Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.463
Filter
1.
J Transl Med ; 22(1): 898, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367441

ABSTRACT

Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.


Subject(s)
Signal Transduction , Humans , Animals , Retinal Diseases/metabolism , Retinal Diseases/drug therapy , Retinal Diseases/pathology , Vascular Diseases/metabolism , Vascular Diseases/drug therapy , Receptors, TIE/metabolism , Choroid/pathology , Choroid/metabolism
2.
BMC Mol Cell Biol ; 25(1): 22, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385121

ABSTRACT

Retinal ischemia-reperfusion (IR) injury is a basic pathological procedure in clinic and associated with various ischemic retinal diseases, including glaucoma, diabetic retinopathy, retinal vascular occlusion, etc. The purpose of this work is to investigate the effect of ciclopirox olamine (CPX) on retinal IR injury and further explore the underlying mechanism. In vitro assay exhibited that CPX exhibited significant neuroprotection against oxygen glucose deprivation (OGD) and oxidative stress-induced injuries in 661W photoreceptor cells. OGD injury showed a proinflammatory phenotype characterized by significantly increased production of cytokines (IL-6, IL-23 and TNF-α), while CPX significantly inhibited their secretion. In addition, the in vivo experiment demonstrated that CPX significantly preserved the normal thickness of the retina. Therefore, we suggest that CPX is identified in our research as a prospective therapeutic agent for retinal IR injury.


Subject(s)
Ciclopirox , Neuroprotective Agents , Oxidative Stress , Reperfusion Injury , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice , Oxidative Stress/drug effects , Retina/drug effects , Retina/metabolism , Retina/pathology , Cytokines/metabolism , Glucose/metabolism , Cell Line , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Male , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology
3.
Invest Ophthalmol Vis Sci ; 65(11): 11, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39240551

ABSTRACT

Purpose: To investigate the intraocular concentration profiles of stem cell factor (SCF)/c-KIT, galectin-1 (GAL-1), and vascular endothelial growth factor (VEGF)-A with regard to retinal disease and treatment response. Methods: The study group included 13 patients with dry age-related macular degeneration (AMD), 196 with neovascular AMD (nAMD), 21 with diabetic macular edema (DME), 10 with retinal vein occlusion (RVO), and 34 normal subjects with cataracts. Aqueous humor levels of SCF, c-KIT, GAL-1, and VEGF-A were analyzed by immunoassay according to disease group and treatment response. Results: Increased aqueous levels of SCF, c-KIT, and GAL-1 were observed in eyes with nAMD (2.67 ± 3.66, 296.84 ± 359.56, and 3945.61 ± 5976.2 pg/mL, respectively), DME (1.64 ± 0.89, 238.80 ± 265.54, and 3701.23 ± 4340.54 pg/mL, respectively), and RVO (4.62 ± 8.76, 509.63 ± 647.58, and 9079.60 ± 11909.20 pg/mL, respectively) compared with controls (1.13 ± 0.24, 60.00 ± 0.00, and 613.27 ± 1595.12 pg/mL, respectively). In the eyes of nAMD, the levels of all three cytokines correlated positively with VEGF-A levels. After intravitreal injections of anti-VEGF agents, the levels of GAL-1 and VEGF-A decreased significantly, whereas those of SCF and c-Kit showed no significant change. Eyes of nAMD patients with improved vision after treatment had significantly lower levels of c-KIT, GAL-1, and VEGF-A at baseline. Conclusions: The intraocular levels of cytokines were significantly elevated in eyes with nAMD, DME, and RVO compared to the controls and they showed different response to anti-VEGF treatment. With this result and their known association with angiogenesis, these cytokines may be potential therapeutic targets for future research.


Subject(s)
Galectin 1 , Proto-Oncogene Proteins c-kit , Stem Cell Factor , Vascular Endothelial Growth Factor A , Humans , Galectin 1/metabolism , Stem Cell Factor/metabolism , Male , Aged , Female , Proto-Oncogene Proteins c-kit/metabolism , Vascular Endothelial Growth Factor A/metabolism , Middle Aged , Aqueous Humor/metabolism , Aged, 80 and over , Retinal Diseases/metabolism , Retinal Diseases/drug therapy , Macular Edema/metabolism , Macular Edema/drug therapy , Retinal Vein Occlusion/metabolism , Retinal Vein Occlusion/drug therapy , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Angiogenesis Inhibitors/therapeutic use , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Intravitreal Injections
5.
Int J Mol Sci ; 25(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39337623

ABSTRACT

Hypoxia-inducible factors (HIFs) are transcriptional factors that function as strong regulators of oxygen homeostasis and cellular metabolisms. The maintenance of cellular oxygen levels is critical as either insufficient or excessive oxygen affects development and physiologic and pathologic conditions. In the eye, retinas have a high metabolic demand for oxygen. Retinal ischemia can cause visual impairment in various sight-threating disorders including age-related macular degeneration, diabetic retinopathy, and some types of glaucoma. Therefore, understanding the potential roles of HIFs in the retina is highly important for managing disease development and progression. This review focuses on the physiologic and pathologic roles of HIFs as regulators of oxygen homeostasis and cellular metabolism in the retina, drawing on recent evidence. Our summary will promote comprehensive approaches to targeting HIFs for therapeutic purposes in retinal diseases.


Subject(s)
Retinal Diseases , Humans , Retinal Diseases/metabolism , Animals , Retina/metabolism , Retina/pathology , Oxygen/metabolism , Hypoxia-Inducible Factor 1/metabolism , Diabetic Retinopathy/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia/metabolism
6.
Mol Med ; 30(1): 159, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333859

ABSTRACT

BACKGROUND: Retinal ischemia/reperfusion (IR) injury is a common pathological process in many ophthalmic diseases. Interleukin-1ß (IL-1ß) is an important inflammatory factor involved in the pathology of retinal IR injury, but the mechanism by which IL-1ß is regulated in such injury remains unclear. Caspase-11 non-canonical inflammasomes can regulate the synthesis and secretion of IL-1ß, but its role in retinal IR injury has not been elucidated. This study aimed to evaluate the role of caspase-11 non-canonical inflammasomes in retinal IR injury. METHODS: Retinal IR injury was induced in C57BL/6J mice by increasing the intraocular pressure to 110 mmHg for 60 min. The post-injury changes in retinal morphology and function and in IL-1ß expression were compared between caspase-11 gene knockout (caspase-11-/-) mice and wild-type (WT) mice. Morphological and functional changes were evaluated using hematoxylin-eosin staining and retinal whole mount staining and using electroretinography (ERG), respectively. IL-1ß expression in the retina was measured using enzyme-linked immunosorbent assay (ELISA). The levels of caspase-11-related protein were measured using western blot analysis. The location of caspase-11 in the retina was determined via immunofluorescence staining. Mouse type I astrocytes C8-D1A cells were used to validate the effects of caspase-11 simulation via hypoxia in vitro. Small-interfering RNA targeting caspase-11 was constructed. Cell viability was evaluated using the MTT assay. IL-1ß expression in supernatant and cell lysate was measured using ELISA. The levels of caspase-11-related protein were measured using western blot analysis. RESULTS: Retinal ganglion cell death and retinal edema were more ameliorated, and the ERG b-wave amplitude was better after retinal IR injury in caspase-11-/- mice than in WT mice. Further, caspase-11-/- mice showed lower protein expressions of IL-1ß, cleaved caspase-1, and gasdermin D (GSDMD) in the retina after retinal IR injury. Caspase-11 protein was expressed in retinal glial cells, and caspase-11 knockdown played a protective role against hypoxia in C8-D1A cells. The expression levels of IL-1ß, cleaved caspase-1, and GSDMD were inhibited after hypoxia in the si-caspase-11 constructed cells. CONCLUSIONS: Retinal IR injury activates caspase-11 non-canonical inflammasomes in glial cells of the retina. This results in increased protein levels of GSDMD and IL-1ß and leads to damage in the inner layer of the retina.


Subject(s)
Caspases, Initiator , Inflammasomes , Reperfusion Injury , Retina , Animals , Male , Mice , Caspases, Initiator/metabolism , Caspases, Initiator/genetics , Disease Models, Animal , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Mice, Knockout , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Retina/metabolism , Retina/pathology , Retinal Diseases/metabolism , Retinal Diseases/etiology , Retinal Diseases/pathology , Retinal Diseases/genetics
7.
J Neuroinflammation ; 21(1): 210, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182142

ABSTRACT

Ischemic retinopathies including diabetic retinopathy are major causes of vision loss. Inner blood-retinal barrier (BRB) breakdown with retinal vascular hyperpermeability results in macular edema. Although dysfunction of the neurovascular unit including neurons, glia, and vascular cells is now understood to underlie this process, there is a need for fuller elucidation of the underlying events in BRB dysfunction in ischemic disease, including a systematic analysis of myeloid cells and exploration of cellular cross-talk. We used an approach for microglia depletion with the CSF-1R inhibitor PLX5622 (PLX) in the retinal ischemia-reperfusion (IR) model. Under non-IR conditions, PLX treatment successfully depleted microglia in the retina. PLX suppressed the microglial activation response following IR as well as infiltration of monocyte-derived macrophages. This occurred in association with reduction of retinal expression of chemokines including CCL2 and the inflammatory adhesion molecule ICAM-1. In addition, there was a marked suppression of retinal neuroinflammation with reduction in expression of IL-1b, IL-6, Ptgs2, TNF-a, and Angpt2, a protein that regulates BRB permeability. PLX treatment significantly suppressed inner BRB breakdown following IR, without an appreciable effect on neuronal dysfunction. A translatomic analysis of Müller glial-specific gene expression in vivo using the Ribotag approach demonstrated a strong suppression of Müller cell expression of multiple pro-inflammatory genes following PLX treatment. Co-culture studies of Müller cells and microglia demonstrated that activated microglia directly upregulates Müller cell-expression of these inflammatory genes, indicating Müller cells as a downstream effector of myeloid cells in retinal IR. Co-culture studies of these two cell types with endothelial cells demonstrated the ability of both activated microglia and Müller cells to compromise EC barrier function. Interestingly, quiescent Müller cells enhanced EC barrier function in this co-culture system. Together this demonstrates a pivotal role for myeloid cells in inner BRB breakdown in the setting of ischemia-associated disease and indicates that myeloid cells play a major role in iBRB dysregulation, through direct and indirect effects, while Müller glia participate in amplifying the neuroinflammatory effect of myeloid cells.


Subject(s)
Blood-Retinal Barrier , Ependymoglial Cells , Myeloid Cells , Blood-Retinal Barrier/drug effects , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Animals , Mice , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/pathology , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Mice, Inbred C57BL , Retinal Diseases/pathology , Retinal Diseases/metabolism , Ischemia/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Male , Microglia/metabolism , Microglia/drug effects , Organic Chemicals
8.
J Med Chem ; 67(17): 15268-15290, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39145589

ABSTRACT

Retinal ischemia-reperfusion (RIR) injury can lead to various retinal diseases. Oxidative stress is considered an important pathological event in RIR injury. Here, we designed and synthesized 34 ocotillol derivatives, then examined their antioxidant and anti-inflammatory capacities; we found that compounds 7 (C24-R) and 8 (C24-S) were most active. To enhance their water solubility, sustained release, and biocompatibility, compounds 7 and 8 were encapsulated into liposomes for in vivo activity and mechanistic studies. In vivo studies indicated that compounds 7 and 8 protected normal retinal structure and physiological function after RIR injury, reversed damage to retinal ganglion cells, and the S-configuration exhibited significantly stronger activity compared with the R-configuration. Mechanistic studies showed that compound 8 exerted a therapeutic effect on RIR injury by activating the Keap1/Nrf2/ARE signaling pathway; compound 7 did not influence this pathway. We also demonstrated that differential isomerization at the C-24 position influenced protection against RIR injury.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Reperfusion Injury , Signal Transduction , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction/drug effects , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Retina/drug effects , Retina/metabolism , Retina/pathology , Male , Mice , Antioxidant Response Elements/drug effects , Oxidative Stress/drug effects , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Retinal Diseases/pathology , Mice, Inbred C57BL , Humans
9.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125579

ABSTRACT

The retina is one of the highest metabolically active tissues with a high oxygen consumption, so insufficient blood supply leads to visual impairment. The incidence of related conditions is increasing; however, no effective treatment without side effects is available. Furthermore, the pathomechanism of these diseases is not fully understood. Our aim was to develop an optimal ischemic retinopathy mouse model to investigate the retinal damage in a time-dependent manner. Retinal ischemia was induced by bilateral common carotid artery occlusion (BCCAO) for 10, 13, 15 or 20 min, or by right permanent unilateral common carotid artery occlusion (UCCAO). Optical coherence tomography was used to follow the changes in retinal thickness 3, 7, 14, 21 and 28 days after surgery. The number of ganglion cells was evaluated in the central and peripheral regions on whole-mount retina preparations. Expression of glial fibrillary acidic protein (GFAP) was analyzed with immunohistochemistry and Western blot. Retinal degeneration and ganglion cell loss was observed in multiple groups. Our results suggest that the 20 min BCCAO is a good model to investigate the consequences of ischemia and reperfusion in the retina in a time-dependent manner, while the UCCAO causes more severe damage in a short time, so it can be used for testing new drugs.


Subject(s)
Disease Models, Animal , Glial Fibrillary Acidic Protein , Hypoxia , Ischemia , Retina , Tomography, Optical Coherence , Animals , Mice , Ischemia/metabolism , Ischemia/pathology , Glial Fibrillary Acidic Protein/metabolism , Retina/metabolism , Retina/pathology , Hypoxia/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/etiology , Male , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Mice, Inbred C57BL , Time Factors
10.
Exp Eye Res ; 246: 110021, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117136

ABSTRACT

Retinal injury may be exacerbated by iron overload. Astragaloside IV (AS-IV) has potential applications in the food and healthcare industry to promote eye health. We sought to determine the mechanisms responsible for the protective effects of AS-IV on photoreceptor and retinal pigment epithelium cell death induced by iron overload. We conducted in vitro and in vivo experiments involving AS-IV pretreatment. We tested AS-IV for its ability to protect iron-overload mice from retinal injury. In particular, we analyzed the effects of AS-IV on iron overload-induced ferroptosis in 661W and ARPE-19 cells. AS-IV not only attenuated iron deposition and retinal injury in iron-overload mice but also effectively reduced iron overload-induced ferroptotic cell death in 661W and ARPE-19 cells. AS-IV effectively prevented ferroptosis by inhibiting iron accumulation and lipid peroxidation. In addition, inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) eliminated the protective effect of AS-IV against ferroptosis. The results suggest that ferroptosis might be a significant cause of retinal cell death associated with iron overload. AS-IV provides protection from iron overload-induced ferroptosis, partly by activating the Nrf2 signaling pathway.


Subject(s)
Ferroptosis , Iron Overload , Mice, Inbred C57BL , Retinal Pigment Epithelium , Saponins , Triterpenes , Ferroptosis/drug effects , Animals , Triterpenes/pharmacology , Triterpenes/therapeutic use , Saponins/pharmacology , Iron Overload/metabolism , Iron Overload/drug therapy , Mice , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Disease Models, Animal , Lipid Peroxidation/drug effects , Humans , Retinal Diseases/prevention & control , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/drug therapy , NF-E2-Related Factor 2/metabolism , Blotting, Western , Male , Iron/metabolism
11.
Cell Metab ; 36(10): 2315-2328.e6, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39191258

ABSTRACT

Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.


Subject(s)
Glycine , Retina , Serine , Animals , Serine/metabolism , Glycine/metabolism , Retina/metabolism , Mice , Humans , Mice, Inbred C57BL , Male , Peripheral Nerves/metabolism , Female , Retinal Diseases/metabolism
12.
Nucleic Acids Res ; 52(17): 10447-10463, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39119918

ABSTRACT

Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2'O-methyl-phosphorothioate (2-OMe/PS), 2'O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2'MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.


Subject(s)
Mice, Inbred C57BL , Oligonucleotides, Antisense , Retina , Animals , Oligonucleotides, Antisense/pharmacokinetics , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/toxicity , Retina/metabolism , Retina/drug effects , Mice , Tissue Distribution , Humans , Morpholinos/genetics , Morpholinos/chemistry , Morpholinos/pharmacokinetics , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/pharmacokinetics , Phosphorothioate Oligonucleotides/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/drug therapy
13.
Cell Commun Signal ; 22(1): 359, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992691

ABSTRACT

PURPOSE: Bietti crystalline dystrophy (BCD) is an inherited retinal degeneration disease caused by mutations in the CYP4V2 gene. Currently, there is no clinical therapy approach available for BCD patients. Previous research has suggested that polyunsaturated fatty acids (PUFAs) may play a significant role in the development of BCD, implicating the involvement of ferroptosis in disease pathogenesis. In this work, we aimed to investigate the interplay between ferroptosis and BCD and to detect potential therapeutic strategies for the disease. METHODS: Genetic-edited RPE cell line was first established in this study by CRISPR-Cas9 technology. Cyp4v3 (the homologous gene of human CYP4V2) knock out (KO) mice have also been used. Lipid profiling and transcriptome analysis of retinal pigment epithelium (RPE) cells from Cyp4v3 KO mice have been conducted. Ferroptosis phenotypes have been first investigated in BCD models in vitro and in vivo, including lipid peroxidation, mitochondrial changes, elevated levels of reactive oxygen species (ROS), and altered gene expression. Additionally, an iron chelator, deferiprone (DFP), has been tested in vitro and in vivo to determine its efficacy in suppressing ferroptosis and restoring the BCD phenotype. RESULTS: Cyp4v3 KO mice exhibited progressive retinal degeneration and lipid accumulation, similar to the BCD phenotype, which was exacerbated by a high-fat diet (HFD). Increased levels of PUFAs, such as EPA (C22:5) and AA (C20:4), were observed in the RPE of Cyp4v3 KO mice. Transcriptome analysis of RPE in Cyp4v3 KO mice revealed changes in genes involved in iron homeostasis, particularly an upregulation of NCOA4, which was confirmed by immunofluorescence. Ferroptosis-related characteristics, including mitochondrial defects, lipid peroxidation, ROS accumulation, and upregulation of related genes, were detected in the RPE both in vitro and in vivo. Abnormal accumulation of ferrous iron was also detected. DFP, an iron chelator administration suppressed ferroptosis phenotype in CYP4V2 mutated RPE. Oral administration of DFP also restored the retinal function and morphology in Cyp4v3 KO mice. CONCLUSION: This study represented the first evidence of the substantial role of ferroptosis in the development of BCD. PUFAs resulting from CYP4V2 mutation may serve as substrates for ferroptosis, potentially working in conjunction with NCOA4-regulated iron accumulation, ultimately leading to RPE degeneration. DFP administration, which chelates iron, has demonstrated its ability to reverse BCD phenotype both in vitro and in vivo, suggesting a promising therapeutic approach in the future.


Subject(s)
Corneal Dystrophies, Hereditary , Ferroptosis , Mice, Knockout , Retinal Pigment Epithelium , Animals , Ferroptosis/genetics , Ferroptosis/drug effects , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/pathology , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/drug therapy , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/drug effects , Mice , Reactive Oxygen Species/metabolism , Retinal Diseases/genetics , Retinal Diseases/pathology , Retinal Diseases/metabolism , Retinal Diseases/drug therapy , Cytochrome P450 Family 4/genetics , Mice, Inbred C57BL , Cell Line , Lipid Peroxidation/drug effects
14.
Front Endocrinol (Lausanne) ; 15: 1415521, 2024.
Article in English | MEDLINE | ID: mdl-38952394

ABSTRACT

Insulin resistance (IR) is becoming a worldwide medical and public health challenge as an increasing prevalence of obesity and metabolic disorders. Accumulated evidence has demonstrated a strong relationship between IR and a higher incidence of several dramatically vision-threatening retinal diseases, including diabetic retinopathy, age-related macular degeneration, and glaucoma. In this review, we provide a schematic overview of the associations between IR and certain ocular diseases and further explore the possible mechanisms. Although the exact causes explaining these associations have not been fully elucidated, underlying mechanisms of oxidative stress, chronic low-grade inflammation, endothelial dysfunction and vasoconstriction, and neurodegenerative impairments may be involved. Given that IR is a modifiable risk factor, it may be important to identify patients at a high IR level with prompt treatment, which may decrease the risk of developing certain ocular diseases. Additionally, improving IR through the activation of insulin signaling pathways could become a potential therapeutic target.


Subject(s)
Insulin Resistance , Humans , Insulin Resistance/physiology , Retina/metabolism , Retina/pathology , Diabetic Retinopathy/metabolism , Animals , Retinal Diseases/metabolism , Eye Diseases/metabolism , Eye Diseases/etiology , Oxidative Stress/physiology , Macular Degeneration/metabolism , Glaucoma/metabolism , Glaucoma/physiopathology , Risk Factors
15.
Prostaglandins Other Lipid Mediat ; 174: 106864, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38955261

ABSTRACT

The vasculature of the retina is exposed to systemic and local factors that have the capacity to induce several retinal vascular diseases, each of which may lead to vision loss. Prostaglandin signaling has arisen as a potential therapeutic target for several of these diseases due to the diverse manners in which these lipid mediators may affect retinal blood vessel function. Previous reports and clinical practices have investigated cyclooxygenase (COX) inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs) to address retinal diseases with varying degrees of success; however, targeting individual prostanoids or their distinct receptors affords more signaling specificity and poses strong potential for therapeutic development. This review offers a comprehensive view of prostanoid signaling involved in five key retinal vascular diseases: retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, retinal occlusive diseases, and uveitis. Mechanistic and clinical studies of these lipid mediators provide an outlook for therapeutic development with the potential to reduce vision loss in each of these conditions.


Subject(s)
Prostaglandins , Retinal Diseases , Signal Transduction , Humans , Prostaglandins/metabolism , Retinal Diseases/metabolism , Retinal Diseases/drug therapy , Animals , Retinal Vessels/metabolism , Retinal Vessels/pathology
16.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062961

ABSTRACT

Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.


Subject(s)
Fatty Acid-Binding Proteins , Humans , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Animals , Retinal Diseases/metabolism , Retina/metabolism , Diabetic Retinopathy/metabolism
17.
J Neuroinflammation ; 21(1): 170, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997746

ABSTRACT

Ischemia-induced retinopathy is a hallmark finding of common visual disorders including diabetic retinopathy (DR) and central retinal artery and vein occlusions. Treatments for ischemic retinopathies fail to improve clinical outcomes and the design of new therapies will depend on understanding the underlying disease mechanisms. Histone deacetylases (HDACs) are an enzyme class that removes acetyl groups from histone and non-histone proteins, thereby regulating gene expression and protein function. HDACs have been implicated in retinal neurovascular injury in preclinical studies in which nonspecific HDAC inhibitors mitigated retinal injury. Histone deacetylase 3 (HDAC3) is a class I histone deacetylase isoform that plays a central role in the macrophage inflammatory response. We recently reported that myeloid cells upregulate HDAC3 in a mouse model of retinal ischemia-reperfusion (IR) injury. However, whether this cellular event is an essential contributor to retinal IR injury is unknown. In this study, we explored the role of myeloid HDAC3 in ischemia-induced retinal neurovascular injury by subjecting myeloid-specific HDAC3 knockout (M-HDAC3 KO) and floxed control mice to retinal IR. The M-HDAC3 KO mice were protected from retinal IR injury as shown by the preservation of inner retinal neurons, vascular integrity, and retinal thickness. Electroretinography confirmed that this neurovascular protection translated to improved retinal function. The retinas of M-HDAC3 KO mice also showed less proliferation and infiltration of myeloid cells after injury. Interestingly, myeloid cells lacking HDAC3 more avidly engulfed apoptotic cells in vitro and after retinal IR injury in vivo compared to wild-type myeloid cells, suggesting that HDAC3 hinders the reparative phagocytosis of dead cells, a process known as efferocytosis. Further mechanistic studies indicated that although HDAC3 KO macrophages upregulate the reparative enzyme arginase 1 (A1) that enhances efferocytosis, the inhibitory effect of HDAC3 on efferocytosis is not solely dependent on A1. Finally, treatment of wild-type mice with the HDAC3 inhibitor RGFP966 ameliorated the retinal neurodegeneration and thinning caused by IR injury. Collectively, our data show that HDAC3 deletion enhances macrophage-mediated efferocytosis and protects against retinal IR injury, suggesting that inhibiting myeloid HDAC3 holds promise as a novel therapeutic strategy for preserving retinal integrity after ischemic insult.


Subject(s)
Histone Deacetylases , Mice, Inbred C57BL , Mice, Knockout , Animals , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Mice , Myeloid Cells/metabolism , Phagocytosis/drug effects , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Retina/metabolism , Retina/pathology , Efferocytosis
18.
Invest Ophthalmol Vis Sci ; 65(6): 33, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38904639

ABSTRACT

Purpose: Recent studies have shown that the retinal pigment epithelium (RPE) relies on fatty acid oxidation (FAO) for energy, however, its role in overall retinal health is unknown. The only FAO disorder that presents with chorioretinopathy is long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Studying the molecular mechanisms can lead to new treatments for patients and elucidate the role of FAO in the RPE. This paper characterizes the chorioretinopathy progression in a recently reported LCHADD mouse model. Methods: Visual assessments, such as optokinetic tracking and fundus imaging, were performed in wildtype (WT) and LCHADD mice at 3, 6, 10, and 12 months of age. Retinal morphology was analyzed in 12-month retinal cross-sections using hematoxylin and eosin (H&E), RPE65, CD68, and TUNEL staining, whereas RPE structure was assessed using transmission electron microscopy (TEM). Acylcarnitine profiles were measured in isolated RPE/sclera samples to determine if FAO was blocked. Bulk RNA-sequencing of 12 month old male WT mice and LCHADD RPE/sclera samples assessed gene expression changes. Results: LCHADD RPE/sclera samples had a 5- to 7-fold increase in long-chain hydroxyacylcarnitines compared to WT, suggesting an impaired LCHAD step in long-chain FAO. LCHADD mice have progressively decreased visual performance and increased RPE degeneration starting at 6 months. LCHADD RPE have an altered structure and a two-fold increase in macrophages in the subretinal space. Finally, LCHADD RPE/sclera have differentially expressed genes compared to WT, including downregulation of genes important for RPE function and angiogenesis. Conclusions: Overall, this LCHADD mouse model recapitulates early-stage chorioretinopathy seen in patients with LCHADD and is a useful model for studying LCHADD chorioretinopathy.


Subject(s)
Disease Models, Animal , Retinal Pigment Epithelium , Animals , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Mice, Inbred C57BL , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase/metabolism , Choroid Diseases/genetics , Choroid Diseases/metabolism , Male , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/physiopathology , Microscopy, Electron, Transmission
19.
Nat Commun ; 15(1): 4756, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834544

ABSTRACT

Given the absence of approved treatments for pathogenic variants in Peripherin-2 (PRPH2), it is imperative to identify a universally effective therapeutic target for PRPH2 pathogenic variants. To test the hypothesis that formation of the elongated discs in presence of PRPH2 pathogenic variants is due to the presence of the full complement of rhodopsin in absence of the required amounts of functional PRPH2. Here we demonstrate the therapeutic potential of reducing rhodopsin levels in ameliorating disease phenotype in knockin models for p.Lys154del (c.458-460del) and p.Tyr141Cys (c.422 A > G) in PRPH2. Reducing rhodopsin levels improves physiological function, mitigates the severity of disc abnormalities, and decreases retinal gliosis. Additionally, intravitreal injections of a rhodopsin-specific antisense oligonucleotide successfully enhance the physiological function of photoreceptors and improves the ultrastructure of discs in mutant mice. Presented findings shows that reducing rhodopsin levels is an effective therapeutic strategy for the treatment of inherited retinal degeneration associated with PRPH2 pathogenic variants.


Subject(s)
Peripherins , Rhodopsin , Peripherins/genetics , Peripherins/metabolism , Animals , Rhodopsin/genetics , Rhodopsin/metabolism , Mice , Humans , Disease Models, Animal , Down-Regulation , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/therapy , Oligonucleotides, Antisense/genetics , Retina/metabolism , Retina/pathology , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/therapy , Mice, Inbred C57BL , Mutation , Female , Gene Knock-In Techniques , Male
20.
Exp Eye Res ; 245: 109980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914302

ABSTRACT

The dog retina contains a central macula-like region, and there are reports of central retinal disorders in dogs with shared genetic etiologies with humans. Defining central/peripheral gene expression profiles may provide insight into the suitability of dogs as models for human disorders. We determined central/peripheral posterior eye gene expression profiles in dogs and interrogated inherited retinal and macular disease-associated genes for differential expression between central and peripheral regions. Bulk tissue RNA sequencing was performed on 8 mm samples of the dog central and superior peripheral regions, sampling retina and retinal pigmented epithelium/choroid separately. Reads were mapped to CanFam3.1, read counts were analyzed to determine significantly differentially expressed genes (DEGs). A similar analytic pipeline was used with a published bulk-tissue RNA sequencing human dataset. Pathways and processes involved in significantly DEGs were identified (Database for Annotation, Visualization and Integrated Discovery). Dogs and humans shared the extent and direction of central retinal differential gene expression, with multiple shared biological pathways implicated in differential expression. Many genes implicated in heritable retinal disorders in dogs and humans were differentially expressed between central and periphery. Approximately half of genes associated with human age-related macular degeneration were differentially expressed in human and dog tissues. We have identified similarities and differences in central/peripheral gene expression profiles between dogs and humans which can be applied to further define the relevance of dogs as models for human retinal disorders.


Subject(s)
Retina , Dogs , Animals , Humans , Retina/metabolism , Gene Expression Regulation/physiology , Gene Expression Profiling , Disease Models, Animal , Transcriptome , Retinal Pigment Epithelium/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Male , Female , Choroid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL