inactive cangrelor could lead to further improvement of the ticagrelor activity and selectivity for VIP and PACAP receptor sub-types.


Subject(s)
Allosteric Regulation/drug effects , Drug Repositioning/methods , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Receptors, Vasoactive Intestinal Peptide, Type II/drug effects , Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects , Ticagrelor/pharmacology , Binding Sites , Computer Simulation , Drug Evaluation, Preclinical/methods , Molecular Structure , Protein Conformation/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/chemistry , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/chemistry , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Ticagrelor/chemistry
10.
Neurogastroenterol Motil ; 33(11): e14130, 2021 11.
Article in English | MEDLINE | ID: mdl-33797165

ABSTRACT

BACKGROUND: Enteric glial cells (EGC) and mast cells (MC) are intimately associated with gastrointestinal physiological functions. We aimed to investigate EGC-MC interaction in irritable bowel syndrome (IBS), a gut-brain disorder linked to increased intestinal permeability, and MC. METHODS: Parallel approaches were used to quantify EGC markers in colonic biopsies from healthy controls (HC) and patients with IBS. Data were correlated with MC, vasoactive intestinal polypeptide (VIP) and VIP receptors (VPAC1/VPAC2) expressions, and bacterial translocation through biopsies mounted in Ussing chambers. In addition, we investigated the effects of EGC mediators on colonic permeability and the pharmacological-induced responses of EGC and MC cell lines. KEY RESULTS: Immunofluorescence of IBS colonic mucosa, as well as Western blotting and ELISA of IBS biopsy lysates, revealed increased glial fibrillary intermediate filament (GFAP) expression, indicating EGC activation. Mucosal GFAP correlated with increased MC and VPAC1+ MC numbers and decreased VIP+ MC, which seemed to control bacterial translocation in HC. In the contrary, EGC activation in IBS correlated with less MC and VPAC1+ MC numbers, and more VIP+ MC. In vitro, MC and EGC cell lines showed intracellular calcium responses to each other's mediators. Furthermore, EGC mediators prevented VIP-induced MC degranulation, while MC mediators induced a reactive EGC phenotype. In Ussing chambers, EGC mediators decreased paracellular passage through healthy colonic biopsies. CONCLUSIONS & INFERENCES: Findings suggest the involvement of EGC and MC in the control of barrier function in the human colon and indicate a potential EGC-MC interaction that seems altered in IBS, with detrimental consequences to colonic permeability. Altogether, results suggest that imbalanced EGC-MC communication contributes to the pathophysiology of IBS.


Subject(s)
Colon/metabolism , Enteric Nervous System/metabolism , Irritable Bowel Syndrome/metabolism , Mast Cells/metabolism , Neuroglia/metabolism , Adult , Female , Humans , Intestinal Mucosa/metabolism , Middle Aged , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Young Adult
11.
Neurobiol Learn Mem ; 180: 107423, 2021 04.
Article in English | MEDLINE | ID: mdl-33705861

ABSTRACT

Social recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptors PAC1, VPAC1 and VPAC2 are highly expressed in these regions. PACAP is a pleiotropic neuropeptide that modulates synaptic function and plasticity and is thought to be involved in social behavior. PACAP signaling also stimulates the nitric oxide (NO) production and targets outcomes to synapses. In the present work, we investigate the effect of the infusion of PACAP-38 (endogenous neuropeptide and potent stimulator of adenylyl cyclase), PACAP 6-38 (PAC1/VPAC2 receptors antagonist) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP, NO donor) in the CA1 region of the hippocampus and in the basolateral amygdala (BLA) on the consolidation of SRM. For this, male Wistar rats with cannulae implanted in CA1 or in BLA were subjected to a social discrimination paradigm, which is based on the natural ability of rodents to investigate unfamiliar conspecifics more than familiar one. In the sample phase (acquisition), animals were exposed to a juvenile conspecific for 1 h. Immediately, 60 or 150 min after, animals received one of different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. Animals that received infusions of PACAP 6-38 (40 pg/side) into CA1 immediately after the sample phase or into BLA immediately or 60 min after the sample phase were unable to recognize the familiar juvenile during the retention test. This impairment was abolished by the coinfusion of PACAP 6-38 plus SNAP (5 µg/side). These results show that the blockade of PACAP/PAC1/VPAC2 signaling in the CA1 and BLA during a restricted post-acquisition time window impairs the consolidation of SRM and that the SNAP is able to abolish this deficit. Findings like this could potentially be used in the future to influence studies of psychiatric disorders involving social behavior.


Subject(s)
Basolateral Nuclear Complex/drug effects , CA1 Region, Hippocampal/drug effects , Peptide Fragments/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Recognition, Psychology/drug effects , Social Perception/drug effects , Animals , Basolateral Nuclear Complex/metabolism , CA1 Region, Hippocampal/metabolism , Memory Consolidation/drug effects , Nitric Oxide Donors/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Rats , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/drug effects , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Recognition, Psychology/physiology , S-Nitroso-N-Acetylpenicillamine/pharmacology
12.
Anim Reprod Sci ; 225: 106680, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33388613

ABSTRACT

Vasoactive intestinal peptide (VIP) receptor (VPAC1, VPAC2) abundances in the myometrium and functions in the regulation of inflamed uterine contractility in pigs were studied. In the CON group with gilts, only laparotomy was performed. The gilts of SAL- and E. coli-treated groups were administered saline or E. coli into the uterine horns, respectively. The E. coli-induced endometritis resulted in a lesser myometrial relative abundance of VPAC1 and VPAC2 receptor mRNA transcripts and larger abundance of protein for these receptors. In the myometrium, treatment with VIP resulted in a lesser contractility amplitude than in the tissues of the CON- and SAL- and E. coli-treated groups and in frequency in the CON- and E.coli-treated group compared to the period before VIP treatment. Compared to when there was VIP treatment alone, treatment with VPAC1 and VPAC2 receptor antagonists resulted in a lesser inhibitory effect of VIP on contractility amplitude in the myometrium of the CON and SAL-treated groups and there was complete abolishment of the inhibitory VIP effect on frequency of myometrial contractility of the CON group. In the myometrium of E. coli-treated group, treatment with VPAC1 and VPAC2 receptor antagonists resulted in a reversal of the inhibitory effect of VIP on contractility amplitude, while treatment with VPAC2 receptor antagonist resulted in elimination of contractility and a lesser endometrium/myometrium inhibitory effect of VIP on frequency of these contractions. Results indicate VIP functions to decrease myometrial contractility of the inflamed pig uterus by having functions at VPAC1 and VPAC2 receptors.


Subject(s)
Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Swine/physiology , Uterine Contraction/physiology , Animals , Female , Gene Expression Regulation , Myometrium/drug effects , Myometrium/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Vasoactive Intestinal Peptide/pharmacology
13.
Mol Vis ; 26: 780-788, 2020.
Article in English | MEDLINE | ID: mdl-33311973

ABSTRACT

Purpose: Vasoactive intestinal peptide (VIP) is an important regulator of lacrimal gland (LG) function although the effect of VIP on ductal fluid secretion is unknown. Therefore, the aim of the present study was to investigate the role of VIP in the regulation of fluid secretion of isolated LG ducts and to analyze the underlying intracellular mechanisms. Methods: LGs from wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) knockout (KO) mice were used. Immunofluorescence was applied to confirm the presence of VIP receptors termed VPAC1 and VPAC2 in LG duct cells. Ductal fluid secretion evoked by VIP (100 nM) was measured in isolated ducts using videomicroscopy. Intracellular Ca2+ signaling underlying VIP stimulation was investigated with microfluorometry. Results: VIP stimulation resulted in a robust and continuous fluid secretory response in isolated duct segments originated from WT mice. In contrast, CFTR KO ducts exhibited only a weak pulse-like secretion. A small but statistically significant increase was detected in the intracellular Ca2+ level [Ca2+]i during VIP stimulation in the WT and in CFTR KO ducts. VIP-evoked changes in [Ca2+]i did not differ considerably between the WT and CFTR KO ducts. Conclusions: These results suggest the importance of VIP in the regulation of ductal fluid secretion and the determining role of the adenylyl cyclase-cAMP-CFTR route in this process.


Subject(s)
Lacrimal Apparatus/metabolism , Tears/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Carbachol/pharmacology , Chelating Agents/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Egtazic Acid/analogs & derivatives , Egtazic Acid/metabolism , Intracellular Space/metabolism , Mice, Knockout , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
14.
Nat Commun ; 11(1): 4121, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807782

ABSTRACT

Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of neuronal, metabolic, and inflammatory diseases. However, our understanding of its mechanism of action and the potential of drug discovery targeting this receptor is limited by the lack of structural information of VIP1R. Here we report a cryo-electron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, whose complex assembly is stabilized by a NanoBiT tethering strategy. Comparison with other class B GPCR structures reveals that PACAP27 engages VIP1R with its N-terminus inserting into the ligand binding pocket at the transmembrane bundle of the receptor, which subsequently couples to the G protein in a receptor-specific manner. This structure has provided insights into the molecular basis of PACAP27 binding and VIP receptor activation. The methodology of the NanoBiT tethering may help to provide structural information of unstable complexes.


Subject(s)
Cryoelectron Microscopy/methods , GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Dynamic Light Scattering , Humans , Microscopy, Electron , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
15.
Sci Rep ; 10(1): 13018, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747757

ABSTRACT

Vasoactive intestinal peptide (VIP) is a neuropeptide with potent immunoregulatory properties. Reduced serum VIP levels and alterations in VIP receptors/signaling on immune cells have been associated with different inflammatory/autoimmune diseases. However, its role in autoimmune thyroid diseases (AITD) remains unknown. This study examined the interrelationship between VIP system, autoimmune background and thyroid hormones in peripheral immune cells in patients with AITD. Only Graves' disease (GD) patients showed significantly lower serum VIP levels when compared to healthy subjects and to Hashimoto's thyroiditis patients. Serum VIP levels were lower at the onset of GD, showing a significant negative correlation with thyroid hormone levels. The expression of VIP receptors, VPAC1 and VPAC2, was significantly upregulated in peripheral blood mononuclear cells (PBMC) from GD patients. There was an impairment of VIP signalling in these patients, probably attributable to a dysfunction of VPAC1 with preservation of VPAC2. The correlation between VPAC1 and thyroid hormone receptor expression in PBMC from healthy subjects was lost in GD patients. In summary, the VIP system is altered in peripheral immune cells of GD patients and this finding is associated with different thyroid hormone receptor patterns, showing a dynamic inter-regulation and a prominent role of VIP in this setting.


Subject(s)
Graves Disease/metabolism , Vasoactive Intestinal Peptide/metabolism , Adult , Female , Humans , Male , Middle Aged , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Thyroid Hormones/metabolism , Vasoactive Intestinal Peptide/blood
16.
Phytomedicine ; 67: 153158, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31999981

ABSTRACT

Background Shengui Sansheng Pulvis (SSP) has about 300 years history used for stroke treatment, and evidences suggest it has beneficial effects on neuro-angiogenesis and cerebral energy metabolic amelioration post-stroke. However, its protective action and mechanisms on blood-brain barrier (BBB) is still unknown. Purpose Based on multiple neuroprotective properties of vasoactive intestinal peptide (VIP) in neurological disorders, we investigate if SSP maintaining BBB integrity is associated with VIP pathway in rat permanent middle cerebral artery occlusion (MCAo) model. Methods Three doses of SSP extraction were administered orally. Evaluations of motor and balance abilities and detection of brain edema were performed, and BBB permeability were assessed by Evans blue (EB) staining. Primary brain microvascular endothelial cells (BMECs) were subjected to oxygen-glucose deprivation, and incubated with high dose SSP drug-containing serum and VIP-antagonist respectively. Transendothelial electrical resistance (TEER) assay and Tetramethylrhodamine isothiocyanate (TRITC)-dextran (4.4 kDa) and fluorescein isothiocyanate (FITC)-dextran (70 kDa) were used to evaluate the features of paracellular junction. Western blot detected the expressions of Claudin-5, ZO-1, Occludin and VE-cadherin, matrix metalloproteinase (MMP) 2/9 and VIP receptors 1/2, and immunofluorescence staining tested VIP and Claudin-5 expressions. Results Our results show that SSP significantly reduces EB infiltration in dose-dependent manner in vivo and attenuates TRITC- dextran and FITC-dextran diffusion in vitro, and strengthens endothelial junctional complexes as represented by decreasing Claudin-5, ZO-1, Occludin and VE-cadherin degradations and MMP 2/9 expression, as well as promoting TEER in BMECs after ischemia. Moreover, it suggests that SSP notably enhances VIP and its receptors 1/2 expressions. VIP-antagonist exacerbates paracellular barrier of BMECs, while the result is reversed after incubation with high dose SSP drug-containing serum. Additionally, SSP also improve brain edema and motor and balance abilities after ischemic stroke. Conclusions we firstly demonstrate that the ameliorated efficacy of SSP on BBB permeability is related to the enhancements of VIP and its receptors, suggesting SSP might be an effective therapeutic agent on maintaining BBB integrity post-stroke.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Ischemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Stroke/drug therapy , Vasoactive Intestinal Peptide/metabolism , Animals , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Claudin-5/metabolism , Drugs, Chinese Herbal/chemistry , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Infarction, Middle Cerebral Artery/physiopathology , Male , Permeability , Rats, Inbred Strains , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Stroke/physiopathology
17.
Cytokine ; 125: 154787, 2020 01.
Article in English | MEDLINE | ID: mdl-31404818

ABSTRACT

Studies have shown that administration of vasoactive intestinal peptide (VIP) in mice rescues them from lethal endotoxaemia and that this is correlated with decreased concentration of inflammatory cytokines. VIP has, therefore, been proposed as a novel anti-inflammatory which could be used in the treatment of Gram negative sepsis. However, the effect of VIP has not been reported in mice infected with viable Gram negative bacteria. Here, we show that Salmonella enterica serovar Typhimurium 4/74 significantly increased expression of mRNA of a type 1 receptor (VPAC1) for anti-inflammatory vasoactive intestinal peptide (VIP) in murine ileum and mesenteric lymph nodes at day 6 post-infection (d6 pi) and in the spleen at d3 pi. When VIP (5 nmol/ml) was administered to S. Typhimurium-infected mice, there was a significant increase in the number of S. Typhimurium cultured from murine faeces and ileum at d3 and 6 pi and in MLN and spleen at d3 dpi, compared to faeces and tissues examined from mice infected with S. Typhimurium (without VIP administration). Administration of VIP to S. Typhimurium-infected mice also altered the splenic architecture, resulting in a lack of discernable periarterial lymphoid sheaths or marginal zones at d6 pi but liver histology appeared similar on both d3 and d6 pi. The effects of VIP administration were correlated with a significant decrease in expression of inflammatory cytokine mRNA, associated with systemic inflammatory response syndrome (SIRS) of bacteraemia and acute sepsis. We conclude that VIP inhibits expression of diagnostic/prognostic cytokine biomarkers of sepsis in S. Typhimurium-infected mice. However, this occurred with a concomitant increase in Salmonella growth in tissues and increased bacterial shedding in faeces. Thus, VIP may have potential as an adjunctive therapy to antibiotics in sepsis.


Subject(s)
Cytokines/metabolism , Immunomodulation/drug effects , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/growth & development , Vasoactive Intestinal Peptide/administration & dosage , Animals , Feces/microbiology , Female , Ileum/metabolism , Ileum/microbiology , Ileum/pathology , Liver/metabolism , Liver/microbiology , Liver/pathology , Lymph Nodes/metabolism , Lymph Nodes/microbiology , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Salmonella Infections/genetics , Salmonella Infections, Animal , Salmonella typhimurium/immunology , Sepsis/metabolism , Sepsis/microbiology , Sepsis/pathology , Spleen/metabolism , Spleen/microbiology , Spleen/pathology , Vasoactive Intestinal Peptide/pharmacology
18.
Biochim Biophys Acta Gen Subj ; 1863(11): 129410, 2019 11.
Article in English | MEDLINE | ID: mdl-31401178

ABSTRACT

BACKGROUND: Neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by neuronal death involving, among other events, mitochondrial dysfunction and excitotoxicity. Along these lines, several attempts have been made to slow this pathology but none have been yet discovered. Based on its capacity to cross the blood-brain barrier and provide neuronal protection in vitro and in vivo, the pituitary adenylate cyclase-activating polypeptide (PACAP) represents a promising lead molecule. Pharmacological studies showed that PACAP interacts with three different G protein-coupled receptors, i.e. PAC1, VPAC1 and VPAC2. However, only PAC1 is associated with neuronal anti-apoptotic actions, whilst VPAC activation might cause adverse effects. In the context of the development of PAC1-selective agonists, PACAP(1-23) (PACAP23) appears as the shortest known PACAP bioactive fragment. METHODS: Hence, the capacity of this peptide to bind PACAP receptors and protect neuroblastoma cells was evaluated under conditions of mitochondrial dysfunction and glutamate excitotoxicity. In addition, its ability to activate downstream signaling events involving G proteins (Gαs and Gαq), EPAC, and calcium was also assessed. RESULTS: Compared to the endogenous peptide, PACAP23 showed a reduced affinity towards PAC1, although this fragment exerted potent neuroprotection. However, surprisingly, some disparities were observed for PACAP23 signaling compared to full length PACAP, suggesting that downstream signaling related to neuroprotection is distinctly regulated following subtle differences in their PAC1 interactions. CONCLUSIONS: Altogether, this study demonstrates the potent neuroprotective action of amidated PACAP23. GENERAL SIGNIFICANCE: PACAP23 represents an attractive template for development of shorter PACAP-derived neuroprotective molecules.


Subject(s)
Calcium Signaling/drug effects , Neuroprotective Agents , Peptides , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , CHO Cells , Cricetulus , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
19.
Sci Rep ; 9(1): 7383, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089161

ABSTRACT

Vasoactive Intestinal Peptide (VIP) is an important immunomodulator of CD4+ cells in normal and pathological conditions, which exerts its anti-inflammatory and immunomodulatory actions through VPAC receptors, VPAC1 and VPAC2. Only a decrease in the expression of VPAC1 mRNA on Th cells upon activation has been reported. Thus, the deepening in the knowledge of the behavior of these receptors may contribute to the design of new therapies based on their activation and/or blockade. In this study, we describe the expression pattern, cellular location and functional role of VIP receptors during the activation of human Th cells in healthy conditions and in early arthritis (EA). The protein expression pattern of VPAC1 did not change with the activation of Th lymphocytes, whereas VPAC2 was up-regulated. In resting cells, VPAC1 was located on the plasma membrane and nucleus, whereas it only appeared in the nucleus in activated cells. VPAC2 was always found in plasma membrane location. VIP receptors signaled through a PKA-dependent pathway in both conditions, and also by a PKA-independent pathway in activated cells. Both receptors exhibit a potent immunomodulatory capacity by controlling the pathogenic profile and the activation markers of Th cells. These results highlight a novel translational view in inflammatory/autoimmune diseases.


Subject(s)
Arthritis/immunology , Lymphocyte Activation/immunology , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Arthritis/blood , Cell Fractionation , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Follow-Up Studies , Humans , Middle Aged , Primary Cell Culture , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Up-Regulation
20.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G785-G796, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30978113

ABSTRACT

Xenin-25 is a neurotensin-like peptide that is secreted by enteroendocrine cells in the small intestine. Xenin-8 is reported to augment duodenal anion secretion by activating afferent neural pathways. The intrinsic neuronal circuits mediating the xenin-25-induced anion secretion were characterized using the Ussing-chambered, mucosa-submucosa preparation from the rat ileum. Serosal application of xenin-25 increased the short-circuit current in a concentration-dependent manner. The responses were abolished by the combination of Cl--free and HCO3- -free solutions. The responses were almost completely blocked by TTX (10-6 M) but not by atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonists for neurotensin receptor 1 (NTSR1), neurokinin 1 (NK1), vasoactive intestinal polypeptide (VIP) receptors 1 and 2 (VPAC1 and VPAC2, respectively), and capsaicin, but not 5-hydroxyltryptamine receptors 3 and 4 (5-HT3 and 5-HT4), NTSR2, and A803467, inhibited the responses to xenin-25. The expression of VIP receptors (Vipr) in rat ileum was examined using RT-PCR. The Vipr1 PCR products were detected in the submucosal plexus and mucosa. Immunohistochemical staining showed the colocalization of NTSR1 and NK1 with substance P (SP)- and calbindin-immunoreactive neurons in the submucosal plexus, respectively. In addition, NK1 was colocalized with noncholinergic VIP secretomotor neurons. Based on the results from the present study, xenin-25-induced Cl-/ HCO3- secretion is involved in NTSR1 activation on intrinsic and extrinsic afferent neurons, followed by the release of SP and subsequent activation of NK1 expressed on noncholinergic VIP secretomotor neurons. Finally, the secreted VIP may activate VPAC1 on epithelial cells to induce Cl-/ HCO3- secretion in the rat ileum. Activation of noncholinergic VIP secretomotor neurons by intrinsic primary afferent neurons and extrinsic afferent neurons by postprandially released xenin-25 may account for most of the neurogenic secretory response induced by xenin-25. NEW & NOTEWORTHY This study is the first to investigate the intrinsic neuronal circuit responsible for xenin-25-induced anion secretion in the rat small intestine. We have found that nutrient-stimulated xenin-25 release may activate noncholinergic vasoactive intestinal polypeptide (VIP) secretomotor neurons to promote Cl-/ HCO3- secretion through the activation of VIP receptor 1 on epithelial cells. Moreover, the xenin-25-induced secretory responses are mainly linked with intrinsic primary afferent neurons, which are involved in the activation of neurotensin receptor 1 and neurokinin 1 receptor.


Subject(s)
Anions/metabolism , Enteric Nervous System/metabolism , Ileum , Neural Pathways/metabolism , Neurotensin/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Animals , Gastrointestinal Hormones/metabolism , Ileum/innervation , Ileum/physiology , Intestinal Mucosa/metabolism , Rats , Receptors, Neurotensin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL