Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.380
Filter
1.
PLoS One ; 19(8): e0306597, 2024.
Article in English | MEDLINE | ID: mdl-39106246

ABSTRACT

Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.


Subject(s)
Enterobacter , Gossypol , Metabolomics , Gossypol/pharmacology , Gossypol/metabolism , Enterobacter/metabolism , Enterobacter/genetics , Enterobacter/drug effects , Animals , Transcriptome/drug effects , Gene Expression Regulation, Bacterial/drug effects , Metabolome/drug effects , Gene Expression Profiling , Rumen/microbiology , Rumen/metabolism , Rumen/drug effects
2.
Trop Anim Health Prod ; 56(7): 229, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096346

ABSTRACT

Holocellulose (HC) fraction extracted from date-pits was evaluated as a novel feed additive for ruminant feeding. This study was performed to investigate the effectiveness of the HC additive on rumen fermentation, methane (CH4) production, and diet degradability over 24 h of in vitro incubation. Three independent incubation trials were conducted over three consecutive weeks, employing the same in vitro methodology to assess four treatment doses in a completely randomized design. The experimental diet incorporated four increasing doses of HC, containing HC at 0 (HC0), 10 (HC10), 20 (HC20), and 30 (HC30) g/kg dry matter (DM). In vitro gas production (GP) and CH4 production, volatile fatty acids (VFAs) concentration, protozoa accounts, degraded organic matter (DOM), metabolizable and net energy (ME and NE), and hydrogen (H2) estimates were measured. No significant differences in ruminal pH were observed as the HC doses gradually increased. All incremental doses of HC additive over 24 h resulted in a linear increase in GP (P < 0.001), DOM (P < 0.001), total VFAs (P = 0.011), and propionate (P < 0.001) concentrations, as well as estimated energy (ME and NE) (P < 0.05) and microbial protein (P = 0.017) values. However, the inclusion of increasing doses of HC in the diet displayed linear reductions in the net CH4 production (ml/kg DOM; P = 0.002), protozoa abundance (P = 0.027); acetate (P = 0.029), and butyrate (P < 0.001) concentrations, the acetate-to-propionate ratio (P < 0.001), and the estimated net H2 production concentration (P = 0.049). Thus, the use of date-pits HC additive generated positive ruminal fermentability, including increased total VFAs and a reduction in the acetate-to-propionate ratio, leading to decreased CH4 output over 24 h of in vitro incubation. Hence, HC could be considered a potent feed additive (at up to 30 g/kg DM), demonstrating promising CH4-mitigating competency and thereby enhancing energy-use efficiency in ruminants.


Subject(s)
Animal Feed , Diet , Digestion , Fermentation , Methane , Rumen , Animals , Rumen/parasitology , Rumen/metabolism , Animal Feed/analysis , Diet/veterinary , Methane/metabolism , Digestion/drug effects , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Random Allocation , Dietary Supplements/analysis
3.
Trop Anim Health Prod ; 56(7): 235, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110255

ABSTRACT

Yeast and fibrolytic enzymes serve as additives incorporated into the nutrition of ruminants to regulate rumen fermentation and increase the digestibility of fiber, thereby enhancing the efficiency of rumen fermentation. Two experiments were conducted to assess the impact of five diets: a control diet without additives, diets with yeast (Saccharomyces cerevisiae) or exogenous fibrolytic enzymes (EFE), and diets with a blend of 0.7yeast + 0.3EFE or 0.7EFE + 0.3Yeast (based on recommended levels in g/kg of total DM). In the first experiment, 40 five-month-old Santa Ines lambs (mean weight 25.0 ± 1.3 kg) were distributed in a completely randomized design (5 treatments and 8 lambs) for 81 days to evaluate performance, ingestive behaviour, and serum metabolites. In the second experiment, 25 Santa Ines male lambs weighing 25.7 ± 4.1 kg were housed in metabolic cages, in a randomized design with 5 treatments and 5 lambs, evaluating digestibility, nitrogen balance, and rumen pH. EFE supplementation increased intakes of dry matter (DM), total digestible nutrients (TDN), and apNDF (mean of 38.1, 5.26, and 27%, respectively) compared to yeast or the 0.7yeast-0.3EFE blend. Feed conversion was most efficient (mean of 27.1%) in lambs fed Yeast, 0.7EFE + 0.3yeast, and the control diet. Lambs fed 0.7yeast + 0.3EFE spent less time eating (mean of 16.5%) and more time idling (mean of 10.75%), whereas EFE-fed lambs spent more time eating (mean of 19.73%), and 0.7EFE + 0.3yeast-fed lambs spent more time ruminating (mean of 20.14%). Control group lambs chewed and ruminated less (means of 24.64 and 17.21%, respectively) compared to other treatments. Lambs on the 0.7yeast + 0.3EFE blend had higher eating and rumination efficiency rates for DM and apNDF (mean of 19.11 and 17.95%, respectively) compared to other additive treatments or individual additives. They also exhibited lower (means 7.59 g/d) urinary N excretion, with improved N retention (mean 3185 g/d) compared to the control group. There were significant effects on serum albumin and cholesterol concentrations, with the 0.7yeast + 0.3EFE blend showing higher albumin (mean 4.08 g/dL) levels, while diets without additives and yeast-EFE blends had higher cholesterol (mean of 62.51 g/dL) concentrations. Including Saccharomyces cerevisiae yeast along with 0.7 yeast + 0.3 EFE blend is recommended when feeding similar lamb diets to those used herein because it improves the efficiency of intake, rumination of DM and NDF, and nitrogen utilization without affecting the lamb performance.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Digestion , Rumen , Saccharomyces cerevisiae , Animals , Animal Feed/analysis , Male , Digestion/drug effects , Diet/veterinary , Dietary Supplements/analysis , Animal Nutritional Physiological Phenomena , Sheep, Domestic/physiology , Fermentation , Random Allocation , Dietary Fiber/analysis , Dietary Fiber/administration & dosage
4.
Sci Rep ; 14(1): 15476, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969828

ABSTRACT

The Yunshang black goat is a renowned mutton specialist breed mainly originating from China that has excellent breeding ability with varying litter sizes. Litter size is an important factor in the economics of goat farming. However, ruminal microbiome structure might be directly or indirectly regulated by pregnancy-associated factors, including litter sizes. Therefore, the current experiment aimed to evaluate the association of different litter sizes (low versus high) with ruminal microbiome structure by 16S rRNA gene sequencing and metabolomic profiling of Yunshang black does. A total of twenty does of the Yunshang Black breed, approximately aged between 3 and 4 years, were grouped (n = 10 goats/group) into low (D-l) and high (D-h) litter groups according to their litter size (the lower group has ≤ 2 kids/litter and the high group has ≧ 3 kids/litter, respectively). All goats were sacrificed, and collected ruminal fluid samples were subjected to 16S rRNA sequencing and LC-MS/MC Analysis for ruminal microbiome and metabolomic profiling respectively. According to PCoA analysis, the ruminal microbiota was not significantly changed by the litter sizes among the groups. The Firmicutes and Bacteroidetes were the most dominant phyla, with an abundance of 55.34% and 39.62%, respectively. However, Ruminococcaceae_UCG-009, Sediminispirochaeta, and Paraprevotella were significantly increased in the D-h group, whereas Ruminococcaceae_UCG-010 and Howardella were found to be significantly decreased in the D-l group. The metabolic profiling analysis revealed that litter size impacts metabolites as 29 and 50 metabolites in positive and negative ionic modes respectively had significant differences in their regulation. From them, 16 and 24 metabolites of the D-h group were significantly down-regulated in the positive ionic mode, while 26 metabolites were up-regulated in the negative ionic mode for the same group. The most vibrant identified metabolites, including methyl linoleate, acetylursolic acid, O-desmethyl venlafaxine glucuronide, melanostatin, and arginyl-hydroxyproline, are involved in multiple biochemical processes relevant to rumen roles. The identified differential metabolites were significantly enriched in 12 different pathways including protein digestion and absorption, glycerophospholipid metabolism, regulation of lipolysis in adipocytes, and the mTOR signaling pathway. Spearman's correlation coefficient analysis indicated that metabolites and microbial communities were tightly correlated and had significant differences between the D-l and D-h groups. Based on the results, the present study provides novel insights into the regulation mechanisms of the rumen microbiota and metabolomic profiles leading to different fertility in goats, which can give breeders some enlightenments to further improve the fertility of Yunshang Black goats.


Subject(s)
Goats , Litter Size , Metabolomics , RNA, Ribosomal, 16S , Rumen , Animals , Rumen/microbiology , Rumen/metabolism , Female , RNA, Ribosomal, 16S/genetics , Metabolomics/methods , Metabolome , Microbiota , Gastrointestinal Microbiome , Pregnancy , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism
5.
Environ Microbiol Rep ; 16(4): e13298, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961629

ABSTRACT

Ciliate protozoa are an integral part of the rumen microbial community involved in a variety of metabolic processes. These processes are thought to be in part the outcome of interactions with their associated prokaryotic community. For example, methane production is enhanced through interspecies hydrogen transfer between protozoa and archaea. We hypothesize that ciliate protozoa are host to a stable prokaryotic community dictated by specific functions they carry. Here, we modify the microbial community by varying the forage-to-concentrate ratios and show that, despite major changes in the prokaryotic community, several taxa remain stably associated with ciliate protozoa. By quantifying genes belonging to various known reduction pathways in the rumen, we find that the bacterial community associated with protozoa is enriched in genes belonging to hydrogen utilization pathways and that these genes correspond to the same taxonomic affiliations seen enriched in protozoa. Our results show that ciliate protozoa in the rumen may serve as a hub for various hydrogenotrophic functions and a better understanding of the processes driven by different protozoa may unveil the potential role of ciliates in shaping rumen metabolism.


Subject(s)
Bacteria , Ciliophora , Hydrogen , Rumen , Rumen/microbiology , Rumen/parasitology , Animals , Hydrogen/metabolism , Ciliophora/genetics , Ciliophora/metabolism , Ciliophora/classification , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Archaea/genetics , Archaea/metabolism , Archaea/classification , Microbiota
6.
Trop Anim Health Prod ; 56(6): 201, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990398

ABSTRACT

The aim of this study was to explore the effect of replacing protein pellets with soybean grain in high-concentrate diets with or without the addition of silage, on the intake, digestibility, and rumen and blood parameters of feedlot cattle in tropical regions. Four cannulated, crossbred steers were used, 4.5 ± 0.5 years old, with an average weight of 685.55 ± 111.78 kg. The steers were distributed in a 4 × 4 Latin square, in a 2 × 2 factorial scheme (two sources of protein: protein pellets or whole soybean grain, with or without added dietary bulk). There was no effect (P ≥ 0.109) from the interaction between the source of protein and the addition of silage to the diet on dry matter (DM) and nutrient intake, or the digestibility (P ≥ 0.625) of DM or crude protein (CP). However, both factors affected (P ≤ 0.052) the intake of DM, neutral detergent fiber (NDF), and non-fiber carbohydrates (NFC), as well as the independent digestibility (P ≤ 0.099) of fat, NFC, total carbohydrates (TC), and total cholesterol concentration. There was an effect (P ≤ 0.053) from the interaction between the source of protein and the addition of silage to the diet on the digestibility of NDF and total digestible nutrients (TDN), as well as on the glycose concentration (P = 0.003). Blood parameters (i.e. protein, albumin, creatinine, triglycerides, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were not affected (P ≥ 0.139) by the source of protein, the addition of silage, or their interaction. Lastly, including 150 g/kg silage DM in a high-grain diet, and using soybean grain as a source of protein in substitution of protein pellet could be a suitable nutritional strategy to ensure adequate DM and nutrient intake and digestibility, with no detrimental effects on rumen and blood parameters of feedlot cattle in the tropics.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Glycine max , Rumen , Tropical Climate , Animals , Cattle/blood , Cattle/physiology , Cattle/metabolism , Rumen/metabolism , Male , Animal Feed/analysis , Digestion/physiology , Diet/veterinary , Silage/analysis , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Nutrients/metabolism
7.
Anim Biotechnol ; 35(1): 2371519, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38990689

ABSTRACT

The present study aimed to evaluate the effect of dry turmeric rhizomes on in vitro biogas production and diet fermentability. Turmeric rhizomes were included at gradually increased levels: 0, 0.5, 1, 1.5 and 2% of a diet containing per kg dr matter (DM): 500 g concentrate feed mixture, 400 g berseem hay and 100 g rice straw, and incubated for 48 h. Gas chromatography-mass spectrometry analysis showed that ar-turmerone, α-turmerone and ß-turmerone were the major bioactive compounds in the rhizomes. Turmeric rhizomes increased (p < 0.01) asymptotic gas production (GP) and rate and lag of CH4 production and decreased (p < 0.01) rate of GP, lag of GP, asymptotic CH4 production and proportion of CH4 production. Turmeric rhizome administration linearly increased (p < 0.01) DM and fiber degradability and concentrations of total short-chain fatty acids, acetic and propionic acids and ammonia-N and quadratically (p < 0.05) decreased fermentation pH. It is concluded that including up to 2% turmeric rhizomes improved in vitro ruminal fermentation and decreased CH4 production.


Subject(s)
Curcuma , Fermentation , Methane , Rhizome , Curcuma/chemistry , Rhizome/chemistry , Animals , Methane/metabolism , Rumen/metabolism , Animal Feed/analysis , Diet/veterinary , Digestion/drug effects
8.
Sci Data ; 11(1): 749, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987532

ABSTRACT

Although early solid diet supplementation is a common practice to improve the growth and development in goat kids, its biological mechanism how solid diet induces rumen microbiota and epithelial development is still unknow. In this study, rumen fermentation parameters, 16S rRNA sequencing for rumen content and epithelial microbiota, transcriptomics and proteomics of epithelium were determined to classify the effects of solid diet supplementation. Here, we classified the changes of goat phenotypes (i.e., growth performance, rumen fermentation and development) and linked them to the changes of rumen microbiota, transcriptome and expressed proteins. The mechanism of solid diet improving rumen development was elucidated preliminarily. Moreover, different roles between the rumen content and epithelial microbiota were identified. Thess datasets expands our understanding of the association between the early diet intervention and rumen development, providing the useful information how nutrient strategy affects rumen function and subsequently improves the host growth. The generated data provides insights in the importance of rumen niche microbiota and microbe-host interactions, which benefits future studies.


Subject(s)
Diet , Goats , Rumen , Transcriptome , Animals , Rumen/microbiology , Rumen/metabolism , Diet/veterinary , Animal Feed/analysis , Proteomics , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics , Epithelium/metabolism , Fermentation
9.
PLoS One ; 19(7): e0293718, 2024.
Article in English | MEDLINE | ID: mdl-38959213

ABSTRACT

We investigated the impact of a rumen-bypass protein (RBP) supplement on growth performance, plasma and urinary N (UN) concentration, hepatic mitochondrial protein complexes, and hepatic mRNA expression of immune genes of beef steers with negative or positive residual feed intake (RFI) phenotype. Forty crossbred beef steers with an average body weight (BW) of 492 ± 36 kg were subjected to a generalized randomized block design over a 42-day experimental period. This study followed a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) RFI classification (low-RFI (-2.12 kg/d) vs. high-RFI (2.02 kg/d), and 2) rumen-bypass protein supplement: RBP supplement (RBP; 227 g/steer/d) vs. control diet (CON; 0 g/d), resulting in four distinct treatments: LRFI-CON (n = 10), LRFI-RBP (n = 10), HRFI-CON (n = 10), and HRFI-RBP (n = 10). The RBP supplement (84% crude protein) is a mixture of hydrolyzed feather meal, porcine blood meal, and DL-methionine hydroxy analogue. The beef steers were stratified by BW, randomly assigned to treatments, and housed in four pens (1 treatment/pen) equipped with two GrowSafe feed bunks each to measure individual dry mater intake (DMI). Body weight was measured every 7 d. Liver tissue samples were collected on d 42 from all the beef steers. These samples were used for mRNA expression analysis of 16 immune-related genes and for evaluating the mitochondrial protein complexes I - V. No significant effects due to RBP supplementation or RFI × RBP interactions (P > 0.05) were observed for average daily gain (ADG) and DMI. However, compared to high-RFI steers, low-RFI steers showed a trend towards reduced DMI (12.9 vs. 13.6 kg/d; P = 0.07) but ADG was similar for the two RFI groups. Regardless of RFI status, supplemental RBP increased blood urea nitrogen (BUN) (P = 0.01), with a lower BUN concentration in low-RFI steers compared to high-RFI ones. A tendency for interaction (P = 0.07) between RFI and RBP was detected for the UN concentrations; feeding the dietary RBP increased the UN concentration in high-RFI beef steers (209 vs. 124 mM), whereas the concentration was lower than that of the CON group for low-RFI beef steers (86 vs. 131 mM). Interactions of RBP and RFI were observed (P ≤ 0.05) for mitochondrial activities of complexes IV, V, and mRNA expressions of some immune genes such as TLR2, TLR3, and IL23A. In conclusion, while RBP supplementation did not alter growth performance, its observed effects on hepatic immune gene expression, mitochondrial protein complexes, BUN, and UN depended on the beef steers' RFI phenotype. Therefore, the RFI status of beef steers should be considered in future studies evaluating the effects of dietary protein supplements.


Subject(s)
Animal Feed , Dietary Supplements , Liver , Mitochondrial Proteins , Animals , Cattle/growth & development , Male , Liver/metabolism , Animal Feed/analysis , Mitochondrial Proteins/genetics , Rumen/metabolism , Eating , Dietary Proteins/administration & dosage , Gene Expression Regulation/drug effects
10.
Trop Anim Health Prod ; 56(7): 219, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039346

ABSTRACT

Soybean molasses (SBMO) is a byproduct derived from the production of soy protein concentrate, obtained through solubilization in water and alcohol. The utilization of SBMO as an animal feed ingredient shows promising potential, primarily due to its low cost and as a potential energy concentrate. This study aimed to assess the intake, digestibility, ruminal parameters (pH and ruminal ammonia - NH3), nitrogen retention (NR) and microbial protein synthesis in grazing beef cattle supplemented with SBMO as a substitute for corn during the rainy season. Five Nellore (10-month-old) bulls with an average initial weight of 246 ± 11.2 kg were utilized in a 5 × 5 Latin square design. The animals were housed in five paddocks, each consisting of 0.34 ha of Marandu grass (Urochloa brizantha). Five isonitrogenous protein-energy supplements (300 g crude protein [CP]/kg supplement) were formulated, with SBMO replacing corn at varying levels (0, 0.25, 0.50, 0.75, or 1.00 g-1 g). The supplements were provided daily at a quantity of 2.0 kg-1 animal. The inclusion of SBMO at any level of corn substitution did not significantly affect the intake of pasture dry matter or total dry matter (P > 0.10). Likewise, the intake of CP and, consequently, the ruminal concentration of NH3 did not differ among the SBMO levels. Increasing the inclusion of SBMO did not have a significant impact on NR (P > 0.10), indicating that animals receiving supplements containing 100% SBMO as a substitute for corn may perform similarly to animals receiving supplements with 100% corn (0% SBMO). Soybean molasses represents a viable alternative energy source for grazing beef cattle during the rainy season and can entirely replace corn without adversely affecting animal nutritional performance.


Subject(s)
Animal Feed , Dietary Supplements , Digestion , Glycine max , Molasses , Rumen , Seasons , Animals , Cattle/physiology , Animal Feed/analysis , Molasses/analysis , Male , Glycine max/chemistry , Dietary Supplements/analysis , Rumen/metabolism , Zea mays/chemistry , Diet/veterinary , Animal Nutritional Physiological Phenomena , Rain , Nitrogen/metabolism
11.
Anim Sci J ; 95(1): e13983, 2024.
Article in English | MEDLINE | ID: mdl-39053951

ABSTRACT

This study aimed to clarify the efficacy of cashew nutshell liquid (CNSL) in methane emissions, milk production, and rumen fermentation of lactating cows in practical conditions. Ten Holstein lactating cows were used in a free-stall barn with a milking robot. Two treatments were arranged as control (no CNSL additive, n = 5) or CNSL addition (10 g/day of CNSL, n = 5) for 21 days after the 7-day preliminary period. A sniffer method was applied to predict daily methane production and methane conversion factor (MCF). In vitro, rumen gas production was also tested using the rumen fluid of individual cows. Daily dry matter intake (DMI), eating time, milk production, and methane production were not affected by the CNSL addition. However, methane production per DMI and MCF were lower (p ≤ 0.01) for the CNSL cows than those for the control cows. Ruminal total volatile fatty acid (VFA) concentration and acetate proportion tended to be lower (p < 0.15) for CNSL cows. A tendency to decrease (p < 0.10) in methane was also observed in the in vitro incubation with the rumen fluid obtained from the CNSL cows compared with those from the control cows. These results suggest that adding CNSL to diets could reduce the methane yield of cows in practical conditions.


Subject(s)
Anacardium , Fermentation , Lactation , Methane , Milk , Rumen , Animals , Cattle/metabolism , Methane/metabolism , Methane/analysis , Female , Rumen/metabolism , Milk/chemistry , Milk/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Diet/veterinary , Animal Feed , Dairying , Animal Nutritional Physiological Phenomena/physiology , Acetates
12.
Anim Sci J ; 95(1): e13980, 2024.
Article in English | MEDLINE | ID: mdl-39054255

ABSTRACT

This study evaluated the effects of supplementation of rumen-protected methionine (RPM) on body thermoregulation and conception rate of Nelore cows exposed to high temperature-humidity index (THI). On -31 days before the artificial insemination protocol, 562 lactating, multiparous cows were assigned to receive (MG) or not (CG) RPM supplementation (3 g/cow mixed into 100 g of mineral supplement). Both groups remained in tropical pastures and received supplementation for 77 days. A subset of cows (n = 142) remained with an intravaginal thermometer collecting intravaginal temperature (IT). The respective minimum, average, and maximum environmental THI were 72.8, 78.0, and 83.3. Effects of treatment × hour of the day were detected (P < 0.0001) for IT. From 1330 to 1730 h and 1830 to 1900 h, IT was higher (P < 0.05) for CG versus MG cows when exposed to moderate and high THI. The supplementation with RPM did not affect conception rate (CG = 64.4% vs. MG = 58.2%; P > 0.05). In conclusion, 3 g of RPM supplementation lowered internal body temperature and possibly altered critical THI threshold in Nelore cows with no impact on reproduction.


Subject(s)
Body Temperature , Dietary Supplements , Methionine , Rumen , Animals , Cattle/physiology , Methionine/administration & dosage , Methionine/pharmacology , Female , Rumen/metabolism , Body Temperature/drug effects , Hot Temperature/adverse effects , Time Factors , Heat Stress Disorders/veterinary , Heat Stress Disorders/prevention & control , Body Temperature Regulation/drug effects , Humidity , Heat-Shock Response/drug effects , Fertilization/drug effects , Animal Feed , Diet/veterinary , Insemination, Artificial/veterinary , Insemination, Artificial/methods
13.
Microbiome ; 12(1): 131, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030599

ABSTRACT

BACKGROUND: The average daily gain (ADG) of preweaning calves significantly influences their adult productivity and reproductive performance. Gastrointestinal microbes are known to exert an impact on host phenotypes, including ADG. The aim of this study was to investigate the mechanisms by which gastrointestinal microbiome regulate ADG in preweaning calves and to further validate them by isolating ADG-associated rumen microbes in vitro. RESULTS: Sixteen Holstein heifer calves were selected from a cohort with 106 calves and divided into higher ADG (HADG; n = 8) and lower ADG (LADG; n = 8) groups. On the day of weaning, samples of rumen contents, hindgut contents, and plasma were collected for rumen metagenomics, rumen metabolomics, hindgut metagenomics, hindgut metabolomics, and plasma metabolomics analyses. Subsequently, rumen contents of preweaning Holstein heifer calves from the same dairy farm were collected to isolate ADG-associated rumen microbes. The results showed that the rumen microbes, including Pyramidobacter sp. C12-8, Pyramidobacter sp. CG50-2, Pyramidobacter porci, unclassified_g_Pyramidobacter, Pyramidobacter piscolens, and Acidaminococcus fermentans, were enriched in the rumen of HADG calves (LDA > 2, P < 0.05). Enrichment of these microbes in HADG calves' rumen promoted carbohydrate degradation and volatile fatty acid production, increasing proportion of butyrate in the rumen and ultimately contributing to higher preweaning ADG in calves (P < 0.05). The presence of active carbohydrate degradation in the rumen was further suggested by the negative correlation of the rumen microbes P. piscolens, P. sp. C12-8 and unclassified_g_Pyramidobacter with the rumen metabolites D-fructose (R < - 0.50, P < 0.05). Widespread positive correlations were observed between rumen microbes (such as P. piscolens, P. porci, and A. fermentans) and beneficial plasma metabolites (such as 1-pyrroline-5-carboxylic acid and 4-fluoro-L-phenylalanine), which were subsequently positively associated with the growth rate of HADG calves (R > 0.50, P < 0.05). We succeeded in isolating a strain of A. fermentans from the rumen contents of preweaning calves and named it Acidaminococcus fermentans P41. The in vitro cultivation revealed its capability to produce butyrate. In vitro fermentation experiments demonstrated that the addition of A. fermentans P41 significantly increased the proportion of butyrate in the rumen fluid (P < 0.05). These results further validated our findings. The relative abundance of Bifidobacterium pseudolongum in the hindgut of HADG calves was negatively correlated with hindgut 4-hydroxyglucobrassicin levels, which were positively correlated with plasma 4-hydroxyglucobrassicin levels, and plasma 4-hydroxyglucobrassicin levels were positively correlated with ADG (P < 0.05). CONCLUSIONS: This study's findings unveil that rumen and hindgut microbes play distinctive roles in regulating the preweaning ADG of Holstein heifer calves. Additionally, the successful isolation of A. fermentans P41 not only validated our findings but also provided a valuable strain resource for modulating rumen microbes in preweaning calves. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Rumen , Weaning , Animals , Cattle , Rumen/microbiology , Rumen/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Female , Fermentation , Metagenomics/methods , Metabolomics , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Weight Gain , Butyrates/metabolism
14.
PLoS One ; 19(7): e0305817, 2024.
Article in English | MEDLINE | ID: mdl-38980877

ABSTRACT

The bovine rumen contains a large consortium of residential microbes that release a variety of digestive enzymes for feed degradation. However, the utilization of these microbial enzymes is still limited because these rumen microorganisms are mostly anaerobes and are thus unculturable. Therefore, we applied a sequence-based metagenomic approach to identify a novel 2,445-bp glycoside hydrolase family 3 ß-glucosidase gene known as BrGH3A from the metagenome of bovine ruminal fluid. BrGH3A ß-glucosidase is a 92-kDa polypeptide composed of 814 amino acid residues. Unlike most glycoside hydrolases in the same family, BrGH3A exhibited a permuted domain arrangement consisting of an (α/ß)6 sandwich domain, a fibronectin type III domain and a (ß/α)8 barrel domain. BrGH3A exhibited greater catalytic efficiency toward laminaribiose than cellobiose. We proposed that BrGH3A is an exo-acting ß-glucosidase from Spirochaetales bacteria that is possibly involved in the intracellular degradation of ß-1,3-/1,4-mixed linkage glucans that are present in grass cell walls. BrGH3A exhibits rich diversity in rumen hydrolytic enzymes and may represent a member of a new clan with a permuted domain topology within the large family.


Subject(s)
Rumen , beta-Glucosidase , Animals , Cattle , Rumen/microbiology , Rumen/enzymology , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Amino Acid Sequence , Phylogeny , Protein Domains , Metagenome
15.
Sci Rep ; 14(1): 16914, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043743

ABSTRACT

Manipulation of the rumen microbial ecosystem in early life may affect ruminal fermentation and enhance the productive performance of dairy cows. The objective of this experiment was to evaluate the effects of dosing three different types of microbial inoculum on the rumen epithelium tissue (RE) transcriptome and the rumen epimural metatranscriptome (REM) in dairy calves. For this objective, 15 Holstein bull calves were enrolled in the study at birth and assigned to three different intraruminal inoculum treatments dosed orally once weekly from three to six weeks of age. The inoculum treatments were prepared from rumen contents collected from rumen fistulated lactating cows and were either autoclaved (control; ARF), processed by differential centrifugation to create the bacterial-enriched inoculum (BE), or through gravimetric separation to create the protozoal-enriched inoculum (PE). Calves were fed 2.5 L/d pasteurized waste milk 3x/d from 0 to 7 weeks of age and texturized starter until euthanasia at 9 weeks of age, when the RE tissues were collected for transcriptome and microbial metatranscriptome analyses, from four randomly selected calves from each treatment. The different types of inoculum altered the RE transcriptome and REM. Compared to ARF, 9 genes were upregulated in the RE of BE and 92 in PE, whereas between BE and PE there were 13 genes upregulated in BE and 114 in PE. Gene ontology analysis identified enriched GO terms in biological process category between PE and ARF, with no enrichment between BE and ARF. The RE functional signature showed different KEGG pathways related to BE and ARF, and no specific KEGG pathway for PE. We observed a lower alpha diversity index for RE microbiome in ARF (observed genera and Chao1 (p < 0.05)). Five microbial genera showed a significant correlation with the changes in host gene expression: Roseburia (25 genes), Entamoeba (two genes); Anaerosinus, Lachnospira, and Succiniclasticum were each related to one gene. sPLS-DA analysis showed that RE microbial communities differ among the treatments, although the taxonomic and functional microbial profiles show different distributions. Co-expression Differential Network Analysis indicated that both BE and PE had an impact on the abundance of KEGG modules related to acyl-CoA synthesis, type VI secretion, and methanogenesis, while PE had a significant impact on KEGGs related to ectoine biosynthesis and D-xylose transport. Our study indicated that artificial dosing with different microbial inocula in early life alters not only the RE transcriptome, but also affects the REM and its functions.


Subject(s)
Rumen , Transcriptome , Animals , Cattle , Rumen/microbiology , Rumen/metabolism , Epithelium/metabolism , Epithelium/microbiology , Male , Gastrointestinal Microbiome/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Gene Expression Profiling/methods
16.
Front Cell Infect Microbiol ; 14: 1427763, 2024.
Article in English | MEDLINE | ID: mdl-39006744

ABSTRACT

Introduction: Rumen acidosis is one of the most common diseases in beef cattle. It severely affects the normal development of calves and poses a significant threat to the farming industry. However, the influence of rumen acidosis on the gut microbiota and serum metabolites of calves is currently unclear. Objective: The aim of this study is to investigate the changes in the gut microbiota and serum metabolites in calves after rumen acidosis and analyse the correlation. Methods: Eight calves were selected as the rumen acidosis group, and eight health calves were selected as the healthy group. The faecal gut microbiota and serum metabolites of calves were detected respectively using 16S rDNA high-throughput sequencing and non-target metabolomics. The correlation between gut microbiota and serum metabolites was analyzed by Spearman correlation analysis. Results: Differential analysis of the diversity and composition of gut microbiota between eight male healthy (Health) and eight male rumen acidosis (Disease) calves revealed that rumen acidosis increased the abundance of the gut microbiota in calves. At the phylum level, compared to the Healthy group, the relative abundance of Proteobacteria in the Disease group significantly decreased (P<0.05), while the relative abundance of Desulfobacterota significantly increased in the Disease group (P<0.05). At the genus level, compared to the Disease group, the relative abundance of Alloprevotella, Muribaculaceae, Succinivibrio, Prevotella, Agathobacter and Parabacteroides significantly increased in the Healthy group (P<0.05), while the relative abundance of Christensenellaceae_R-7 and Monoglobus significantly decreased in the Healthy group (P<0.05). Differential analysis results showed the Healthy group had 23 genera with higher abundance, while the Disease group had 47 genera with higher abundance. Serum metabolomics results revealed the differential metabolites associated with rumen acidosis, including nicotinamide, niacin, L-glutamic acid and carnosine, were mainly enriched in the nicotinate and nicotinamide pathway and the histidine pathway. Conclusion: The occurrence of rumen acidosis can induce changes in the gut microbiota of calves, with a significant increase of the Christensenellaceae_R-7 genus and a significant decrease of Prevotella and Succinivibrio genera. In addition, the occurrence of rumen acidosis can also induce changes in serum metabolites including niacin, niacinamide, L-glutamine, and carnosine, which may serve as the diagnostic biomarkers of rumen acidosis of calves.


Subject(s)
Acidosis , Cattle Diseases , Feces , Gastrointestinal Microbiome , Metabolomics , RNA, Ribosomal, 16S , Rumen , Animals , Cattle , Rumen/microbiology , Acidosis/veterinary , Acidosis/microbiology , Acidosis/blood , RNA, Ribosomal, 16S/genetics , Cattle Diseases/microbiology , Cattle Diseases/blood , Male , Feces/microbiology , DNA, Ribosomal/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , High-Throughput Nucleotide Sequencing , DNA, Bacterial/genetics
17.
Adv Exp Med Biol ; 1454: 323-347, 2024.
Article in English | MEDLINE | ID: mdl-39008270

ABSTRACT

Amphistomes, commonly referred to as 'stomach' or 'rumen' flukes because of the localization of these flukes in the stomach of ruminants, are digenetic trematodes distinguished by the absence of an oral sucker and the position of the ventral sucker or acetabulum at the posterior end of the body. The body is characterized by a leaf-like fleshy structure, pink or red with a large posterior sucker. Amphistomes are an important group of parasites since they cause 'amphistomiasis' (variously known as paramphistomosis/amphistomosis), a serious disease of great economic importance in ruminants worldwide. These parasites have a broad spectrum of definitive hosts together with a wide geographical distribution. Though they form a continuous evolutional lineage from fishes to mammals, amphistomes mainly inhabit the rumen and reticulum of ruminant mammals, while some species occur in the large intestine or parenteric sites of ruminants, pigs, equines and man.


Subject(s)
Trematode Infections , Animals , Trematode Infections/parasitology , Trematode Infections/veterinary , Ruminants/parasitology , Paramphistomatidae/physiology , Paramphistomatidae/isolation & purification , Rumen/parasitology , Humans , Trematoda/classification , Trematoda/physiology
18.
PLoS One ; 19(7): e0305674, 2024.
Article in English | MEDLINE | ID: mdl-39024228

ABSTRACT

This study aims to compare rumen microbiome and metabolites between second lactation dairy cows in the 75th percentile (n = 12; 57.2 ± 5.08 kg/d) of production according to genomic predicted transmitting ability for milk (GPTAM) and their counterparts in the 25th percentile (n = 12; 47.2 ± 8.61 kg/d). It was hypothesized that the metagenome and metabolome would differ between production levels. Cows were matched by days in milk (DIM), sire, occurrence of disease, and days open in previous lactation. For an additional comparison, the cows were also divided by phenotype into high (n = 6; 61.3 ± 2.8 kg/d), medium (n = 10; 55 ± 1.2 kg/d), and low (n = 8; 41.9 ± 5.6 kg/d) based on their milk production. Samples were collected 65 ± 14 DIM. Rumen content was collected using an oro-gastric tube and serum samples were collected from the coccygeal vessels. High-resolution liquid chromatography-mass spectrometry (LC-MS) was used for rumen and serum metabolite profiling. Shotgun metagenomics was used for rumen microbiome profiling. Microbiome sample richness and diversity were used to determine alpha and Bray-Curtis dissimilarity index was used to estimate beta diversity. Differences in metabolites were determined using t-tests or ANOVA. Pearson correlations were used to consider associations between serum metabolites and milk production. There was no evidence of a difference in rumen metabolites or microbial communities by GPTAM or phenotype. Cows in the phenotypic low group had greater serum acetate to propionate ratio and acetate proportion compared to the cows in the phenotypic medium group. Likewise, serum propionate proportion was greater in the medium compared to the low phenotypic group. Serum acetate, butyrate, and propionate concentrations had a weak positive correlation with milk production. When investigating associations between rumen environment and milk production, future studies must consider the impact of the ruminal epithelium absorption and post-absorption processes in relation to milk production.


Subject(s)
Lactation , Milk , Rumen , Animals , Cattle , Rumen/microbiology , Rumen/metabolism , Female , Milk/metabolism , Milk/microbiology , Phenotype , Metabolome , Microbiota , Genomics/methods , Metagenome , Metabolomics/methods , Multiomics
19.
J Agric Food Chem ; 72(28): 15572-15585, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958707

ABSTRACT

Pimelea poisoning of cattle causes distinct symptoms and frequently death, attributable to the toxin simplexin. Pimelea poisoning was induced via addition of ground Pimelea trichostachya plant to the daily feed in a three-month trial with Droughtmaster steers. The trial tested four potential mitigation treatments, namely, biochar, activated biochar, bentonite, and a bacterial inoculum, and incorporated negative and positive control groups. All treatments tested were unable to prevent the development of simplexin poisoning effects. However, steers consuming a bentonite adsorbent together with Pimelea showed lesser rates-of-decline for body weight (P < 0.05) and four hematological parameters (P < 0.02), compared to the positive control group fed Pimelea only. Microbiome analysis revealed that despite displaying poisoning symptoms, the rumen microbial populations of animals receiving Pimelea were very resilient, with dominant bacterial populations maintained over time. Unexpectedly, clinical edema developed in some animals up to 2 weeks after Pimelea dosing was ceased.


Subject(s)
Animal Feed , Cattle Diseases , Animals , Cattle , Animal Feed/analysis , Cattle Diseases/prevention & control , Cattle Diseases/microbiology , Male , Charcoal/administration & dosage , Australia , Plant Poisoning/veterinary , Plant Poisoning/prevention & control , Bacteria/isolation & purification , Bacteria/classification , Bacteria/drug effects , Bentonite/chemistry , Rumen/microbiology , Rumen/metabolism , Gastrointestinal Microbiome/drug effects
20.
Trop Anim Health Prod ; 56(6): 202, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992295

ABSTRACT

The objective of the study was to determine whether adding grape seed oil (GSO) to the diet of primiparous Jersey breeds during the transition period would improve animal health by measuring effects on the rumen environment, serum biochemistry, oxidative response, and the composition and quality of milk. We used 14 Jersey heifers, weighing an average of 430 kg and 240 days of gestation. The animals were divided into two groups and offered a basal diet, including GSO in the concentrate for the GSO group (dose of 25 mL per animal day) and the same dose of soybean oil (SO) for the control group. The animals were allocated and maintained in a compost barn system, receiving an anionic diet (pre-partum) and a diet for postpartum lactating animals. Dry matter intake (DMI), milk production, serum biochemistry, serum and milk oxidative stability, ruminal fluid and milk fatty acid profile, milk qualitative aspects, and ruminal parameters such as pH, bacterial activity, and protozoan count were evaluated. The addition of GSO had a positive effect on the health of the cows, especially on the oxidative stability of the cows, by increasing total thiols (P = 0.03), higher plasma ferric reducing capacity (FRAP) (P = 0.01), and total antioxidant capacity (TAC) (P = 0.01). In the oxidative stability of the milk produced by the treated animals, there was also an increase in TAC (P = 0.05) and FRAP (P = 0.03). Discreet changes were observed in the ruminal environment with a decreasing trend in pH (P = 0.04) but an increase in bacterial activity (P = 0.05) and protozoa counts (P = 0.07) in cows that consumed the additive. GSO consumption affected the fatty acid profile in milk, increasing saturated fatty acids (SFA) (P = 0.05) and reducing unsaturated fatty acids (UFA) (P = 0.03). The oil did not affect milk production or efficiency in the postpartum period. Based on this information, it is concluded that the addition of GSO positively affects the cow's antioxidant system.


Subject(s)
Animal Feed , Diet , Lactation , Milk , Rumen , Animals , Milk/chemistry , Female , Cattle , Rumen/parasitology , Rumen/metabolism , Diet/veterinary , Animal Feed/analysis , Pregnancy , Animal Nutritional Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL