Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
JCI Insight ; 9(18)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088277

ABSTRACT

Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development. Few small-animal models of RVF encephalitis exist, further complicating countermeasure assessment. Human mAbs RVFV-140, RVFV-268, and RVFV-379 are recombinant potently neutralizing antibodies that prevent infection by binding the RVFV surface glycoproteins. Previous studies showed that both RVFV-268 and RVFV-140 improve survival in a lethal mouse model of disease, and RVFV-268 has prevented vertical transmission in a pregnant rat model of infection. Despite these successes, evaluation of mAbs in the context of brain disease has been limited. This is the first study to our knowledge to assess neutralizing antibodies for prevention of RVF neurologic disease using a rat model. Administration of RVFV-140, RVFV-268, or RVFV-379 24 hours prior to aerosol exposure to the virulent ZH501 strain of RVFV resulted in substantially enhanced survival and lack of neurological signs of disease. These results using a stringent and highly lethal aerosol infection model support the potential use of human mAbs to prevent the development of RVF encephalitis.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Disease Models, Animal , Rift Valley Fever , Rift Valley fever virus , Animals , Rift Valley Fever/immunology , Rift Valley Fever/prevention & control , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Rats , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Humans , Rift Valley fever virus/immunology , Antibodies, Viral/immunology , Female , Mice
2.
PLoS Negl Trop Dis ; 18(8): e0012011, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159263

ABSTRACT

Rift Valley fever (RVF) is an important zoonotic viral disease affecting several species of domestic and wild ruminants, causing major economic losses and dozens of human deaths in various geographical areas of Africa, where it is endemic. Although it is not present in Europe, there is a risk of its introduction and spread linked to globalisation and climate change. At present, the only measure that could help to prevent the disease is vaccination of flocks in areas at risk of RVF. Available live attenuated vaccines are an effective means of controlling the disease, but their use is often questioned due to residual virulence, particularly in susceptible hosts such as pregnant sheep. On the other hand, no vaccine is currently licensed for use in humans. The development of safe and effective vaccines is therefore a major area of research. In previous studies, we selected under selective mutagenic pressure a highly attenuated RVFV 56/74 virus variant called 40Fp8. This virus showed an extremely attenuated phenotype in both wild-type and immunodeficient A129 (IFNARKO) mice, yet was still able to induce protective immunity after a single inoculation, thus supporting its use as a safe, live attenuated vaccine. To further investigate its safety, in this work we have analysed the attenuation level of 40Fp8 in immunosuppressed mice (A129) when administered by the intranasal route, and compared it with other attenuated RVF viruses that are the basis of vaccines in use or in development. Our results show that 40Fp8 has a much higher attenuated level than these other viruses and confirm its potential as a candidate for safe RVF vaccine development.


Subject(s)
Administration, Intranasal , Rift Valley Fever , Rift Valley fever virus , Vaccines, Attenuated , Viral Vaccines , Animals , Rift Valley Fever/prevention & control , Rift Valley Fever/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Rift Valley fever virus/immunology , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Vaccination/methods , Antibodies, Viral/blood
3.
Methods Mol Biol ; 2824: 147-164, 2024.
Article in English | MEDLINE | ID: mdl-39039412

ABSTRACT

Single-domain antibodies, referred to as VHH (variable heavy chains of heavy chain-only antibodies) or in their commercial name as nanobodies, are potent tools for the detection of target proteins in biological samples. They have the advantage of being highly stable, specific, and sensitive, with affinities reaching the nanomolar range. We utilized this tool to develop a rapid detection method that discriminates cells infected with Rift Valley fever virus (RVFV), based on the intracellular detection of the viral nonstructural NSm protein localized on the outer membrane of mitochondria. Here we describe how NSm-specific VHHs have been produced, cloned, and characterized, highlighting their value in RVFV research and diagnosis. This work may also raise interest in other potential applications such as antiviral therapy.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Single-Domain Antibodies , Viral Nonstructural Proteins , Rift Valley fever virus/immunology , Single-Domain Antibodies/immunology , Humans , Rift Valley Fever/immunology , Rift Valley Fever/diagnosis , Rift Valley Fever/virology , Viral Nonstructural Proteins/immunology , Animals , Antibodies, Viral/immunology
4.
Methods Mol Biol ; 2824: 385-395, 2024.
Article in English | MEDLINE | ID: mdl-39039425

ABSTRACT

Rift Valley fever (RVF) caused by Rift Valley fever virus (RVFV) is a major health concern for both domesticated animals and humans in certain endemic areas of Africa. With changing environmental conditions and identification of vectors capable of transmitting the virus, there is high risk of RVFV spreading into other parts of the world. Furthermore, unavailability of effective vaccines in the event of an outbreak can be a major challenge as witnessed recently in case of SARS-CoV2 pandemic. Hence, identifying potential vaccines and testing their protective efficacy in preclinical models before clinical testing is the absolute need of the hour. Here, we describe methods used to quantify virus-specific T cell responses in mice that were immunized with RVFV strains or antigens.


Subject(s)
Rift Valley fever virus , T-Lymphocytes , Viral Vaccines , Animals , Mice , T-Lymphocytes/immunology , Rift Valley fever virus/immunology , Viral Vaccines/immunology , Rift Valley Fever/immunology , Rift Valley Fever/prevention & control , Immunization/methods , Vaccination/methods , Antigens, Viral/immunology
5.
Viruses ; 16(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39066162

ABSTRACT

Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Middle East. Live-attenuated RVF vaccines have been studied for both veterinary and human use due to their strong immunogenicity and cost-effective manufacturing. The live-attenuated MP-12 vaccine has been conditionally approved for veterinary use in the U.S.A., and next-generation live-attenuated RVF vaccine candidates are being actively researched. Assessing the virulence phenotype of vaccine seeds or lots is crucial for managing vaccine safety. Previously, preweaning 19-day-old outbred CD1 mice have been used to evaluate the MP-12 strain. This study aimed to characterize the relative virulence of three live-attenuated RVF vaccine strains in 19-day-old inbred C57BL/6 mice: the recombinant MP-12 (rMP-12), the RVax-1, and the ∆NSs-∆NSm-rZH501 strains. Although this mouse model did not show dose-dependent pathogenesis, mice that succumbed to the infection exhibited distinct brain pathology. Mice infected with ∆NSs-∆NSm-rZH501 showed an infiltration of inflammatory cells associated with infected neurons, and focal lesions formed around virus-infected cells. In contrast, mice infected with rMP-12 or RVax-1 showed a minimal association of inflammatory cells in the brain, yet the virus spread diffusely. The preweaning model is likely useful for evaluating host responses to attenuated RVFV strains, although further refinement may be necessary to quantitate the virulence among different RVFV strains or vaccine lots.


Subject(s)
Disease Models, Animal , Mice, Inbred C57BL , Rift Valley Fever , Rift Valley fever virus , Vaccines, Attenuated , Viral Vaccines , Animals , Rift Valley fever virus/pathogenicity , Rift Valley fever virus/immunology , Rift Valley fever virus/genetics , Rift Valley Fever/virology , Rift Valley Fever/pathology , Rift Valley Fever/prevention & control , Rift Valley Fever/immunology , Mice , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Virulence , Female
6.
J Infect Dev Ctries ; 18(7): 1090-1099, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39078795

ABSTRACT

INTRODUCTION: This immunoinformatic study identified potential epitopes from the envelopment polyprotein (Gn/Gc) of Rift Valley fever virus (RVFV), a pathogenic virus causing severe fever in humans and livestock. Effective vaccination is crucial for controlling RVFV outbreaks. The identification of suitable epitopes is crucial for the development of safe and effective vaccines. METHODOLOGY: Protein sequences were obtained from the UniProt database, and evaluated through VaxiJen v2.0 to predict the B and T-cell epitopes within the RVFV glycoprotein. Gn/Gc protein sequences were analyzed with bioinformatics tools and algorithms. The predicted T-cell and B-cell epitopes were evaluated for antigenicity, allergenicity, and toxicity by the VaxiJen v2.0 system, AllerTop v2.0, and ToxinPred server, respectively. RESULTS: We employed computational methods to screen the RVFV envelopment polyprotein encompassing N-terminal and C-terminal glycoprotein segments, to discover antigenic T- and B-cell epitopes. Our analysis unveiled multiple potential epitopes within the RVFV glycoprotein, specifically within the Gn/Gc protein sequences. Subsequently, we selected eleven cytotoxic T-lymphocytes (CTL) and four helper T-lymphocytes (HTL) for population coverage analysis, which collectively extended to cover 97.04% of the world's population, representing diverse ethnicities and regions. Notably, the CTL epitope VQADLTLMF exhibited binding affinity to numerous human leukocyte antigen (HLA) alleles. The identification of glycoprotein (Gn/Gc) epitopes through this immunoinformatic study bears significant implications for advancing the development of an effective RVFV vaccine. CONCLUSIONS: These findings provide valuable insights into the immunological aspects of the disease and may contribute towards the development of broad-spectrum antiviral therapies targeting other RNA viruses with similar polymerase enzymes.


Subject(s)
Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Rift Valley fever virus , Rift Valley fever virus/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Humans , Viral Vaccines/immunology , Rift Valley Fever/prevention & control , Rift Valley Fever/immunology , Animals
7.
Emerg Microbes Infect ; 13(1): 2373313, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946528

ABSTRACT

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by RVF virus (RVFV). RVFV infections in humans are usually asymptomatic or associated with mild febrile illness, although more severe cases of haemorrhagic disease and encephalitis with high mortality also occur. Currently, there are no licensed human vaccines available. The safety and efficacy of a genetically engineered four-segmented RVFV variant (hRVFV-4s) as a potential live-attenuated human vaccine has been tested successfully in mice, ruminants, and marmosets though the correlates of protection of this vaccine are still largely unknown. In the present study, we have assessed hRVFV-4s-induced humoral and cellular immunity in a mouse model of RVFV infection. Our results confirm that a single dose of hRVFV-4s is highly efficient in protecting naïve mice from developing severe disease following intraperitoneal challenge with a highly virulent RVFV strain and data show that virus neutralizing (VN) serum antibody titres in a prime-boost regimen are significantly higher compared to the single dose. Subsequently, VN antibodies from prime-boost-vaccinated recipients were shown to be protective when transferred to naïve mice. In addition, hRVFV-4s vaccination induced a significant virus-specific T cell response as shown by IFN-γ ELISpot assay, though these T cells did not provide significant protection upon passive transfer to naïve recipient mice. Collectively, this study highlights hRVFV-4s-induced VN antibodies as a major correlate of protection against lethal RVFV infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Rift Valley Fever , Rift Valley fever virus , Vaccines, Attenuated , Viral Vaccines , Animals , Rift Valley fever virus/immunology , Rift Valley fever virus/genetics , Rift Valley Fever/prevention & control , Rift Valley Fever/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Female , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Disease Models, Animal , Immunity, Cellular , T-Lymphocytes/immunology , Immunity, Humoral , Mice, Inbred BALB C , Interferon-gamma/immunology , Vaccination
8.
Annu Rev Virol ; 11(1): 309-325, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38635867

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne virus endemic to Africa and the Middle East. RVFV infection can cause encephalitis, which is associated with significant morbidity and mortality. Studies of RVFV encephalitis following percutaneous inoculation, as would occur following a mosquito bite, have historically been limited by a lack of consistent animal models. In this review, we describe new insights into the pathogenesis of RVFV and the opportunities provided by new mouse models. We underscore the need to consider viral strain and route of inoculation when interpreting data obtained using animal models. We discuss the trafficking of RVFV and the role of host genetics and immunity in modulating the pathogenesis of RVFV encephalitis. We also explore potential strategies to prevent and treat central nervous system disease caused by RVFV and discuss remaining knowledge gaps.


Subject(s)
Disease Models, Animal , Rift Valley Fever , Rift Valley fever virus , Animals , Rift Valley fever virus/genetics , Rift Valley fever virus/pathogenicity , Rift Valley fever virus/immunology , Rift Valley fever virus/physiology , Rift Valley Fever/virology , Rift Valley Fever/immunology , Humans , Mice , Encephalitis, Viral/virology , Encephalitis, Viral/immunology , Host-Pathogen Interactions
9.
Front Immunol ; 14: 1194733, 2023.
Article in English | MEDLINE | ID: mdl-37720217

ABSTRACT

Type I interferons (IFN) are pro-inflammatory cytokines which can also exert anti-inflammatory effects via the regulation of interleukin (IL)-1 family members. Several studies showed that interferon receptor (IFNAR)-deficient mice develop severe liver damage upon treatment with artificial agonists such as acetaminophen or polyinosinic:polycytidylic acid. In order to investigate if these mechanisms also play a role in an acute viral infection, experiments with the Bunyaviridae family member Rift Valley fever virus (RVFV) were performed. Upon RVFV clone (cl)13 infection, IFNAR-deficient mice develop a severe liver injury as indicated by high activity of serum alanine aminotransferase (ALT) and histological analyses. Infected IFNAR-/- mice expressed high amounts of IL-36γ within the liver, which was not observed in infected wildtype (WT) animals. In line with this, treatment of WT mice with recombinant IL-36γ induced ALT activity. Furthermore, administration of an IL-36 receptor antagonist prior to infection prevented the formation of liver injury in IFNAR-/- mice, indicating that IL-36γ is causative for the observed liver damage. Mice deficient for adaptor molecules of certain pattern recognition receptors indicated that IL-36γ induction was dependent on mitochondrial antiviral-signaling protein and the retinoic acid-inducible gene-I-like receptor. Consequently, cell type-specific IFNAR knockouts revealed that type I IFN signaling in myeloid cells is critical in order to prevent IL-36γ expression and liver injury upon viral infection. Our data demonstrate an anti-inflammatory role of type I IFN in a model for virus-induced hepatitis by preventing the expression of the novel IL-1 family member IL-36γ.


Subject(s)
Interleukin-1 , Receptor, Interferon alpha-beta , Rift Valley Fever , Animals , Mice , Liver , Receptor, Interferon alpha-beta/genetics , Rift Valley fever virus/genetics , Rift Valley Fever/immunology
10.
J Virol ; 97(4): e0181422, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36939341

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Subject(s)
Autophagy , Immunity, Innate , Nucleoproteins , Rift Valley fever virus , Immunity, Innate/immunology , Rift Valley fever virus/immunology , Nucleoproteins/immunology , Nucleoproteins/metabolism , Autophagy/immunology , Virus Replication , Cell Line , Rift Valley Fever/immunology , Humans , Animals , Macrophages/virology
11.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35215938

ABSTRACT

Rift Valley fever (RVF) is a zoonotic disease caused by RVF Phlebovirus (RVFV). The RVFV MP-12 vaccine strain is known to exhibit residual virulence in the case of a deficient interferon type 1 response. The hypothesis of this study is that virus replication and severity of lesions induced by the MP-12 strain in immunocompromised mice depend on the specific function of the disturbed pathway. Therefore, 10 strains of mice with deficient innate immunity (B6-IFNARtmAgt, C.129S7(B6)-Ifngtm1Ts/J, B6-TLR3tm1Flv, B6-TLR7tm1Aki, NOD/ShiLtJ), helper T-cell- (CD4tm1Mak), cytotoxic T-cell- (CD8atm1Mak), B-cell- (Igh-Jtm1DhuN?+N2), combined T- and B-cell- (NU/J) and combined T-, B-, natural killer (NK) cell- and macrophage-mediated immunity (NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ (NSG) mice) were subcutaneously infected with RVFV MP-12. B6-IFNARtmAgt mice were the only strain to develop fatal disease due to RVFV-induced severe hepatocellular necrosis and apoptosis. Notably, no clinical disease and only mild multifocal hepatocellular necrosis and apoptosis were observed in NSG mice, while immunohistochemistry detected the RVFV antigen in the liver and the brain. No or low virus expression and no lesions were observed in the other mouse strains. Conclusively, the interferon type 1 response is essential for early control of RVFV replication and disease, whereas functional NK cells, macrophages and lymphocytes are essential for virus clearance.


Subject(s)
Adaptive Immunity , Immunity, Innate , Rift Valley Fever/immunology , Rift Valley fever virus/physiology , Animals , Apoptosis , Female , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Liver/immunology , Liver/virology , Macrophages/immunology , Macrophages/virology , Male , Mice , Mice, Inbred NOD , Rift Valley Fever/genetics , Rift Valley Fever/physiopathology , Rift Valley Fever/virology , Rift Valley fever virus/genetics , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/virology
12.
Am J Trop Med Hyg ; 106(1): 182-186, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34695799

ABSTRACT

Rift Valley fever phlebovirus (RVFV) is a mosquito-transmitted phlebovirus (Family: Phenuiviridae, Order: Bunyavirales) causing severe neonatal mortality and abortion primarily in domestic ruminants. The susceptibility of young domestic swine to RVFV and this species' role in geographic expansion and establishment of viral endemicity is unclear. Six commercially bred Landrace-cross piglets were inoculated subcutaneously with 105 plaque-forming units of RVFV ZH501 strain and two piglets received a sham inoculum. All animals were monitored for clinical signs, viremia, viral shedding, and antibody response for 14 days. Piglets did not develop evidence of clinical disease, become febrile, or experience decreased weight gain during the study period. A brief lymphopenia followed by progressive lymphocytosis was observed following inoculation in all piglets. Four piglets developed a brief viremia for 2 days post-inoculation and three of these had detectable virus in oronasal secretions three days post-inoculation. Primary inoculated piglets seroconverted and those that developed detectable viremias had the highest titers assessed by serum neutralization (1:64-1:256). Two viremic piglets had a lymphoplasmacytic encephalitis with glial nodules; RVFV was not detected by immunohistochemistry in these sections. While young piglets do not appear to readily develop clinical disease following RVFV infection, results suggest swine could be subclinically infected with RVFV.


Subject(s)
Rift Valley Fever/immunology , Rift Valley fever virus/immunology , Swine Diseases/virology , Animals , Brain/pathology , Brain/virology , Disease Susceptibility , Female , Immunohistochemistry , Liver/pathology , Liver/virology , Lymph Nodes/pathology , Lymph Nodes/virology , Male , RNA, Viral/blood , RNA, Viral/genetics , RNA, Viral/isolation & purification , Rift Valley Fever/blood , Rift Valley Fever/transmission , Rift Valley Fever/virology , Rift Valley fever virus/isolation & purification , Rift Valley fever virus/pathogenicity , Spleen/pathology , Spleen/virology , Sus scrofa , Swine , Swine Diseases/blood , Swine Diseases/immunology , Swine Diseases/transmission , Viremia/blood , Viremia/immunology , Viremia/virology
13.
Viruses ; 13(9)2021 08 30.
Article in English | MEDLINE | ID: mdl-34578299

ABSTRACT

Phleboviruses (genus Phlebovirus, family Phenuiviridae) are emerging pathogens of humans and animals. Sand-fly-transmitted phleboviruses are found in Europe, Africa, the Middle East, and the Americas, and are responsible for febrile illness and nervous system infections in humans. Rio Grande virus (RGV) is the only reported phlebovirus in the United States. Isolated in Texas from southern plains woodrats, RGV is not known to be pathogenic to humans or domestic animals, but serologic evidence suggests that sheep (Ovis aries) and horses (Equus caballus) in this region have been infected. Rift Valley fever virus (RVFV), a phlebovirus of Africa, is an important pathogen of wild and domestic ruminants, and can also infect humans with the potential to cause severe disease. The introduction of RVFV into North America could greatly impact U.S. livestock and human health, and the development of vaccines and countermeasures is a focus of both the CDC and USDA. We investigated the potential for serologic reagents used in RVFV diagnostic assays to also detect cells infected with RGV. Western blots and immunocytochemistry assays were used to compare the antibody detection of RGV, RVFV, and two other New World phlebovirus, Punta Toro virus (South and Central America) and Anhanga virus (Brazil). Antigenic cross-reactions were found using published RVFV diagnostic reagents. These findings will help to inform test interpretation to avoid false positive RVFV diagnoses that could lead to public health concerns and economically costly agriculture regulatory responses, including quarantine and trade restrictions.


Subject(s)
Cross Reactions/immunology , Phlebovirus/immunology , Reagent Kits, Diagnostic/standards , Rift Valley fever virus/immunology , Serologic Tests/standards , Animals , Bunyaviridae Infections/classification , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/immunology , Horses/virology , Phlebovirus/classification , Phlebovirus/pathogenicity , Rift Valley Fever/diagnosis , Rift Valley Fever/immunology , Rift Valley fever virus/pathogenicity , Serologic Tests/methods , Sheep/virology , United States
14.
mSphere ; 6(5): e0055621, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34494884

ABSTRACT

Discovered in 1931, Rift Valley fever virus (RVFV) is an arbovirus that causes disease in humans and livestock. In humans, disease ranges from a self-limiting febrile illness to a more severe hepatitis or encephalitis. There are currently no licensed human therapeutics for RVFV disease. Given the recent advances in the use of monoclonal antibodies (MAbs) for treating infectious disease, a panel of anti-RVFV Gn glycoprotein MAbs was developed and characterized. RVFV MAbs spanned a range of neutralizing abilities and mapped to distinct epitopes along Gn. The contribution of Fc effector functions in providing MAb-mediated protection from RVFV was assessed. IgG2a version MAbs had increased capacity to induce effector functions and conferred better protection from RVFV challenge in a lethal mouse model than IgG1 version MAbs. Overall, this study shows that Fc-mediated functions are a critical component of humoral protection from RVFV. IMPORTANCE Rift Valley fever virus (RVFV) is a mosquito-borne virus found throughout Africa and into the Middle East. It has a substantial disease burden; in areas of endemicity, up to 60% of adults are seropositive. With a case fatality rate of up to 3% and the ability to cause hemorrhagic fever and encephalitis, RVFV poses a serious threat to human health. Despite the known human disease burden and the fact that it is a NIAID category A priority pathogen and a WHO priority disease for research and development, there are no vaccines or therapeutics available for RVF. In this study, we developed and characterized a panel of monoclonal antibodies against the RVFV surface glycoprotein, Gn. We then demonstrated therapeutic efficacy in the prevention of RVF in vivo in an otherwise lethal mouse model. Finally, we revealed a role for Fc-mediated function in augmenting the protection provided by these antibodies.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/administration & dosage , Glycoproteins/immunology , Immunoglobulin G/administration & dosage , Rift Valley Fever/prevention & control , Animals , Disease Models, Animal , Epitopes/immunology , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rift Valley Fever/immunology , Rift Valley fever virus/immunology , Survival Analysis , Treatment Outcome
15.
J Virol ; 95(23): e0150621, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34495703

ABSTRACT

Rift Valley fever virus (RVFV) is an arbovirus found throughout Africa. It causes disease that is typically mild and self-limiting; however, some infected individuals experience severe manifestations, including hepatitis, encephalitis, or even death. Reports of RVFV encephalitis are notable among immunosuppressed individuals, suggesting a role for adaptive immunity in preventing this severe complication. This phenomenon has been modeled in C57BL/6 mice depleted of CD4 T cells prior to infection with DelNSs RVFV (RVFV containing a deletion of nonstructural protein NSs), resulting in late-onset encephalitis accompanied by high levels of viral RNA in the brain in 30% of animals. In this study, we sought to define the specific type(s) of CD4 T cells that mediate protection from RVFV encephalitis. The viral epitopes targeted by CD4 and CD8 T cells were defined in C57BL/6 mice, and tetramers for both CD4 and CD8 T cells were generated. RVFV-specific CD8 T cells were expanded and of a cytotoxic and proliferating phenotype in the liver following infection. RVFV-specific CD4 T cells were identified in the liver and spleen following infection and phenotyped as largely Th1 or Tfh subtypes. Knockout mice lacking various aspects of pathways important in Th1 and Tfh development and function were used to demonstrate that T-bet, CD40, CD40L, and major histocompatibility complex class II (MHC-II) mediated protection from RVFV encephalitis, while gamma interferon (IFN-γ) and interleukin-12 (IL-12) were dispensable. Virus-specific antibody responses correlated with protection from encephalitis in all mouse strains, suggesting that Tfh/B cell interactions modulate clinical outcome in this model. IMPORTANCE The prevention of RVFV encephalitis requires intact adaptive immunity. In this study, we developed reagents to detect RVFV-specific T cells and provide evidence for Tfh cells and CD40/CD40L interactions as critical mediators of this protection.


Subject(s)
CD40 Antigens , CD40 Ligand , Encephalitis, Viral/prevention & control , Rift Valley Fever/immunology , Rift Valley fever virus/immunology , Rift Valley fever virus/physiology , T-Lymphocytes/immunology , Africa , Animals , Antibody Formation , B-Lymphocytes/immunology , Brain/virology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Encephalitis, Viral/immunology , Encephalitis, Viral/virology , Epitopes , Female , Liver/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Viruses ; 13(8)2021 08 19.
Article in English | MEDLINE | ID: mdl-34452515

ABSTRACT

Diagnostic performance of an indirect enzyme-linked immunosorbent assay (I-ELISA) based on a recombinant nucleocapsid protein (rNP) of the Rift Valley fever virus (RVFV) was validated for the detection of the IgG antibody in sheep (n = 3367), goat (n = 2632), and cattle (n = 3819) sera. Validation data sets were dichotomized according to the results of a virus neutralization test in sera obtained from RVF-endemic (Burkina Faso, Democratic Republic of Congo, Mozambique, Senegal, Uganda, and Yemen) and RVF-free countries (France, Poland, and the USA). Cut-off values were defined using the two-graph receiver operating characteristic analysis. Estimates of the diagnostic specificity of the RVFV rNP I-ELISA in animals from RVF-endemic countries ranged from 98.6% (cattle) to 99.5% (sheep) while in those originating from RVF-free countries, they ranged from 97.7% (sheep) to 98.1% (goats). Estimates of the diagnostic sensitivity in ruminants from RVF-endemic countries ranged from 90.7% (cattle) to 100% (goats). The results of this large-scale international validation study demonstrate the high diagnostic accuracy of the RVFV rNP I-ELISA. Standard incubation and inactivation procedures evaluated did not have an adverse effect on the detectable levels of the anti-RVFV IgG in ruminant sera and thus, together with recombinant antigen-based I-ELISA, provide a simple, safe, and robust diagnostic platform that can be automated and carried out outside expensive bio-containment facilities. These advantages are particularly important for less-resourced countries where there is a need to accelerate and improve RVF surveillance and research on epidemiology as well as to advance disease control measures.


Subject(s)
Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Rift Valley Fever/blood , Rift Valley fever virus/immunology , Animals , Cattle/blood , Goats/blood , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Rift Valley Fever/diagnosis , Rift Valley Fever/immunology , Rift Valley Fever/virology , Rift Valley fever virus/genetics , Rift Valley fever virus/isolation & purification , Sheep/blood
17.
PLoS One ; 16(5): e0251263, 2021.
Article in English | MEDLINE | ID: mdl-34010292

ABSTRACT

Rift Valley fever virus (RVFV), an arbovirus belonging to the Phlebovirus genus of the Phenuiviridae family, causes the zoonotic and mosquito-borne RVF. The virus, which primarily affects livestock (ruminants and camels) and humans, is at the origin of recent major outbreaks across the African continent (Mauritania, Libya, Sudan), and in the South-Western Indian Ocean (SWIO) islands (Mayotte). In order to be better prepared for upcoming outbreaks, to predict its introduction in RVFV unscathed countries, and to run efficient surveillance programmes, the priority is harmonising and improving the diagnostic capacity of endemic countries and/or countries considered to be at risk of RVF. A serological inter-laboratory proficiency test (PT) was implemented to assess the capacity of veterinary laboratories to detect antibodies against RVFV. A total of 18 laboratories in 13 countries in the Middle East, North Africa, South Africa, and the Indian Ocean participated in the initiative. Two commercial kits and two in-house serological assays for the detection of RVFV specific IgG antibodies were tested. Sixteen of the 18 participating laboratories (88.9%) used commercial kits, the analytical performance of test sensitivity and specificity based on the seroneutralisation test considered as the reference was 100%. The results obtained by the laboratories which used the in-house assay were correct in only one of the two criteria (either sensitivity or specificity). In conclusion, most of the laboratories performed well in detecting RVFV specific IgG antibodies and can therefore be considered to be prepared. Three laboratories in three countries need to improve their detection capacities. Our study demonstrates the importance of conducting regular proficiency tests to evaluate the level of preparedness of countries and of building a network of competent laboratories in terms of laboratory diagnosis to better face future emerging diseases in emergency conditions.


Subject(s)
Rift Valley Fever/diagnosis , Africa/epidemiology , Animals , Antibodies, Viral/blood , Endemic Diseases/veterinary , Enzyme-Linked Immunosorbent Assay/standards , Enzyme-Linked Immunosorbent Assay/statistics & numerical data , Enzyme-Linked Immunosorbent Assay/veterinary , Humans , Immunoglobulin G/blood , Indian Ocean/epidemiology , Laboratories/standards , Middle East/epidemiology , Quality Assurance, Health Care , Reproducibility of Results , Rift Valley Fever/epidemiology , Rift Valley Fever/immunology , Rift Valley fever virus/immunology , Risk Factors , Serologic Tests/standards , Serologic Tests/statistics & numerical data , Serologic Tests/veterinary
18.
Monoclon Antib Immunodiagn Immunother ; 40(2): 60-64, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33900823

ABSTRACT

The DNA fragment encoding predicted main antigenic region, aa 14-245 on N protein of Rift Valley virus (RVFV) was cloned into the vector pET-28a (+) and p3xFLAG-CMV-10. The recombinant pET-28a-N1 protein was expressed in Escherichia coli BL21 (DE3) with 1 mM isopropyl-b-thio-galactopyranoside at 37°C for 5 hours, and purified by protein purifier. Three monoclonal antibodies (mAbs) named 3A5, 3A6, and 3A7 against N protein were obtained by fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from pET-28a-N1 protein-immunized mice. Finally, the mAbs were characterized by enzyme-linked immunosorbent assays, indirect immunofluorescent assays, and Western blot. The results show that all the mAbs possess high specificity and react with both prokaryotic and eukaryotic N protein, which could provide important materials for the research on the function of N protein and the diagnostic methods of RVFV.


Subject(s)
Antibodies, Monoclonal/immunology , Nucleocapsid Proteins/antagonists & inhibitors , Rift Valley Fever/therapy , Rift Valley fever virus/immunology , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Humans , Mice , Nucleocapsid Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Rift Valley Fever/immunology , Rift Valley Fever/virology , Rift Valley fever virus/drug effects , Rift Valley fever virus/pathogenicity
19.
Viruses ; 13(4)2021 03 24.
Article in English | MEDLINE | ID: mdl-33805122

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important disease in ruminants, with great economic losses. The infection can be also transmitted to humans; therefore, it is considered a major threat to both human and animal health. In a previous work, we described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different viral proteins when compared to its parental viral strain, two of them located in the NSs protein that is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo. Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice while their growth in an interferon (IFN)-competent cell line as well as the production of interferon beta (IFN-ß) did not seem to be affected. However, the pattern of nuclear NSs accumulation was modified in cells infected with the mutant viruses. These results highlight the key role of the NSs protein in the modulation of viral infectivity.


Subject(s)
Amino Acid Substitution , Rift Valley Fever/prevention & control , Rift Valley fever virus/chemistry , Rift Valley fever virus/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Amides/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Cricetinae , HEK293 Cells , Humans , Kidney/cytology , Male , Mice , Mice, Inbred BALB C , Pyrazines/pharmacology , Reverse Genetics , Rift Valley Fever/immunology , Rift Valley fever virus/drug effects , Rift Valley fever virus/genetics , Vero Cells , Virulence , Virulence Factors/genetics
20.
Vet Immunol Immunopathol ; 233: 110184, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33454621

ABSTRACT

γδ T cells are a numerically significant subset of immune cells in ruminants, where they may comprise up to 70 % of all peripheral blood mononuclear cells (PBMCs) in young animals and 25 % in adults. These cells can be activated through traditional TCR-dependent mechanisms, or alternatively in a TCR-independent manner by pattern recognition receptors and have been shown to uptake antigen, as well as process and present it to αß T cells. We have identified a novel CD11b+ subset of γδ T cells in normal sheep peripheral blood. An increase in the frequency of these cells in sheep peripheral blood in response to immunization with an experimental recombinant subunit Rift Valley fever (RVF) vaccine was observed. However, injection of the vaccine adjuvant ISA-25VG alone without the recombinant RVF virus antigens demonstrated the same effect, pointing to an antigen-independent innate immune function of CD11b+ γδ T cells in response to the adjuvant. In vitro studies showed repeatable increases of CD11b-, CD14-, CD86-, CD40-, CD72-, and IFNγ- expressing γδ T cells in PBMCs after 24 h of incubation in the absence of a mitogen. Moreover, the majority of these myeloid-like γδ T cells were demonstrated to process exogenous antigen even in the absence of mitogen. ConA activation increased CD25- and MHCII- expression in γδ T cells, but not the myeloid associated receptors CD14 or CD11b or co-stimulatory molecules such as CD86 and CD40. Considering the role of CD11b and CD14 in the activation of innate immunity, we hypothesize that this subpopulation of sheep γδ T cells may function as innate antigen presenting and pro-inflammatory cells during immune responses. The results presented here also suggest that stress molecules and/or damage-associated molecular patterns may be involved in triggering antigen presenting and pro-inflammatory functions of γδ T cells, given their appearance in vitro in the absence of specific stimulation. Taken together, these data suggest that the early appearance of γδ T cells following adjuvant administration and their possible role in early activation of αß T cell subsets may non-specifically contribute to augmented innate immunity and may promote strong initiation of the adaptive immune response to vaccines in general.


Subject(s)
Intraepithelial Lymphocytes/immunology , Rift Valley Fever/immunology , Viral Vaccines/immunology , Animals , Antigen Presentation , Antigens, Differentiation/biosynthesis , CD11b Antigen/biosynthesis , Cell Proliferation , Cells, Cultured , Female , Immunity, Innate , Immunogenicity, Vaccine , Immunophenotyping , Interleukin-2 Receptor alpha Subunit/biosynthesis , Myeloid Cells/immunology , Rift Valley Fever/prevention & control , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL