Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.477
Filter
1.
Invest Ophthalmol Vis Sci ; 65(6): 10, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38842831

ABSTRACT

Purpose: To investigate whether fractal dimension (FD)-based oculomics could be used for individual risk prediction by evaluating repeatability and robustness. Methods: We used two datasets: "Caledonia," healthy adults imaged multiple times in quick succession for research (26 subjects, 39 eyes, 377 color fundus images), and GRAPE, glaucoma patients with baseline and follow-up visits (106 subjects, 196 eyes, 392 images). Mean follow-up time was 18.3 months in GRAPE; thus it provides a pessimistic lower bound because vasculature could change. FD was computed with DART and AutoMorph. Image quality was assessed with QuickQual, but no images were initially excluded. Pearson, Spearman, and intraclass correlation (ICC) were used for population-level repeatability. For individual-level repeatability, we introduce measurement noise parameter λ, which is within-eye standard deviation (SD) of FD measurements in units of between-eyes SD. Results: In Caledonia, ICC was 0.8153 for DART and 0.5779 for AutoMorph, Pearson/Spearman correlation (first and last image) 0.7857/0.7824 for DART, and 0.3933/0.6253 for AutoMorph. In GRAPE, Pearson/Spearman correlation (first and next visit) was 0.7479/0.7474 for DART, and 0.7109/0.7208 for AutoMorph (all P < 0.0001). Median λ in Caledonia without exclusions was 3.55% for DART and 12.65% for AutoMorph and improved to up to 1.67% and 6.64% with quality-based exclusions, respectively. Quality exclusions primarily mitigated large outliers. Worst quality in an eye correlated strongly with λ (Pearson 0.5350-0.7550, depending on dataset and method, all P < 0.0001). Conclusions: Repeatability was sufficient for individual-level predictions in heterogeneous populations. DART performed better on all metrics and might be able to detect small, longitudinal changes, highlighting the potential of robust methods.


Subject(s)
Fractals , Humans , Female , Reproducibility of Results , Male , Middle Aged , Adult , Risk Assessment/methods , Aged , Glaucoma/diagnosis , Glaucoma/physiopathology , Follow-Up Studies , Retina/diagnostic imaging , Retinal Vessels/diagnostic imaging
2.
Invest Ophthalmol Vis Sci ; 65(6): 3, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829669

ABSTRACT

Purpose: Investigating influencing factors on the pupillary light response (PLR) as a biomarker for local retinal function by providing epidemiological data of a large normative collective and to establish a normative database for the evaluation of chromatic pupil campimetry (CPC). Methods: Demographic and ophthalmologic characteristics were captured and PLR parameters of 150 healthy participants (94 women) aged 18 to 79 years (median = 46 years) were measured with L-cone- and rod-favoring CPC protocols. Linear-mixed effects models were performed to determine factors influencing the PLR and optical coherence tomography (OCT) data were correlated with the pupillary function volume. Results: Relative maximal constriction amplitude (relMCA) and latency under L-cone- and rod-favoring stimulation were statistically significantly affected by the stimulus eccentricity (P < 0.0001, respectively). Iris color and gender did not affect relMCA or latency significantly; visual hemifield, season, and daytime showed only minor influence under few stimulus conditions. Age had a statistically significant effect on latency under rod-specific stimulation with a latency prolongation ≥60 years. Under photopic and scotopic conditions, baseline pupil diameter declined significantly with increasing age (P < 0.0001, respectively). Pupillary function volume and OCT data were not correlated relevantly. Conclusions: Stimulus eccentricity had the most relevant impact on relMCA and latency of the PLR during L-cone- and rod-favoring stimulation. Latency is prolonged ≥60 years under scotopic conditions. Considering the large study collective, a representative normative database for relMCA and latency as valid readout parameters for L-cone- and rod-favoring stimulation could be established. This further validates the usability of the PLR in CPC as a biomarker for local retinal function.


Subject(s)
Pupil , Reflex, Pupillary , Tomography, Optical Coherence , Humans , Middle Aged , Female , Male , Adult , Aged , Young Adult , Tomography, Optical Coherence/methods , Pupil/physiology , Adolescent , Reflex, Pupillary/physiology , Biomarkers , Photic Stimulation , Retina/physiology , Retina/diagnostic imaging , Healthy Volunteers , Light , Reference Values
3.
Sci Rep ; 14(1): 12790, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834830

ABSTRACT

This prospective study evaluated the relationship between laser speckle contrast imaging (LSCI) ocular blood flow velocity (BFV) and five birth parameters: gestational age (GA), postmenstrual age (PMA) and chronological age (CA) at the time of measurement, birth weight (BW), and current weight (CW) in preterm neonates at risk for retinopathy of prematurity (ROP). 38 Neonates with BW < 2 kg, GA < 32 weeks, and PMA between 27 and 47 weeks underwent 91 LSCI sessions. Correlation tests and regression analysis were performed to quantify relationships between birth parameters and ocular BFV. Mean ocular BFV index in this cohort was 8.8 +/- 4.0 IU. BFV positively correlated with PMA (r = 0.3, p = 0.01), CA (r = 0.3, p = 0.005), and CW (r = 0.3, p = 0.02). BFV did not correlate with GA nor BW (r = - 0.2 and r = - 0.05, p > 0.05). Regression analysis with mixed models demonstrated that BFV increased by 1.2 for every kilogram of CW, by 0.34 for every week of CA, and by 0.36 for every week of PMA (p = 0.03, 0.004, 0.007, respectively). Our findings indicate that increased age and weight are associated with increased ocular BFV measured using LSCI in premature infants. Future studies investigating the associations between ocular BFV and ROP clinical severity must control for age and/or weight of the infant.


Subject(s)
Birth Weight , Gestational Age , Retinopathy of Prematurity , Humans , Infant, Newborn , Female , Male , Prospective Studies , Infant, Premature , Blood Flow Velocity , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiopathology , Retina/physiopathology , Retina/diagnostic imaging , Risk Factors , Regional Blood Flow
4.
PLoS One ; 19(6): e0304943, 2024.
Article in English | MEDLINE | ID: mdl-38837967

ABSTRACT

Age-related macular degeneration (AMD) is an eye disease that leads to the deterioration of the central vision area of the eye and can gradually result in vision loss in elderly individuals. Early identification of this disease can significantly impact patient treatment outcomes. Furthermore, given the increasing elderly population globally, the importance of automated methods for rapidly monitoring at-risk individuals and accurately diagnosing AMD is growing daily. One standard method for diagnosing AMD is using optical coherence tomography (OCT) images as a non-invasive imaging technology. In recent years, numerous deep neural networks have been proposed for the classification of OCT images. Utilizing pre-trained neural networks can speed up model deployment in related tasks without compromising accuracy. However, most previous methods overlook the feasibility of leveraging pre-existing trained networks to search for an optimal architecture for AMD staging on a new target dataset. In this study, our objective was to achieve an optimal architecture in the efficiency-accuracy trade-off for classifying retinal OCT images. To this end, we employed pre-trained medical vision transformer (MedViT) models. MedViT combines convolutional and transformer neural networks, explicitly designed for medical image classification. Our approach involved pre-training two distinct MedViT models on a source dataset with labels identical to those in the target dataset. This pre-training was conducted in a supervised manner. Subsequently, we evaluated the performance of the pre-trained MedViT models for classifying retinal OCT images from the target Noor Eye Hospital (NEH) dataset into the normal, drusen, and choroidal neovascularization (CNV) classes in zero-shot settings and through five-fold cross-validation. Then, we proposed a stitching approach to search for an optimal model from two MedViT family models. The proposed stitching method is an efficient architecture search algorithm known as stitchable neural networks. Stitchable neural networks create a candidate model in search space for each pair of stitchable layers by inserting a linear layer between them. A pair of stitchable layers consists of layers, each selected from one input model. While stitchable neural networks had previously been tested on more extensive and general datasets, this study demonstrated that stitching networks could also be helpful in smaller medical datasets. The results of this approach indicate that when pre-trained models were available for OCT images from another dataset, it was possible to achieve a model in 100 epochs with an accuracy of over 94.9% in classifying images from the NEH dataset. The results of this study demonstrate the efficacy of stitchable neural networks as a fine-tuning method for OCT image classification. This approach not only leads to higher accuracy but also considers architecture optimization at a reasonable computational cost.


Subject(s)
Macular Degeneration , Neural Networks, Computer , Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Macular Degeneration/diagnostic imaging , Retina/diagnostic imaging , Retina/pathology , Aged , Algorithms
5.
Sci Rep ; 14(1): 13236, 2024 06 09.
Article in English | MEDLINE | ID: mdl-38853166

ABSTRACT

This study aimed to evaluate visual function and perform multimodal imaging on patients with focal choroidal excavation without any chorioretinal disease (idiopathic focal choroidal excavation [iFCE]). Seventeen eyes of 15 patients with iFCE (8 men, 7 women; mean ± standard deviation age, 56.0 ± 10.8 years) were assessed for visual function including visual acuity, metamorphopsia, aniseikonia, and retinal sensitivity. Multimodal imaging included optical coherence tomography (OCT), fundus autofluorescence (FAF), and OCT angiography. This study found that the maximum width and depth of the excavation were 597 ± 330 (238-1809) µm and 123 ± 45 (66-231) µm, respectively, and that FAF showed normal or hypoautofluorescence corresponding to iFCE. The fundus examination findings were stable during the follow-up period (96 ± 48 months). None of the eyes showed any abnormalities in central retinal sensitivity or aniseikonia. Metamorphopsia was detected using Amsler grid testing and M-CHARTS in two eyes. Therefore, this study is the first to quantitatively and qualitatively study metamorphopsia of patients with iFCE. Our results showed that most patients with iFCE did not have visual impairments, despite the presence of morphological changes in the outer retina and choroid.


Subject(s)
Choroid Diseases , Multimodal Imaging , Tomography, Optical Coherence , Visual Acuity , Humans , Middle Aged , Female , Male , Multimodal Imaging/methods , Tomography, Optical Coherence/methods , Aged , Adult , Choroid Diseases/diagnostic imaging , Choroid Diseases/pathology , Choroid/diagnostic imaging , Choroid/pathology , Fluorescein Angiography/methods , Retina/diagnostic imaging , Retina/pathology , Vision Disorders/diagnostic imaging
7.
Sci Rep ; 14(1): 12718, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830921

ABSTRACT

This study evaluated retinal and choroidal microvascular changes in night shift medical workers and its correlation with melatonin level. Night shift medical workers (group A, 25 workers) and non-night shift workers (group B, 25 workers) were recruited. The images of macula and optic nerve head were obtained by swept-source OCT-angiography. Vessel density of retina, choriocapillaris (CC), choriocapillaris flow deficit (CC FD), choroidal thickness (CT) and choroidal vascularity index (CVI) were measured. 6-sulfatoxymelatonin concentration was analyzed from the morning urine. CC FD and CVI were significantly decreased and CT was significantly increased in group A (all P < 0.05). 6-sulfatoxymelatonin concentration was significantly lower in group A (P < 0.05), which was significantly positively correlated with CC FD size (r = 0.318, P = 0.024) and CVI of the most regions (maximum r-value was 0.482, P < 0.001), and was significantly negatively associated with CT of all regions (maximum r-value was - 0.477, P < 0.001). In night shift medical workers, the reduction of melatonin was significantly correlated with CT thickening, CVI reduction and CC FD reduction, which suggested that they might have a higher risk of eye diseases. CC FD could be a sensitive and accurate indicator to reflect CC perfusion.


Subject(s)
Choroid , Melatonin , Microvessels , Retinal Vessels , Tomography, Optical Coherence , Humans , Choroid/blood supply , Choroid/diagnostic imaging , Tomography, Optical Coherence/methods , Male , Adult , Female , Melatonin/urine , Melatonin/analogs & derivatives , Microvessels/diagnostic imaging , Retinal Vessels/diagnostic imaging , Middle Aged , Shift Work Schedule/adverse effects , Angiography/methods , Retina/diagnostic imaging
8.
Opt Lett ; 49(9): 2489-2492, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691751

ABSTRACT

Point scanning retinal imaging modalities, including confocal scanning light ophthalmoscopy (cSLO) and optical coherence tomography, suffer from fixational motion artifacts. Fixation targets, though effective at reducing eye motion, are infeasible in some applications (e.g., handheld devices) due to their bulk and complexity. Here, we report on a cSLO device that scans the retina in a spiral pattern under pseudo-visible illumination, thus collecting image data while simultaneously projecting, into the subject's vision, the image of a bullseye, which acts as a virtual fixation target. An imaging study of 14 young adult volunteers was conducted to compare the fixational performance of this technique to that of raster scanning, with and without a discrete inline fixation target. Image registration was used to quantify subject eye motion; a strip-wise registration method was used for raster scans, and a novel, to the best of our knowledge, ring-based method was used for spiral scans. Results indicate a statistically significant reduction in eye motion by the use of spiral scanning as compared to raster scanning without a fixation target.


Subject(s)
Fixation, Ocular , Ophthalmoscopy , Retina , Humans , Retina/diagnostic imaging , Fixation, Ocular/physiology , Ophthalmoscopy/methods , Adult , Young Adult , Eye Movements
9.
Invest Ophthalmol Vis Sci ; 65(5): 5, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38696189

ABSTRACT

Purpose: Neuroinflammation plays a significant role in the pathology of Alzheimer's disease (AD). Mouse models of AD and postmortem biopsy of patients with AD reveal retinal glial activation comparable to central nervous system immunoreactivity. We hypothesized that the surface area of putative retinal gliosis observed in vivo using en face optical coherence tomography (OCT) imaging will be larger in patients with preclinical AD versus controls. Methods: The Spectralis II instrument was used to acquire macular centered 20 × 20 and 30 × 25-degrees spectral domain OCT images of 76 participants (132 eyes). A cohort of 22 patients with preclinical AD (40 eyes, mean age = 69 years, range = 60-80 years) and 20 control participants (32 eyes, mean age = 66 years, range = 58-82 years, P = 0.11) were included for the assessment of difference in surface area of putative retinal gliosis and retinal nerve fiber layer (RNFL) thickness. The surface area of putative retinal gliosis and RNFL thickness for the nine sectors of the Early Treatment Diabetic Retinopathy Study (ETDRS) map were compared between groups using generalized linear mixed models. Results: The surface area of putative retinal gliosis was significantly greater in the preclinical AD group (0.97 ± 0.55 mm2) compared to controls (0.68 ± 0.40 mm2); F(1,70) = 4.41, P = 0.039; Cohen's d = 0.61. There was no significant difference between groups for RNFL thickness in the 9 ETDRS sectors, P > 0.05. Conclusions: Our analysis shows greater putative retinal gliosis in preclinical AD compared to controls. This demonstrates putative retinal gliosis as a potential biomarker for AD-related neuroinflammation.


Subject(s)
Alzheimer Disease , Gliosis , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Gliosis/pathology , Gliosis/diagnosis , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Tomography, Optical Coherence/methods , Aged , Female , Male , Aged, 80 and over , Middle Aged , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Retinal Diseases/diagnosis , Retinal Diseases/etiology , Retina/pathology , Retina/diagnostic imaging
10.
BMC Ophthalmol ; 24(1): 208, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715011

ABSTRACT

BACKGROUND: To find the relationship between the changes of retinal and choriodal structure/ vascular densities (VD) and the myopia progress. METHODS: 126 eyes of 126 age-matched young participants were divided into three groups: Emmetropia and Low Myopia (EaLM) (33 eyes), Moderate Myopia (MM) (39 eyes), and High Myopia (HM) (54 eyes). Fundus images measuring 12 × 12 mm were captured using ultra-widefield swept-source optical coherence tomography angiography (SS-OCTA). Each image was uniformly divided into nine regions: supra-temporal (ST), temporal (T), infra-temporal (IT), superior (S), central macular area (C), inferior (I), supra-nasal (SN), nasal (N), and infra-nasal (IN). Various structural parameters, including inner retina thickness (IRT), outer retina thickness (ORT), and choroid thickness (CT), were assessed, and the VD of the superficial capillary plexus (SCP), deep capillary plexus (DCP), choriocapillaries (CC), and choroid vessels (ChdV) were quantified. RESULTS: CT in upper fundus exhibited a significant reduction from EaLM to MM. Additionally, ORT (ST, S. SN, C, N, IT, I, IN), CT (ST, S, SN, T, C, N, IT, I, IN) and VDs of SCP (ST, S, C, I, IN), DCP (ST, S, T, C, I) and ChdV (T, N, I, IN) were statistically diminished in EaLM compared to HM. Furthermore, IRT (N), ORT (N, IN), CT (S, SN, T, C, IT, I) and VDs of SCP (I, IN) and DCP (I) exhibited significant decreases as MM progressed towards HM. Intriguingly, there was a notable increase in the VD of CC (ST, S, T, C, N) as myopia progressed from MM to HM. CONCLUSION: Significant changes in retinal and choroid structure and vascular density occur as moderate myopia advances to high myopia. Efforts to curb myopia progression to this stage are essential, as the failure to do so may lead to the development of corresponding retinopathy.


Subject(s)
Choroid , Fluorescein Angiography , Myopia , Retinal Vessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Choroid/blood supply , Choroid/diagnostic imaging , Choroid/pathology , Male , Female , Young Adult , Myopia/physiopathology , Adult , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Fluorescein Angiography/methods , Retina/diagnostic imaging , Retina/pathology , Disease Progression , Adolescent , Fundus Oculi
11.
Sci Rep ; 14(1): 11465, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769421

ABSTRACT

Childhood maltreatment is reportedly associated with atypical gray matter structures in the primary visual cortex (V1). This study explores the hypothesis that retinal structures, the sensory organs of vision, are associated with brain atypicality and child maltreatment and examines their interrelation. General ophthalmologic examinations, visual cognitive tasks, retinal imaging, and structural magnetic resonance imaging (MRI) were conducted in children and adolescents aged 9-18 years with maltreatment experiences (CM) and typically developing (TD) children. The retinal nerve fiber layer (RNFL), the most superficial of the ten distinct retinal layers, was found to be significantly thinner in both eyes in CM. While whole-brain analysis using Voxel-based morphometry revealed a significantly larger gray matter volume (GMV) in the thalamus in CM, no significant correlation with RNFL thickness was observed. However, based on region-of-interest analysis, a thinner RNFL was associated with a larger GMV in the right V1. Although it cannot be ruled out that this outcome resulted from maltreatment alone, CM demonstrated subclinical structural atypicality in the retina, which may also correlate with the immaturity of V1 development. Examination of retinal thickness offers a novel clinical approach to capturing characteristics associated with childhood maltreatment.


Subject(s)
Child Abuse , Gray Matter , Magnetic Resonance Imaging , Retina , Visual Cortex , Humans , Child , Gray Matter/diagnostic imaging , Gray Matter/pathology , Male , Adolescent , Female , Retina/pathology , Retina/diagnostic imaging , Magnetic Resonance Imaging/methods , Visual Cortex/diagnostic imaging , Visual Cortex/pathology
12.
Opt Lett ; 49(9): 2209-2212, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691681

ABSTRACT

Under spatially incoherent illumination, time-domain full-field optical coherence tomography (FFOCT) offers the possibility to achieve in vivo retinal imaging at cellular resolution over a wide field of view. Such performance is possible, albeit there is the presence of ocular aberrations even without the use of classical adaptive optics. While the effect of aberrations in FFOCT has been debated these past years, mostly on low-order and static aberrations, we present, for the first time to our knowledge, a method enabling a quantitative study of the effect of statistically representative static and dynamic ocular aberrations on FFOCT image metrics, such as SNR, resolution, and image similarity. While we show that ocular aberrations can decrease FFOCT SNR and resolution by up to 14 dB and fivefold, we take advantage of such quantification to discuss different possible compromises between performance gain and adaptive optics complexity and speed, to optimize both sensor-based and sensorless FFOCT high-resolution retinal imaging.


Subject(s)
Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Humans , Signal-To-Noise Ratio
13.
J Biomed Opt ; 29(6): 066002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745984

ABSTRACT

Significance: Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and in vivo volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol. Aim: We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol. Approach: We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM). Results: The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume. Conclusions: The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Artifacts , Reproducibility of Results , Signal-To-Noise Ratio
14.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38752980

ABSTRACT

The effects of hypoxia on brain function remain largely unknown. This study aimed to clarify this issue by visual-stimulated functional magnetic resonance imaging design. Twenty-three college students with a 30-d high-altitude exposure were tested before, 1 week and 3 months after returning to sea level. Brain functional magnetic resonance imaging and retinal electroretinogram were acquired. One week after returning to sea level, decreased blood oxygenation level dependent in the right lingual gyrus accompanied with increased blood oxygenation level dependent in the frontal cortex and insular cortex, and decreased amplitude of electroretinogram a-wave in right eye; moreover, the bilateral lingual gyri showed increased functional connectivity within the dorsal visual stream pathway, and the blood oxygenation level dependent signals in the right lingual gyrus showed positive correlation with right retinal electroretinogram a-wave. Three months after returning to sea level, the blood oxygenation level dependent signals recovered to normal level, while intensively increased blood oxygenation level dependent signals in a broad of brain regions and decreased retinal electroretinogram were also existed. In conclusion, hypoxic exposure has long-term effects on visual cortex, and the impaired retinal electroretinogram may contribute to it. The increased functional connectivity of dorsal stream may compensate for the decreased function of retinal photoreceptor cells to maintain normal visual function.


Subject(s)
Electroretinography , Magnetic Resonance Imaging , Neuronal Plasticity , Visual Pathways , Humans , Male , Young Adult , Female , Neuronal Plasticity/physiology , Visual Pathways/physiology , Visual Pathways/diagnostic imaging , Hypoxia/physiopathology , Adult , Oxygen/blood , Visual Cortex/diagnostic imaging , Visual Cortex/physiology , Brain/physiology , Brain/diagnostic imaging , Photic Stimulation/methods , Retina/physiology , Retina/diagnostic imaging , Brain Mapping/methods
15.
Invest Ophthalmol Vis Sci ; 65(5): 16, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717425

ABSTRACT

Purpose: Research on Alzheimer's disease (AD) and precursor states demonstrates a thinner retinal nerve fiber layer (NFL) compared to age-similar controls. Because AD and age-related macular degeneration (AMD) both impact older adults and share risk factors, we asked if retinal layer thicknesses, including NFL, are associated with cognition in AMD. Methods: Adults ≥ 70 years with normal retinal aging, early AMD, or intermediate AMD per Age-Related Eye Disease Study (AREDS) nine-step grading of color fundus photography were enrolled in a cross-sectional study. Optical coherence tomography (OCT) volumes underwent 11-line segmentation and adjustments by a trained operator. Evaluated thicknesses reflect the vertical organization of retinal neurons and two vascular watersheds: NFL, ganglion cell layer-inner plexiform layer complex (GCL-IPL), inner retina, outer retina (including retinal pigment epithelium-Bruch's membrane), and total retina. Thicknesses were area weighted to achieve mean thickness across the 6-mm-diameter Early Treatment of Diabetic Retinopathy Study (ETDRS) grid. Cognitive status was assessed by the National Institutes of Health Toolbox cognitive battery for fluid and crystallized cognition. Correlations estimated associations between cognition and thicknesses, adjusting for age. Results: Based on 63 subjects (21 per group), thinning of the outer retina was significantly correlated with lower cognition scores (P < 0.05). No other retinal thickness variables were associated with cognition. Conclusions: Only the outer retina (photoreceptors, supporting glia, retinal pigment epithelium, Bruch's membrane) is associated with cognition in aging to intermediate AMD; NFL was not associated with cognition, contrary to AD-associated condition reports. Early and intermediate AMD constitute a retinal disease whose earliest, primary impact is in the outer retina. Our findings hint at a unique impact on the brain from the outer retina in persons with AMD.


Subject(s)
Aging , Cognition , Macular Degeneration , Retina , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Male , Aged , Female , Cross-Sectional Studies , Aging/physiology , Aged, 80 and over , Macular Degeneration/physiopathology , Cognition/physiology , Retina/diagnostic imaging , Retina/pathology , Retina/physiopathology , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology
16.
Opt Lett ; 49(10): 2817-2820, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748169

ABSTRACT

Alteration in the elastic properties of biological tissues may indicate changes in the structure and components. Acoustic radiation force optical coherence elastography (ARF-OCE) can assess the elastic properties of the ocular tissues non-invasively. However, coupling the ultrasound beam and the optical beam remains challenging. In this Letter, we proposed an OCE method incorporating homolateral parallel ARF excitation for measuring the elasticity of the ocular tissues. An acoustic-optic coupling unit was established to reflect the ultrasound beam while transmitting the light beam. The ARF excited the ocular tissue in the direction parallel to the light beam from the same side of the light beam. We demonstrated the method on the agar phantoms, the porcine cornea, and the porcine retina. The results show that the ARF-OCE method can measure the elasticity of the cornea and the retina, resulting in higher detection sensitivity and a more extensive scanning range.


Subject(s)
Cornea , Elasticity Imaging Techniques , Phantoms, Imaging , Tomography, Optical Coherence , Elasticity Imaging Techniques/methods , Animals , Swine , Cornea/diagnostic imaging , Cornea/physiology , Tomography, Optical Coherence/methods , Elasticity , Retina/diagnostic imaging , Retina/physiology
17.
BMJ Case Rep ; 17(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38719246

ABSTRACT

Cutis marmorata telangiectatica congenita is a rare congenital vascular malformation characterised by cutaneous vascular abnormalities, typically diagnosed at birth or in the early postnatal period. Although typically benign, this disease is associated with other systemic abnormalities, including rare ocular alterations, such as congenital glaucoma, cataracts and retinopathy.This manuscript describes a female infant, who presented with generalised livedo reticularis, a band of alopecia and cutaneous atrophy in the temporal region above the coronal suture. The patient was diagnosed with cutis marmorata telangiectatica congenita by a paediatrician, and an ophthalmological evaluation was requested. A funduscopy examination in both eyes showed temporal and superior retina with avascular areas with new vessels, venous dilations and shunts, and no retinal detachments. Given these findings, we performed retinal photocoagulation laser treatment with excellent results.This case report highlights the importance of early ophthalmological evaluation of children with this disease to prevent secondary complications, such as vitreous haemorrhage and tractional retinal detachment.


Subject(s)
Livedo Reticularis , Skin Diseases, Vascular , Telangiectasis , Humans , Female , Telangiectasis/congenital , Telangiectasis/complications , Telangiectasis/diagnosis , Skin Diseases, Vascular/diagnosis , Skin Diseases, Vascular/complications , Infant , Laser Coagulation/methods , Retinal Vessels/abnormalities , Retinal Vessels/diagnostic imaging , Retina/abnormalities , Retina/diagnostic imaging
18.
Nat Commun ; 15(1): 4481, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802397

ABSTRACT

Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.


Subject(s)
Blindness , Retina , Visual Prosthesis , Retina/diagnostic imaging , Retina/physiology , Animals , Blindness/therapy , Blindness/physiopathology , Retinal Degeneration/therapy , Retinal Degeneration/diagnostic imaging , Ultrasonic Waves , Humans , Neurons/physiology , Ultrasonography/methods , Vision, Ocular/physiology
19.
Sci Rep ; 14(1): 12069, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802443

ABSTRACT

Optical coherence tomography (OCT) displays the retinal nerve fiber layer (RNFL) or macular ganglion cell and inner plexiform layer (GCIPL) thickness below 1st percentile in red color. This finding generally indicates severe inner-retinal structural changes and suggests poor visual function. Nevertheless, some individuals show preserved visual function despite these circumstances. This study aimed to identify the correlation between best-corrected visual acuity (BCVA) and inner-retinal thickness based on OCT parameters in various optic neuropathy patients with extremely low RNFL/GCIPL thickness, and determine the limitation of OCT for predicting visual function in these patients. 131 patients were included in the study. The mean BCVA in logMAR was 0.55 ± 0.70 with a broad range from - 0.18 to 3.00. Among the OCT parameters, temporal GCIPL (r = - 0.412) and average GCIPL (r = - 0.366) exhibited the higher correlations with BCVA. Etiological comparisons of optic neuropathies revealed significantly lower BCVA in LHON (all p < 0.05). Idiopathic optic neuritis (ON) and MOGAD exhibited better and narrower BCVA distributions compared to the other optic neuropathies. OCT had limited utility in reflecting BCVA, notwithstanding significant inner-retinal thinning after optic nerve injuries. Caution is needed in interpreting OCT findings, especially as they relate to the etiology of optic neuropathy.


Subject(s)
Optic Nerve Diseases , Tomography, Optical Coherence , Visual Acuity , Humans , Male , Female , Tomography, Optical Coherence/methods , Adult , Middle Aged , Optic Nerve Diseases/physiopathology , Visual Acuity/physiology , Retina/diagnostic imaging , Retina/physiopathology , Retina/pathology , Young Adult , Adolescent , Retinal Ganglion Cells/pathology , Aged , Nerve Fibers/pathology , Child
20.
Comput Biol Med ; 177: 108591, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788372

ABSTRACT

This paper suggests a novel hybrid tensor-ring (TR) decomposition and first-order tensor-based total variation (FOTTV) model, known as the TRFOTTV model, for super-resolution and noise suppression of optical coherence tomography (OCT) images. OCT imaging faces two fundamental problems undermining correct OCT-based diagnosis: significant noise levels and low sampling rates to speed up the capturing process. Inspired by the effectiveness of TR decomposition in analyzing complicated data structures, we suggest the TRFOTTV model for noise suppression and super-resolution of OCT images. Initially, we extract the nonlocal 3D patches from OCT data and group them to create a third-order low-rank tensor. Subsequently, using TR decomposition, we extract the correlations among all modes of the grouped OCT tensor. Finally, FOTTV is integrated into the TR model to enhance spatial smoothness in OCT images and conserve layer structures more effectively. The proximal alternating minimization and alternative direction method of multipliers are applied to solve the obtained optimization problem. The effectiveness of the suggested method is verified by four OCT datasets, demonstrating superior visual and numerical outcomes compared to state-of-the-art procedures.


Subject(s)
Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Algorithms , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Retina/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL