Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.224
Filter
1.
Nat Commun ; 15(1): 5508, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951161

ABSTRACT

Keratoconus, a disorder characterized by corneal thinning and weakening, results in vision loss. Corneal crosslinking (CXL) can halt the progression of keratoconus. The development of accelerated corneal crosslinking (A-CXL) protocols to shorten the treatment time has been hampered by the rapid depletion of stromal oxygen when higher UVA intensities are used, resulting in a reduced cross-linking effect. It is therefore imperative to develop better methods to increase the oxygen concentration within the corneal stroma during the A-CXL process. Photocatalytic oxygen-generating nanomaterials are promising candidates to solve the hypoxia problem during A-CXL. Biocompatible graphitic carbon nitride (g-C3N4) quantum dots (QDs)-based oxygen self-sufficient platforms including g-C3N4 QDs and riboflavin/g-C3N4 QDs composites (RF@g-C3N4 QDs) have been developed in this study. Both display excellent photocatalytic oxygen generation ability, high reactive oxygen species (ROS) yield, and excellent biosafety. More importantly, the A-CXL effect of the g-C3N4 QDs or RF@g-C3N4 QDs composite on male New Zealand white rabbits is better than that of the riboflavin 5'-phosphate sodium (RF) A-CXL protocol under the same conditions, indicating excellent strengthening of the cornea after A-CXL treatments. These lead us to suggest the potential application of g-C3N4 QDs in A-CXL for corneal ectasias and other corneal diseases.


Subject(s)
Cross-Linking Reagents , Graphite , Oxygen , Quantum Dots , Riboflavin , Quantum Dots/chemistry , Animals , Graphite/chemistry , Oxygen/metabolism , Riboflavin/pharmacology , Rabbits , Male , Cross-Linking Reagents/chemistry , Nitrogen Compounds/chemistry , Reactive Oxygen Species/metabolism , Keratoconus/drug therapy , Keratoconus/metabolism , Ultraviolet Rays , Cornea/drug effects , Cornea/metabolism , Cornea/pathology , Humans , Photosensitizing Agents/pharmacology , Corneal Stroma/metabolism , Corneal Stroma/drug effects
2.
Invest Ophthalmol Vis Sci ; 65(8): 8, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958968

ABSTRACT

Purpose: The purpose of this study was to evaluate the biomechanical and hydration differences in scleral tissue after two modalities of collagen cross-linking. Methods: Scleral tissue from 40 adult white rabbit eyes was crosslinked by application of 0.1% Rose Bengal solution followed by 80 J/cm2 green light irradiation (RGX) or by application of 0.1% riboflavin solution followed by 5.4 J/cm2 ultraviolet A irradiation (UVX). Posterior scleral strips were excised from treated and untreated sclera for tensile and hydration-tensile tests. For tensile tests, the strips were subjected to uniaxial extension after excision. For hydration-tensile tests, the strips were dehydrated, rehydrated, and then tested. Young's modulus at 8% strain and swelling rate were estimated. ANOVAs were used to test treated-induced differences in scleral biomechanical and hydration properties. Results: Photo-crosslinked sclera tissue was stiffer (Young's modulus at 8% strain: 10.7 ± 4.5 MPa, on average across treatments) than untreated scleral tissue (7.1 ± 4.0 MPa). Scleral stiffness increased 132% after RGX and 90% after UVX compared to untreated sclera. Scleral swelling rate was reduced by 11% after RGX and by 13% after UVX. The stiffness of the treated sclera was also associated with the tissue hydration level. The lower the swelling, the higher the Young's modulus of RGX (-3.8% swelling/MPa) and UVX (-3.5% swelling/MPa) treated sclera. Conclusions: Cross-linking with RGX and UVX impacted the stiffness and hydration of rabbit posterior sclera. The Rose Bengal with green light irradiation may be an alternative method to determine the efficacy and suitability of inducing scleral tissue stiffening in the treatment of myopia.


Subject(s)
Cross-Linking Reagents , Photosensitizing Agents , Riboflavin , Rose Bengal , Sclera , Ultraviolet Rays , Animals , Rabbits , Cross-Linking Reagents/pharmacology , Photosensitizing Agents/pharmacology , Riboflavin/pharmacology , Rose Bengal/pharmacology , Tensile Strength , Biomechanical Phenomena , Elastic Modulus , Collagen/metabolism , Elasticity
3.
Turk J Ophthalmol ; 54(3): 120-126, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38853628

ABSTRACT

Objectives: To investigate the clinical efficacy and safety of the modified Cretan protocol in patients with post-laser in situ keratomileusis ectasia (PLE). Materials and Methods: In this retrospective study, 26 eyes of 16 patients with PLE were treated with the modified Cretan protocol (combined transepithelial phototherapeutic keratectomy and accelerated corneal collagen cross-linking). Visual, refractive, tomographic, and aberrometric outcomes and point spread function (PSF) were recorded preoperatively and at 6, 12, and 24 months after treatment. Results: Both uncorrected and best corrected visual acuity were stable at 24 months postoperatively compared to baseline (from 0.89±0.36 to 0.79±0.33 logarithm of the minimum angle of resolution [LogMAR] and 0.31±0.25 to 0.24±0.19 LogMAR, respectively, p>0.05 for all values). The mean K1, K2, Kmean, thinnest corneal thickness, and spherical aberration at baseline were 45.76±5.75 diopters (D), 48.62±6.17 D, 47.13±5.89 D, 433.16±56.86 µm, and -0.21±0.63 µm respectively. These values were reduced to 42.86±6.34 D, 45.92±6.74 D, 44.21±6.4 D, 391.07±54.76 µm, and -0.51±0.58 µm at 24 months postoperatively (p<0.001, p=0.002, p<0.001, p=0.001, and p=0.02, respectively). The mean spherical equivalent, manifest cylinder, Kmax, central corneal thickness, other corneal aberrations (root mean square, trefoil, coma, quatrefoil, astigmatism), and PSF remained stable (p>0.05 for all variables), while anterior and posterior elevation were significantly improved at 24 months postoperatively (p<0.001 and p=0.02, respectively). No surgical complications occurred during the 24-month follow-up. Conclusion: The modified Cretan protocol is a safe and effective treatment option for PLE patients that provides visual stabilization and significant improvement in topographic parameters during the 24-month follow-up. Further studies are needed to support our results.


Subject(s)
Corneal Topography , Cross-Linking Reagents , Keratomileusis, Laser In Situ , Photosensitizing Agents , Refraction, Ocular , Visual Acuity , Humans , Retrospective Studies , Keratomileusis, Laser In Situ/methods , Keratomileusis, Laser In Situ/adverse effects , Male , Female , Adult , Dilatation, Pathologic/etiology , Refraction, Ocular/physiology , Cross-Linking Reagents/therapeutic use , Treatment Outcome , Photosensitizing Agents/therapeutic use , Young Adult , Collagen , Lasers, Excimer/therapeutic use , Follow-Up Studies , Riboflavin/therapeutic use , Photochemotherapy/methods , Corneal Diseases/surgery , Corneal Diseases/etiology , Corneal Diseases/diagnosis , Corneal Diseases/physiopathology , Cornea/pathology , Cornea/surgery , Postoperative Complications/diagnosis , Myopia/surgery , Myopia/physiopathology , Ultraviolet Rays
4.
BMC Infect Dis ; 24(1): 636, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918706

ABSTRACT

BACKGROUND: Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. The intravascular worms acquire the nutrients necessary for their survival from host blood. Since all animals are auxotrophic for riboflavin (vitamin B2), schistosomes too must import it to survive. Riboflavin is an essential component of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD); these support key functions of dozens of flavoenzymes. METHODS: Here, using a combination of metabolomics, enzyme kinetics and in silico molecular analysis, we focus on the biochemistry of riboflavin and its metabolites in Schistosoma mansoni (Sm). RESULTS: We show that when schistosomes are incubated in murine plasma, levels of FAD decrease over time while levels of FMN increase. We show that live schistosomes cleave exogenous FAD to generate FMN and this ability is significantly blocked when expression of the surface nucleotide pyrophosphatase/phosphodiesterase ectoenzyme SmNPP5 is suppressed using RNAi. Recombinant SmNPP5 cleaves FAD with a Km of 178 ± 5.9 µM and Kcat/Km of 324,734 ± 36,347 M- 1.S- 1. The FAD-dependent enzyme IL-4I1 drives the oxidative deamination of phenylalanine to produce phenylpyruvate and H2O2. Since schistosomes are damaged by H2O2, we determined if SmNPP5 could impede H2O2 production by blocking IL-4I1 action in vitro. We found that this was not the case; covalently bound FAD on IL-4I1 appears inaccessible to SmNPP5. We also report that live schistosomes can cleave exogenous FMN to generate riboflavin and this ability is significantly impeded when expression of a second surface ectoenzyme (alkaline phosphatase, SmAP) is suppressed. Recombinant SmAP cleaves FMN with a Km of 3.82 ± 0.58 mM and Kcat/Km of 1393 ± 347 M- 1.S- 1. CONCLUSIONS: The sequential hydrolysis of FAD by tegumental ecto-enzymes SmNPP5 and SmAP can generate free vitamin B2 around the worms from where it can be conveniently imported by the recently described schistosome riboflavin transporter SmaRT. Finally, we identified in silico schistosome homologs of enzymes that are involved in intracellular vitamin B2 metabolism. These are riboflavin kinase (SmRFK) as well as FAD synthase (SmFADS); cDNAs encoding these two enzymes were cloned and sequenced. SmRFK is predicted to convert riboflavin to FMN while SmFADS could further act on FMN to regenerate FAD in order to facilitate robust vitamin B2-dependent metabolism in schistosomes.


Subject(s)
Flavin Mononucleotide , Flavin-Adenine Dinucleotide , Riboflavin , Schistosoma mansoni , Riboflavin/metabolism , Flavin Mononucleotide/metabolism , Animals , Flavin-Adenine Dinucleotide/metabolism , Schistosoma mansoni/metabolism , Schistosoma mansoni/genetics , Mice , Humans , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/metabolism
5.
J Refract Surg ; 40(6): e392-e397, 2024 May.
Article in English | MEDLINE | ID: mdl-38848056

ABSTRACT

PURPOSE: To compare the effects of corneal allogenic intrastromal ring segment (CAIRS) implantation on topographical measurements and visual outcomes of patients with keratoconus with and without corneal cross-linking (CXL) prior to the time of implantation. METHODS: Sixty-seven eyes with corneal allograft intrastromal ring segment implantation (KeraNatural; Lions VisionGift) due to advanced keratoconus were included in the study. Thirty-seven eyes had no CXL and 30 eyes had had CXL before being referred to the authors. The changes in spherical equivalent (SE), uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), steep keratometry (K1), flat keratometry (K2), mean keratometry (Kmean), maximum keratometry (Kmax), and thinnest pachymetry were retrospectively analyzed 6 months after the implantation. RESULTS: The median age was 29 years in the CXL group and 24.0 years in the non-CXL group (P > .05), respectively. All topographical and visual parameters before implantation were similar in both groups (P > .05 for all parameters). At 6 months, CDVA, K1, and Kmean showed higher improvement in the non-CXL group than the CXL group (P = .030, .018, and .039, respectively). CONCLUSIONS: CAIRS surgery has a flattening effect on both the corneas with and without CXL. The cornea with prior CXL treatment had less flattening effect due to the stiffening effect of prior CXL. [J Refract Surg. 2024;40(6):e392-e397.].


Subject(s)
Collagen , Corneal Stroma , Corneal Topography , Cross-Linking Reagents , Keratoconus , Photosensitizing Agents , Prostheses and Implants , Prosthesis Implantation , Refraction, Ocular , Visual Acuity , Humans , Keratoconus/physiopathology , Keratoconus/metabolism , Keratoconus/drug therapy , Keratoconus/surgery , Corneal Stroma/metabolism , Corneal Stroma/surgery , Cross-Linking Reagents/therapeutic use , Visual Acuity/physiology , Adult , Male , Female , Photosensitizing Agents/therapeutic use , Retrospective Studies , Young Adult , Refraction, Ocular/physiology , Collagen/metabolism , Corneal Pachymetry , Riboflavin/therapeutic use , Photochemotherapy/methods , Adolescent , Ultraviolet Rays , Corneal Transplantation/methods , Middle Aged , Corneal Cross-Linking
6.
Microb Cell Fact ; 23(1): 159, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822377

ABSTRACT

BACKGROUND: Bacillus subtilis is widely used in industrial-scale riboflavin production. Previous studies have shown that targeted mutagenesis of the ribulose 5-phosphate 3-epimerase in B. subtilis can significantly enhance riboflavin production. This modification also leads to an increase in purine intermediate concentrations in the medium. Interestingly, B. subtilis exhibits remarkable efficiency in purine nucleoside synthesis, often exceeding riboflavin yields. These observations highlight the importance of the conversion steps from inosine-5'-monophosphate (IMP) to 2,5-diamino-6-ribosylamino-4(3 H)-pyrimidinone-5'-phosphate (DARPP) in riboflavin production by B. subtilis. However, research elucidating the specific impact of these reactions on riboflavin production remains limited. RESULT: We expressed the genes encoding enzymes involved in these reactions (guaB, guaA, gmk, ndk, ribA) using a synthetic operon. Introduction of the plasmid carrying this synthetic operon led to a 3.09-fold increase in riboflavin production compared to the control strain. Exclusion of gmk from the synthetic operon resulted in a 36% decrease in riboflavin production, which was further reduced when guaB and guaA were not co-expressed. By integrating the synthetic operon into the genome and employing additional engineering strategies, we achieved riboflavin production levels of 2702 mg/L. Medium optimization further increased production to 3477 mg/L, with a yield of 0.0869 g riboflavin per g of sucrose. CONCLUSION: The conversion steps from IMP to DARPP play a critical role in riboflavin production by B. subtilis. Our overexpression strategies have demonstrated their effectiveness in overcoming these limiting factors and enhancing riboflavin production.


Subject(s)
Bacillus subtilis , Biosynthetic Pathways , Metabolic Engineering , Purines , Riboflavin , Riboflavin/biosynthesis , Riboflavin/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Purines/biosynthesis , Purines/metabolism , Metabolic Engineering/methods , Operon , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Sci Immunol ; 9(96): eadi8954, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905325

ABSTRACT

Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.


Subject(s)
Colitis , Dysbiosis , Gastrointestinal Microbiome , Mice, Inbred C57BL , Mucosal-Associated Invariant T Cells , Animals , Mucosal-Associated Invariant T Cells/immunology , Colitis/immunology , Colitis/microbiology , Dysbiosis/immunology , Mice , Gastrointestinal Microbiome/immunology , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Riboflavin/immunology
8.
Wei Sheng Yan Jiu ; 53(3): 455-464, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839588

ABSTRACT

OBJECTIVE: To establish an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method for simultaneous determination of 11 nutritional components(thiamine, riboflavin, nicotinamide, nicotinic acid, pantothenic acid, pyridoxine, pyridoxal, pyridoxamine, biotin, choline, L-carnitine) in liquid milk. METHODS: Milk samples were shaken with 20 mmol/L ammonium formate solution and heated in a water bath at 100 ℃ for 30 min, then incubated with papain and acid phosphatase at 45 ℃ for 16 h, the lower liquid was collected after centrifugation for analysis. UPLC separation was performed on an ACQUITY~(TM) HSS T3(3.0 mm×150 mm, 1.8 µm) column, 2 mmol/L ammonium formate(containing 0.1% formic acid) solution and acetonitrile(containing 0.1% formic acid) were used as mobile phase. Quantitative detection was performed by internal standard method. RESULTS: 11 nutritional components can be effectively separated and detected in 12 min, and the linear correlation coefficients(R~2) were all above 0.995. The limits of detection(LODs) were between 0.05 and 0.50 µg/L, and the limits of quantification(LOQs) were between 0.20 and 1.25 µg/L. The recovery rates of three-level addition were 85.6%-119.3%, and the precision RSDs were between 3.68% and 7.82%(n=6). Based on the detection of 60 liquid milk samples from 5 different animals, it was found that the contents of 11 nutrients in liquid milk from different milk sources were significantly different, but pyridoxine could not be detected. CONCLUSION: The method can quantitatively detect 11 water-soluble nutrients, including free and bound forms, by effective enzymolysis. It is sensitive, reproducible and can meet the needs of quantitative detection.


Subject(s)
Milk , Tandem Mass Spectrometry , Milk/chemistry , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid/methods , Niacinamide/analysis , Riboflavin/analysis , Nutrients/analysis , Pantothenic Acid/analysis , Cattle , Pyridoxine/analysis , Niacin/analysis , Carnitine/analysis
9.
Indian J Ophthalmol ; 72(Suppl 4): S639-S644, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38767551

ABSTRACT

PURPOSE: This study aimed to report the long-term results of combined topography-guided photorefractive keratectomy (PRK) and accelerated corneal collagen cross-linking (CXL) for keratoconus using the Zeiss refractive coordinated system. METHODS: A prospective interventional study was conducted in a tertiary eye care hospital in South India. Patients with mild-to-moderate progressive keratoconus and corneal pachymetry greater than 450 µm were included. They underwent customized topography-guided PRK followed by CXL. Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and keratometry readings and complications were evaluated at 1, 3, 6, 12, and 24 months postoperatively. RESULTS: Thirty patients (30 eyes) were included in the study. All study parameters showed a statistically significant improvement postoperatively over baseline values. At 24 months, the mean UDVA improved from 0.8 ± 0.180 logarithm of the minimum angle of resolution (logMAR) to 0.38 ± 0.118 logMAR ( P -value <0.001) and CDVA improved from 0.467 ± 0.142 logMAR to 0.227 ± 0.078 logMAR ( P -value <0.001). The mean flat, steep, and maximum keratometry values were significantly reduced by 2.133, 3, and 4.54 diopters, respectively, at the last follow-up examination ( P -value <0.001). CONCLUSION: The combined topography-guided PRK and accelerated CXL procedure seem to be a promising treatment alternative for early keratoconus. This is the first such study on the Zeiss refractive coordinated system. However, further studies with a larger study population and longer follow-up periods are required to draw final conclusions about the benefits of this procedure in keratoconus.


Subject(s)
Collagen , Corneal Topography , Cross-Linking Reagents , Keratoconus , Photochemotherapy , Photorefractive Keratectomy , Photosensitizing Agents , Refraction, Ocular , Riboflavin , Visual Acuity , Humans , Photorefractive Keratectomy/methods , Keratoconus/surgery , Keratoconus/diagnosis , Keratoconus/drug therapy , Keratoconus/physiopathology , Keratoconus/metabolism , Male , Prospective Studies , Female , Photosensitizing Agents/therapeutic use , Collagen/metabolism , Cross-Linking Reagents/therapeutic use , Visual Acuity/physiology , Adult , Young Adult , Photochemotherapy/methods , Riboflavin/therapeutic use , Refraction, Ocular/physiology , Follow-Up Studies , Lasers, Excimer/therapeutic use , Ultraviolet Rays , Surgery, Computer-Assisted/methods , Cornea/surgery , Cornea/pathology , Adolescent , Corneal Stroma/metabolism , Corneal Stroma/surgery , Treatment Outcome , Combined Modality Therapy
10.
ACS Nano ; 18(23): 15312-15325, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809601

ABSTRACT

The exceptional biocompatibility and adaptability of hydrogels have garnered significant interest in the biomedical field for the fabrication of biomedical devices. However, conventional synthetic hydrogels still exhibit relatively weak and fragile properties. Drawing inspiration from the photosynthesis process, we developed a facile approach to achieve a harmonious combination of superior mechanical properties and efficient preparation of silk fibroin hydrogel through photo-cross-linking technology, accomplished within 60 s. The utilization of riboflavin and H2O2 enabled a sustainable cyclic photo-cross-linking reaction, facilitating the transformation from tyrosine to dityrosine and ultimately contributing to the formation of highly cross-linked hydrogels. These photo-cross-linking hydrogels exhibited excellent elasticity and restorability even after undergoing 1000 cycles of compression. Importantly, our findings presented that hydrogel-encapsulated adipose stem cells possess the ability to stimulate cell proliferation along with stem cell stemness. This was evidenced by the continuous high expression levels of OCT4 and SOX2 over 21 days. Additionally, the utilization of photo-cross-linking hydrogels can be extended to various material molding platforms, including microneedles, microcarriers, and bone screws. Consequently, this study offered a significant approach to fabricating biomedical hydrogels capable of facilitating real-time cell delivery, thereby introducing an innovative avenue for designing silk devices with exceptional machinability and adaptability in biomedical applications.


Subject(s)
Cell Proliferation , Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Cell Proliferation/drug effects , Fibroins/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Animals , Cross-Linking Reagents/chemistry , Silk/chemistry , Photochemical Processes , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Riboflavin/chemistry , Riboflavin/pharmacology , Bombyx , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Humans
11.
Biomater Adv ; 161: 213898, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796957

ABSTRACT

In this study, we report the preparation of bio-inspired binary CuO/ZnO nanocomposite (bb-CuO/ZnO nanocomposite) via the biological route using Bauhinia variegata flower extract following hydrothermal treatment. The prepared bb-CuO/ZnO nanocomposite was electrophoretically deposited (EPD) on indium tin oxide (ITO) substrate to develop bb-CuO/ZnO/ITO biosensing electrode which is employed for the determination of vitamin B2 (Riboflavin) through electrochemical techniques. Physicochemical assets of the prepared bb-CuO/ZnO nanocomposite have been extensively evaluated and make use of different characterization techniques including powder XRD, FT-IR, AFM, SEM, TEM, EDX, XPS, Raman, and TGA. Electrochemical characteristics of the bb-CuO/ZnO/ITO biosensing electrode have been studied towards vitamin B2 determination. Furthermore, different biosensing parameters such as response time, reusability, stability, interference, and real sample analysis were also estimated. From the linear plot of scan rate, charge transfer rate constant (Ks), surface concentration of electrode (γ), and diffusion coefficient (D) have been calculated, and these are found to be 6.56 × 10-1 s-1, 1.21 × 10-7 mol cm-2, and 6.99 × 10-3 cm2 s-1, respectively. This biosensor exhibits the linear range of vitamin B2 detection from 1 to 40 µM, including sensitivity and limit of detection (LOD) of 1.37 × 10-3 mA/µM cm2 and 0.254 µM, respectively. For higher concentration range detection linearity is 50-100 µM, with sensitivity and the LOD of 1.26 × 10-3 mA/µM cm2 and 0.145 µM, respectively. The results indicate that the bio-inspired nanomaterials are promising sustainable biosensing platforms for various food and health-based biosensing devices.


Subject(s)
Bauhinia , Biosensing Techniques , Copper , Electrochemical Techniques , Flowers , Nanocomposites , Plant Extracts , Riboflavin , Zinc Oxide , Copper/chemistry , Copper/analysis , Plant Extracts/chemistry , Nanocomposites/chemistry , Electrochemical Techniques/methods , Flowers/chemistry , Biosensing Techniques/methods , Zinc Oxide/chemistry , Bauhinia/chemistry , Riboflavin/analysis , Riboflavin/chemistry , Electrodes , Limit of Detection
12.
Sci Total Environ ; 939: 173613, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38815822

ABSTRACT

Riboflavin (RF), as a common electron mediator that can accelerate extracellular electron transfer (EET), is usually used as a probe to confirm EET-microbiologically influenced corrosion (MIC). However, the acceleration mechanism of RF on EET-MIC is still unclear, especially the effect on gene expression in bacteria. In this study, a 13-mer antimicrobial peptide E6 and tetrakis hydroxymethyl phosphonium sulfate (THPS) were used as new tools to investigate the acceleration mechanism of RF on Fe0-to-microbe EET in corrosion of EH36 steel caused by Pseudomonas aeruginosa. 60 min after 20 ppm (v/v) THPS and 20 ppm THPS & 100 nM E6 were injected into P. aeruginosa 1 and P. aeruginosa 2 (two glass bottles containing P. aeruginosa with different treatments) at the 3-d incubation, respectively, P. aeruginosa 1 and P. aeruginosa 2 had a similar planktonic cell count, whereas the sessile cell count in P. aeruginosa 1 was 1.3 log higher than that in P. aeruginosa 2. After the 3-d pre-growth and subsequent 7-d incubation, the addition of 20 ppm (w/w) RF increased the weight loss and maximum pit depth of EH36 steel in P. aeruginosa 1 by 0.7 mg cm-2 and 4.1 µm, respectively, while only increasing those in P. aeruginosa 2 by 0.4 mg cm-2 and 1.7 µm, respectively. This suggests that RF can be utilized by P. aeruginosa biofilms since the corrosion rate should be elevated by the same value if it only acts on the planktonic cells. Furthermore, the EET capacity of P. aeruginosa biofilm was enhanced by RF because the protein expression of cytochrome c (Cyt c) gene in sessile cells was significantly increased in the presence of RF, which accelerated EET-MIC by P. aeruginosa against EH36 steel.


Subject(s)
Pseudomonas aeruginosa , Riboflavin , Steel , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Corrosion , Electron Transport/drug effects , Biofilms/drug effects
13.
J Chem Inf Model ; 64(11): 4570-4586, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38800845

ABSTRACT

It is nowadays clear that RNA molecules can play active roles in several biological processes. As a result, an increasing number of RNAs are gradually being identified as potentially druggable targets. In particular, noncoding RNAs can adopt highly organized conformations that are suitable for drug binding. However, RNAs are still considered challenging targets due to their complex structural dynamics and high charge density. Thus, elucidating relevant features of drug-RNA binding is fundamental for advancing drug discovery. Here, by using Molecular Dynamics simulations, we compare key features of ligand binding to proteins with those observed in RNA. Specifically, we explore similarities and differences in terms of (i) conformational flexibility of the target, (ii) electrostatic contribution to binding free energy, and (iii) water and ligand dynamics. As a test case, we examine binding of the same ligand, namely riboflavin, to protein and RNA targets, specifically the riboflavin (RF) kinase and flavin mononucleotide (FMN) riboswitch. The FMN riboswitch exhibited enhanced fluctuations and explored a wider conformational space, compared to the protein target, underscoring the importance of RNA flexibility in ligand binding. Conversely, a similar electrostatic contribution to the binding free energy of riboflavin was found. Finally, greater stability of water molecules was observed in the FMN riboswitch compared to the RF kinase, possibly due to the different shape and polarity of the pockets.


Subject(s)
Molecular Dynamics Simulation , RNA , Riboflavin , Riboswitch , Riboflavin/chemistry , Riboflavin/metabolism , Ligands , RNA/chemistry , RNA/metabolism , Protein Binding , Nucleic Acid Conformation , Thermodynamics , Static Electricity , Protein Conformation , Water/chemistry
14.
Int J Biol Macromol ; 270(Pt 2): 132313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740156

ABSTRACT

The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (ß-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic ß-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of ß-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.


Subject(s)
Alginates , Emulsions , Pea Proteins , Riboflavin , beta Carotene , beta Carotene/chemistry , Alginates/chemistry , Riboflavin/chemistry , Emulsions/chemistry , Pea Proteins/chemistry , Drug Compounding/methods , Hydrophobic and Hydrophilic Interactions , Solubility , Drug Stability , Capsules
15.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691425

ABSTRACT

The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.


Subject(s)
Rhizopus , Symbiosis , Rhizopus/metabolism , Rhizopus/genetics , Spores, Fungal/genetics , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Flavins/metabolism , CRISPR-Cas Systems , Riboflavin/metabolism
16.
BMJ Case Rep ; 17(5)2024 May 21.
Article in English | MEDLINE | ID: mdl-38772872

ABSTRACT

Acanthamoeba keratitis (AK) is a rare but potentially sight-threatening complication of corneal collagen crosslinking (CXL) for keratoconus. In this report, we describe an early adolescent male who underwent routine CXL for progressive keratoconus in his left eye. Preprocedural left visual acuity (VA) was 6/9. At day 5 postprocedure, multifocal corneal infiltrates were identified. Corneal scrape, bandage contact lens cultures and herpetic and Acanthamoeba PCR were negative. In vivo, confocal microscopy (IVCM) identified Acanthamoeba cysts within the corneal stroma. Intensive amoebicidal therapy was initiated, but recovery was complicated by significant inflammation, resulting in widespread aggressive corneal vascularisation necessitating topical steroids and steroid-sparing agents. At 10 months, his left VA was 6/24. This report emphasises the importance of maintaining a high index of suspicion for AK in cases of post-CXL microbial keratitis and highlights the diagnostic value of IVCM, particularly in culture-negative and PCR-negative cases.


Subject(s)
Acanthamoeba Keratitis , Keratoconus , Microscopy, Confocal , Acanthamoeba Keratitis/diagnosis , Acanthamoeba Keratitis/drug therapy , Humans , Male , Keratoconus/drug therapy , Keratoconus/diagnosis , Adolescent , Riboflavin/therapeutic use , Collagen , Photosensitizing Agents/therapeutic use , Cross-Linking Reagents/therapeutic use , Visual Acuity , Cornea/parasitology , Cornea/pathology , Acanthamoeba/isolation & purification , Corneal Stroma/pathology , Corneal Stroma/parasitology
17.
Curr Opin Ophthalmol ; 35(4): 273-277, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700496

ABSTRACT

PURPOSE OF REVIEW: To review corneal crosslinking for keratoconus and corneal ectasia, and recent developments in the field. This study will review the mechanism of crosslinking, clinical approaches, current results, and potential future innovations. RECENT FINDINGS: Corneal crosslinking for keratoconus was first approved by U.S. FDA in 2016. Recent studies have confirmed the general long-term efficacy of the procedure in decreasing progression of keratoconus and corneal ectasia. New types of crosslinking protocols, such as transepithelial treatments, are under investigation. In addition, adjunctive procedures have been developed to improve corneal contour and visual function in these patients. SUMMARY: Crosslinking has been found to be well tolerated and effective with the goal of decreasing progression of ectatic corneal diseases, keratoconus and corneal ectasia after refractive surgery. Studies have shown its long-term efficacy. New techniques of crosslinking and adjunctive procedures may further improve treatments and results.


Subject(s)
Collagen , Cross-Linking Reagents , Keratoconus , Photochemotherapy , Photosensitizing Agents , Riboflavin , Ultraviolet Rays , Keratoconus/drug therapy , Humans , Cross-Linking Reagents/therapeutic use , Riboflavin/therapeutic use , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Dilatation, Pathologic/drug therapy , Collagen/metabolism , Corneal Stroma/metabolism
18.
Curr Opin Ophthalmol ; 35(4): 315-321, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700950

ABSTRACT

PURPOSE OF REVIEW: This manuscript summarizes contemporary research from 2018 to 2023 evaluating long-term (≥2 years) outcomes of corneal crosslinking (CXL) for progressive keratoconus (KCN). RECENT FINDINGS: The standard Dresden protocol (SDP) has been utilized clinically since the early 2000 s to treat ectatic disorders, primarily progressive KCN and postrefractive ectasia. Various modifications have since been introduced including accelerated and transepithelial protocols, which are aimed at improving outcomes or reducing complications. This review summarizes data demonstrating that the SDP halts disease progression and improves various visual and topographic indices (UDVA, CDVA, Kmax, K1, K2) up to 13 years postoperatively. Accelerated and transepithelial protocols have been found to be well tolerated alternatives to SDP with similar efficacy profiles. Studies focusing on pediatric populations identified overall higher progression rates after CXL. All protocols reviewed had excellent safety outcomes in adults and children. SUMMARY: Recent studies revealed that SDP successfully stabilizes KCN long term, and a variety of newer protocols are also effective. Pediatric patients may exhibit higher progression rates after CXL. Further research is required to enhance the efficacy and ease of these protocols.


Subject(s)
Collagen , Cross-Linking Reagents , Keratoconus , Photochemotherapy , Photosensitizing Agents , Riboflavin , Visual Acuity , Humans , Keratoconus/drug therapy , Keratoconus/physiopathology , Cross-Linking Reagents/therapeutic use , Photosensitizing Agents/therapeutic use , Riboflavin/therapeutic use , Photochemotherapy/methods , Collagen/therapeutic use , Visual Acuity/physiology , Ultraviolet Rays , Corneal Stroma/metabolism , Corneal Stroma/drug effects , Treatment Outcome , Corneal Topography
19.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732087

ABSTRACT

Non-muscle invasive bladder cancer is a common tumour in men and women. In case of resistance to the standard therapeutic agents, gemcitabine can be used as off-label instillation therapy into the bladder. To reduce potential side effects, continuous efforts are made to optimise the therapeutic potential of drugs, thereby reducing the effective dose and consequently the pharmacological burden of the medication. We recently demonstrated that it is possible to significantly increase the therapeutic efficacy of mitomycin C against a bladder carcinoma cell line by exposure to non-toxic doses of blue light (453 nm). In the present study, we investigated whether the therapeutically supportive effect of blue light can be further enhanced by the additional use of the wavelength-specific photosensitiser riboflavin. We found that the gemcitabine-induced cytotoxicity of bladder cancer cell lines (BFTC-905, SW-1710, RT-112) was significantly enhanced by non-toxic doses of blue light in the presence of riboflavin. Enhanced cytotoxicity correlated with decreased levels of mitochondrial ATP synthesis and increased lipid peroxidation was most likely the result of increased oxidative stress. Due to these properties, blue light in combination with riboflavin could represent an effective therapy option with few side effects and increase the success of local treatment of bladder cancer, whereby the dose of the chemotherapeutic agent used and thus the chemical load could be significantly reduced with similar or improved therapeutic success.


Subject(s)
Deoxycytidine , Gemcitabine , Light , Riboflavin , Urinary Bladder Neoplasms , Humans , Riboflavin/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Oxidative Stress/drug effects , Cell Survival/drug effects , Cell Survival/radiation effects , Lipid Peroxidation/drug effects , Adenosine Triphosphate/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/radiation effects , Blue Light
20.
BMC Public Health ; 24(1): 1224, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702746

ABSTRACT

BACKGROUND: Accumulating evidence suggests a pivotal role of vitamin B2 in the pathogenesis and progression of prostate cancer (PCa). Vitamin B2 intake has been postulated to modulate the screening rate for PCa by altering the concentration of prostate-specific antigen(PSA). However, the relationship between vitamin B2 and PSA remains indeterminate. Hence, we conducted a comprehensive evaluation of the association between vitamin B2 intake and PSA levels, utilizing data from the National Health and Nutrition Examination Survey (NHANES) database. METHODS: From a pool of 20,371 participants in the NHANES survey conducted between 2003 and 2010, a cohort of 2,323 participants was selected for the present study. The male participants were classified into four distinct groups based on their levels of vitamin B2 intake. We employed a multiple linear regression model and a non-parametric regression method to investigate the relationship between vitamin B2 and PSA levels. RESULTS: The study cohort comprised of 2,323 participants with a mean age of 54.95 years (± 11.73). Our findings revealed a statistically significant inverse correlation between vitamin B2 intake (mg) and PSA levels, with a reduction of 0.13 ng/ml PSA concentration for every unit increase in vitamin B2 intake. Furthermore, we employed a fully adjusted model to construct a smooth curve to explore the possible linear relationship between vitamin B2 intake and PSA concentration. CONCLUSIONS: Our study in American men has unveiled a notable inverse association between vitamin B2 intake and PSA levels, potentially posing a challenge for the identification of asymptomatic prostate cancer. Specifically, our findings suggest that individuals with higher vitamin B2 intake may be at a greater risk of being diagnosed with advanced prostate cancer in the future, possibly indicating a detection bias. These results may offer a novel explanation for the observed positive correlation between vitamin B2 intake and prostate cancer.


Subject(s)
Nutrition Surveys , Prostate-Specific Antigen , Prostatic Neoplasms , Riboflavin , Humans , Male , Prostate-Specific Antigen/blood , Middle Aged , United States/epidemiology , Aged , Prostatic Neoplasms/blood , Prostatic Neoplasms/epidemiology , Riboflavin/administration & dosage , Adult
SELECTION OF CITATIONS
SEARCH DETAIL