Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125903

ABSTRACT

Cytochromes P450 (P450s) are one of the largest enzymatic protein families and play critical roles in the synthesis and metabolism of plant secondary metabolites. Astragaloside IV (AS-IV) is one of the primary active components in Astragalus herbs, exhibiting diverse biological activities and pharmacological effects. However, P450s involved in the astragaloside biosynthesis have not been systematically analyzed in Astragalus mongholicus (A. mongholicus). In this study, we identified 209 P450 genes from the genome of A. mongholicus (AmP450s), which were classified into nine clans and 47 families and performed a systematic overview of their physical and chemical properties, phylogeny, gene structures and conserved motifs. Weighted gene co-expression network analysis (WGCNA) revealed that AmP450s are critical in the astragaloside biosynthesis pathway. The expression levels of these AmP450s were verified by quantitative real-time PCR (qRT-PCR) analysis in the root, stem and leaf, showing that most AmP450s are abundant in the root. Additionally, the correlation analysis between gene expressions and AS-IV content showed that twelve AmP450s, especially CYP71A28, CYP71D16 and CYP72A69, may have significant potential in the biosynthesis of astragaloside. This study systematically investigates the P450s of A. mongholicus and offers valuable insights into further exploring the functions of CYP450s in the astragaloside biosynthesis pathway.


Subject(s)
Astragalus Plant , Cytochrome P-450 Enzyme System , Gene Expression Regulation, Plant , Phylogeny , Saponins , Triterpenes , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Saponins/biosynthesis , Saponins/genetics , Saponins/metabolism , Triterpenes/metabolism , Astragalus Plant/genetics , Astragalus Plant/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
2.
BMC Genomics ; 25(1): 536, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816704

ABSTRACT

BACKGROUND: The formation of pharmacologically active components in medicinal plants is significantly impacted by DNA methylation. However, the exact mechanisms through which DNA methylation regulates secondary metabolism remain incompletely understood. Research in model species has demonstrated that DNA methylation at the transcription factor binding site within functional gene promoters can impact the binding of transcription factors to target DNA, subsequently influencing gene expression. These findings suggest that the interaction between transcription factors and target DNA could be a significant mechanism through which DNA methylation regulates secondary metabolism in medicinal plants. RESULTS: This research conducted a comprehensive analysis of the NAC family in E. senticosus, encompassing genome-wide characterization and functional analysis. A total of 117 EsNAC genes were identified and phylogenetically divided into 15 subfamilies. Tandem duplications and chromosome segment duplications were found to be the primary replication modes of these genes. Motif 2 was identified as the core conserved motif of the genes, and the cis-acting elements, gene structures, and expression patterns of each EsNAC gene were different. EsJUB1, EsNAC047, EsNAC098, and EsNAC005 were significantly associated with the DNA methylation ratio in E. senticosus. These four genes were located in the nucleus or cytoplasm and exhibited transcriptional self-activation activity. DNA methylation in EsFPS, EsSS, and EsSE promoters significantly reduced their activity. The methyl groups added to cytosine directly hindered the binding of the promoters to EsJUB1, EsNAC047, EsNAC098, and EsNAC005 and altered the expression of EsFPS, EsSS, and EsSE genes, eventually leading to changes in saponin synthesis in E. senticosus. CONCLUSIONS: NAC transcription factors that are hindered from binding by methylated DNA are found in E. senticosus. The incapacity of these NACs to bind to the promoter of the methylated saponin synthase gene leads to subsequent alterations in gene expression and saponin synthesis. This research is the initial evidence showcasing the involvement of EsNAC in governing the impact of DNA methylation on saponin production in E. senticosus.


Subject(s)
DNA Methylation , Eleutherococcus , Plant Proteins , Promoter Regions, Genetic , Saponins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Eleutherococcus/genetics , Eleutherococcus/metabolism , Saponins/biosynthesis , Saponins/genetics , Gene Expression Regulation, Plant , Phylogeny
3.
Nature ; 629(8013): 937-944, 2024 May.
Article in English | MEDLINE | ID: mdl-38720067

ABSTRACT

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.


Subject(s)
Adjuvants, Immunologic , Metabolic Engineering , Saccharomyces cerevisiae , Saponins , Adjuvants, Immunologic/biosynthesis , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/metabolism , Biosynthetic Pathways/genetics , Drug Design , Enzymes/genetics , Enzymes/metabolism , Metabolic Engineering/methods , Plants/enzymology , Plants/genetics , Plants/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saponins/biosynthesis , Saponins/chemistry , Saponins/genetics , Saponins/metabolism , Structure-Activity Relationship
4.
PLoS One ; 19(3): e0300895, 2024.
Article in English | MEDLINE | ID: mdl-38527035

ABSTRACT

Triterpenoid saponins and flavonoids have several pharmacological activities against P. tenuifolia. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and chalcone synthase (CHS) are the rate-limiting enzymes of triterpenoid saponin and flavonoid biosynthesis, respectively. In this study, HMGR and CHS genes were cloned from P. tenuifolia, and their bioinformatics analyses and tissue-specific expression were investigated. The results showed that the HMGR and CHS genes were successfully cloned, separately named the PtHMGR gene (NCBI accession: MK424118) and PtCHS gene (NCBI accession: MK424117). The PtHMGR gene is 2323 bp long, has an open reading frame (ORF) of 1782 bp, and encods 593 amino acids. The PtCHS gene is 1633 bp long with an ORF of 1170 bp, encoding 389 amino acids. PtHMGR and PtCHS were both hydrophobic, not signal peptides or secreted proteins, containing 10 conserved motifs. PtHMGR and PtCHS separately showed high homology with HMGR and CHS proteins from other species, and their secondary structures mainly included α-helix and random curl. The tertiary structure of PtHMGR was highly similarity to that the template 7ULI in RCSB PDB with 92.0% coverage rate. The HMG-CoA-binding domain of PtHMGR is located at 173-572 amino acid residues, including five bound sites. The tertiary structure of PtCHS showed high consistency with the template 1I86 in RCSB PDB with 100% coverage rate, contained malonyl CoA and 4-coumaroyl-CoA linkers. The expression of PtHMGR and PtCHS is tissue-specific. PtHMGR transcripts were mainly accumulated in roots, followed by leaves, and least in stems, and were significantly positively correlated with the contents of total saponin and tenuifolin. PtCHS was highly expressed in the stems, followed by the leaves, with low expression in the roots. PtCHS transcripts showed a significant positive correlation with total flavonoids content, however, they were significantly negatively correlated with the content of polygalaxanthone III (a type of flavonoids). This study provided insight for further revealing the roles of PtHMGR and PtCHS.


Subject(s)
Acyltransferases , Polygala , Saponins , Triterpenes , Polygala/metabolism , Oxidoreductases , Cloning, Molecular , Saponins/genetics , Triterpenes/metabolism , Amino Acids , Flavonoids , Phylogeny
5.
Gene ; 908: 148287, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38360127

ABSTRACT

Aralia elata (Miq.) Seem, a significant tree species in the Araliaceae family, has medicinal and edible properties. Saponins are the primary active components of A. elata. The 3-hydroxy-3-methylglutaryl- CoA reductase (HMGR) is the initial rate-limiting enzyme of the major metabolic pathway of saponins in A. elata. In this study, the AeHMGR gene was identified through screening of transcriptome data. Through the qRT-PCR analysis, it was determined that the expression level of AeHMGR gene is highest in the somatic embryo and stem of A. elata. Heterologous transformation in tobacco revealed that ectopic expression of the AeHMGR gene leads to a significant reduction in the expression levels of the NtSS, NtFPS, and NtSE genes in transgenic tobacco lines, with a minimum expression level of 0.24 times that of the wild type. In the overexpressed callus lines of A. elata, the expression levels of the AeFPS, AeSE, AeSS, and Aeß-AS genes were also significantly lower compared to the wild type, with a minimum expression level of approximately 0.3 times that of the wild type. Interestingly, the overexpression of the AeHMGR gene in A. elata somatic embryos led to a substantial decrease in the expression levels of AeFPS and AeSS, while the expression levels of AeSE and Aeß-AS increased. Among the transgenic somatic embryo strain lines, line 7 exhibited the highest expression levels of AeSE and Aeß-AS, with fold increases of 11.51 and 9.38, respectively, compared with that of the wild-type. Additionally, a high-performance liquid chromatography method was established to detect five individual saponins in transgenic A. elata. The total saponin content in line 7 somatic embryos was 1.14 times higher than that of wild-type materials, but only 0.30 times that of wild-type cultivated leaves. Moreover, the content of oleanolic acid saponin in line 7 was 1.35 times higher than that of wild-type cultivated leaves. These indicate that HMGR can affect triterpene biosynthesis.


Subject(s)
Aralia , Saponins , Animals , Aralia/genetics , Aralia/chemistry , Plant Leaves/chemistry , Animals, Genetically Modified , Saponins/genetics , Chromatography, High Pressure Liquid/methods
6.
Planta ; 259(2): 50, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285114

ABSTRACT

MAIN CONCLUSION: The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced ß-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.


Subject(s)
Saponins , Squalene/analogs & derivatives , Triterpenes , Glycosides , Flavonoids , Saponins/genetics , Glycosyltransferases , Uridine Diphosphate
7.
Plant Cell Rep ; 43(1): 15, 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38135741

ABSTRACT

KEY MESSAGE: CRISPR-Cas9-mediated disruption of a licorice cellulose synthase-derived glycosyltransferase gene, GuCSyGT, demonstrated the in planta role of GuCSyGT as the enzyme catalyzing 3-O-glucuronosylation of triterpenoid aglycones in soyasaponin biosynthesis. Triterpenoid glycosides (saponins) are a large, structurally diverse group of specialized metabolites in plants, including the sweet saponin glycyrrhizin produced by licorice (Glycyrrhiza uralensis) and soyasaponins that occur widely in legumes, with various bioactivities. The triterpenoid saponin biosynthetic pathway involves the glycosylation of triterpenoid sapogenins (the non-sugar part of triterpenoid saponins) by glycosyltransferases (GTs), leading to diverse saponin structures. Previously, we identified a cellulose synthase-derived GT (CSyGT), as a newly discovered class of triterpenoid GT from G. uralensis. GuCSyGT expressed in yeast, which could transfer the sugar glucuronic acid to the C3 position of glycyrrhetinic acid and soyasapogenol B, which are the sapogenins of glycyrrhizin and soyasaponin I, respectively. This suggested that GuCSyGT is involved in the biosynthesis of glycyrrhizin and soyasaponin I. However, the in planta role of GuCSyGT in saponin biosynthesis remains unclear. In this study, we generated GuCSyGT-disrupted licorice hairy roots using CRISPR-Cas9-mediated genome editing and analyzed the saponin content. This revealed that soyasaponin I was completely absent in GuCSyGT-disrupted lines, demonstrating the in planta role of GuCSyGT in saponin biosynthesis.


Subject(s)
Glycyrrhiza , Sapogenins , Saponins , Triterpenes , Glycyrrhiza/chemistry , Glycyrrhiza/genetics , Glycyrrhiza/metabolism , Sapogenins/metabolism , Glycyrrhizic Acid/metabolism , Saponins/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Triterpenes/metabolism
8.
Planta ; 258(6): 115, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943378

ABSTRACT

MAIN CONCLUSION: Two trans-isopentenyl diphosphate synthase and one squalene synthase genes were identified and proved to be involved in the triterpenoid biosynthesis in Platycodon grandiflorus. Platycodon grandiflorus is a commonly used traditional Chinese medicine. The main bioactive compounds of P. grandiflorus are triterpenoid saponins. The biosynthetic pathway of triterpenoid saponins in P. grandiflorus has been preliminarily explored. However, limited functional information on related genes has been reported. A total of three trans-isopentenyl diphosphate synthases (trans-IDSs) genes (PgFPPS, PgGGPPS1 and PgGGPPS2) and one squalene synthase (SQS) gene (PgSQS) in P. grandiflorus were screened and identified from transcriptome dataset. Subcellular localization of the proteins was defined based on the analysis of GFP-tagged. The activity of genes was verified in Escherichia coli, demonstrating that recombinant PgFPPS catalysed the production of farnesyl diphosphate. PgGGPPS1 produced geranylgeranyl diphosphate, whereas PgGGPPS2 did not exhibit catalytic activity. By structural identification of encoding genes, a transmembrane region was found at the C-terminus of the PgSQS gene, which produced an insoluble protein when expressed in E. coli but showed no apparent effect on the enzyme function. Furthermore, some triterpenoid saponin synthesis-related genes were discovered by combining the component content and the gene expression assays at the five growth stages of P. grandiflorus seedlings. The accumulation of active components in P. grandiflorus was closely associated with the expression level of genes related to the synthesis pathway.


Subject(s)
Platycodon , Saponins , Farnesyl-Diphosphate Farnesyltransferase/genetics , Platycodon/genetics , Escherichia coli/genetics , Saponins/genetics
9.
Mol Ecol ; 32(18): 4999-5012, 2023 09.
Article in English | MEDLINE | ID: mdl-37525516

ABSTRACT

Genomic structural variations (SVs) are widespread in plant and animal genomes and play important roles in phenotypic novelty and species adaptation. Frequent whole genome duplications followed by (re)diploidizations have resulted in high diversity of genome architecture among extant species. In this study, we identified abundant genomic SVs in the Panax genus that are hypothesized to have occurred through during the repeated polyploidizations/(re)diploidizations. Our genome-wide comparisons demonstrated that although these polyploidization-derived SVs have evolved at distinct evolutionary stages, a large number of SV-intersecting genes showed enrichment in functionally important pathways related to secondary metabolites, photosynthesis and basic cellular activities. In line with these observations, our metabolic analyses of these Panax species revealed high diversity of primary and secondary metabolites both at the tissue and interspecific levels. In particular, genomic SVs identified at ginsenoside biosynthesis genes, including copy number variation and large fragment deletion, appear to have played important roles in the evolution and diversification of ginsenosides. A further herbivore deterrence experiment demonstrated that, as major triterpenoidal saponins found exclusively in Panax, ginsenosides provide protection against insect herbivores. Our study provides new insights on how polyploidization-derived SVs have contributed to phenotypic novelty and plant adaptation.


Subject(s)
Ginsenosides , Panax , Saponins , Ginsenosides/analysis , Ginsenosides/chemistry , Ginsenosides/metabolism , Panax/genetics , Panax/chemistry , Panax/metabolism , DNA Copy Number Variations , Saponins/chemistry , Saponins/genetics , Saponins/metabolism , Adaptation, Physiological
10.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Article in English | MEDLINE | ID: mdl-37449344

ABSTRACT

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Subject(s)
COVID-19 , Lonicera , Oleanolic Acid , Plants, Medicinal , Saponins , Humans , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Saponins/genetics , Saponins/chemistry , Genomics , Evolution, Molecular
11.
J Biol Chem ; 299(6): 104768, 2023 06.
Article in English | MEDLINE | ID: mdl-37142228

ABSTRACT

Cholesterol is the precursor of bioactive plant metabolites such as steroidal saponins. An Australian plant, Dioscorea transversa, produces only two steroidal saponins: 1ß-hydroxyprotoneogracillin and protoneogracillin. Here, we used D. transversa as a model in which to elucidate the biosynthetic pathway to cholesterol, a precursor to these compounds. Preliminary transcriptomes of D. transversa rhizome and leaves were constructed, annotated, and analyzed. We identified a novel sterol side-chain reductase as a key initiator of cholesterol biosynthesis in this plant. By complementation in yeast, we determine that this sterol side-chain reductase reduces Δ24,28 double bonds required for phytosterol biogenesis as well as Δ24,25 double bonds. The latter function is believed to initiate cholesterogenesis by reducing cycloartenol to cycloartanol. Through heterologous expression, purification, and enzymatic reconstitution, we also demonstrate that the D. transversa sterol demethylase (CYP51) effectively demethylates obtusifoliol, an intermediate of phytosterol biosynthesis and 4-desmethyl-24,25-dihydrolanosterol, a postulated downstream intermediate of cholesterol biosynthesis. In summary, we investigated specific steps of the cholesterol biosynthetic pathway, providing further insight into the downstream production of bioactive steroidal saponin metabolites.


Subject(s)
Cholesterol , Dioscorea , Phytosterols , Australia , Cholesterol/biosynthesis , Cytochrome P450 Family 51/genetics , Cytochrome P450 Family 51/isolation & purification , Cytochrome P450 Family 51/metabolism , Dioscorea/classification , Dioscorea/enzymology , Dioscorea/genetics , Oxidoreductases/metabolism , Phytosterols/biosynthesis , Phytosterols/chemistry , Phytosterols/genetics , Saccharomyces cerevisiae/genetics , Saponins/biosynthesis , Saponins/genetics , Transcriptome
12.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047506

ABSTRACT

Platycodon grandiflorum belongs to the Campanulaceae family and is an important medicinal and food plant in East Asia. However, on the whole, the genome evolution of P. grandiflorum and the molecular basis of its major biochemical pathways are poorly understood. We reported a chromosome-scale genome assembly of P. grandiflorum based on a hybrid method using Oxford Nanopore Technologies, Illumina sequences, and high-throughput chromosome conformation capture (Hi-C) analysis. The assembled genome was finalized as 574 Mb, containing 41,355 protein-coding genes, and the genome completeness was assessed as 97.6% using a Benchmarking Universal Single-Copy Orthologs analysis. The P. grandiflorum genome comprises nine pseudo-chromosomes with 56.9% repeat sequences, and the transcriptome analysis revealed an expansion of the 14 beta-amylin genes related to triterpenoid saponin biosynthesis. Our findings provide an understanding of P. grandiflorum genome evolution and enable genomic-assisted breeding for the mass production of important components such as triterpenoid saponins.


Subject(s)
Codonopsis , Platycodon , Saponins , Triterpenes , Platycodon/genetics , Platycodon/chemistry , Saponins/genetics , Saponins/chemistry , Triterpenes/chemistry , Plant Breeding , Chromosomes , Republic of Korea , Plant Roots/chemistry
13.
Science ; 379(6638): 1252-1264, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36952412

ABSTRACT

The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.


Subject(s)
Adjuvants, Vaccine , Biosynthetic Pathways , Quillaja , Saponins , Adjuvants, Vaccine/biosynthesis , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/genetics , Quillaja/enzymology , Quillaja/genetics , Saponins/biosynthesis , Saponins/chemistry , Saponins/genetics , Sequence Analysis, DNA , Genome, Plant , Biosynthetic Pathways/genetics , Nicotiana/genetics , Nicotiana/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Metab Eng ; 76: 232-246, 2023 03.
Article in English | MEDLINE | ID: mdl-36849090

ABSTRACT

Cholesterol serves as a key precursor for many high-value chemicals such as plant-derived steroidal saponins and steroidal alkaloids, but a plant chassis for effective biosynthesis of high levels of cholesterol has not been established. Plant chassis have significant advantages over microbial chassis in terms of membrane protein expression, precursor supply, product tolerance, and regionalization synthesis. Here, using Agrobacterium tumefaciens-mediated transient expression technology, Nicotiana benthamiana, and a step-by-step screening approach, we identified nine enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, C14-R-2, 8,7SI-4, C5-SD1, and 7-DR1-1) from the medicinal plant Paris polyphylla and established detailed biosynthetic routes from cycloartenol to cholesterol. Specfically, we optimized HMGR, a key gene of the mevalonate pathway, and co-expressed it with the PpOSC1 gene to achieve a high level of cycloartenol (28.79 mg/g dry weight, which is a sufficient amount of precursor for cholesterol biosynthesis) synthesis in the leaves of N. benthamiana. Subsequently, using a one-by-one elimination method we found that six of these enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, and C5-SD1) were crucial for cholesterol production in N. benthamiana, and we establihed a high-efficiency cholesterol synthesis system with a yield of 5.63 mg/g dry weight. Using this strategy, we also discovered the biosynthetic metabolic network responsible for the synthesis of a common aglycon of steroidal saponin, diosgenin, using cholesterol as a substrate, obtaining a yield of 2.12 mg/g dry weight in N. benthamiana. Our study provides an effective strategy to characterize the metabolic pathways of medicinal plants that lack a system for in vivo functional verification, and also lays a foundation for the synthesis of active steroid saponins in plant chassis.


Subject(s)
Diosgenin , Liliaceae , Saponins , Diosgenin/metabolism , Liliaceae/chemistry , Liliaceae/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Plants/metabolism , Saponins/genetics , Saponins/chemistry
15.
Sci Rep ; 12(1): 22335, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572795

ABSTRACT

Radix Bupleuri (Chaihu in Chinese) is a traditional Chinese medicine commonly used to treat colds and fevers. The root metabolome and transcriptome of two cultivars of B. chinense (BCYC and BCZC) and one of B. scorzonerifolium (BSHC) were determined and analyzed. Compared with BSHC, 135 and 194 differential metabolites were identified in BCYC and BCZC, respectively, which were mainly fatty acyls, organooxygen metabolites. A total of 163 differential metabolites were obtained between BCYC and BCZC, including phenolic acids and lipids. Compared with BSHC, 6557 and 5621 differential expression genes (DEGs) were found in BCYC and BSHC, respectively, which were annotated into biosynthesis of unsaturated fatty acid and fatty acid metabolism. A total of 4,880 DEGs existed between the two cultivars of B. chinense. The abundance of flavonoids in B. scorzonerifolium was higher than that of B. chinense, with the latter having higher saikosaponin A and saikosaponin D than the former. Pinobanksin was the most major flavonoid which differ between the two cultivars of B. chinense. The expression of chalcone synthase gene was dramatically differential, which had a positive correlation with the biosynthesis of pinobanksin. The present study laid a foundation for further research on biosynthesis of flavonoids and terpenoids of Bupleurum L.


Subject(s)
Drugs, Chinese Herbal , Saponins , Transcriptome , Metabolomics , Flavonoids , Plant Roots/genetics , Saponins/genetics
16.
Physiol Plant ; 174(6): e13810, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36326141

ABSTRACT

Paris species accumulate a large amount of steroidal saponins, which have numerous pharmacological activities and have become an essential component in many patented drugs. However, only two among all Paris species. Paris are identified as official sources due to high level of bioactive compounds. To clarify the composition of steroidal saponins and the molecular basis behind the differences between species, we investigated transcriptome and metabolic profiles of leaves and rhizomes in Paris polyphylla var. chinensis (PPC), Paris polyphylla var. yunnanensis (PPY), Paris polyphylla var. stenophylla (PPS), Paris fargesii (PF), and Paris mairei (PM). Phytochemical results displayed that the accumulation of steroidal saponins was tissue- and species-specific. PF and PPS contained more steroidal saponins in leaves than rhizomes, while PPY accumulated more steroidal saponins in rhizomes than leaves. PPC and PM contained similar amounts of steroidal saponins in leaves and rhizomes. Transcriptome analysis illustrated that most differentially expressed genes related to the biosynthesis of steroidal saponins were abundantly expressed in rhizomes than leaves. Meanwhile, more biosynthetic genes had significant correlations with steroidal saponins in rhizomes than in leaves. The result of CCA indicated that ACAT, DXS, DWF1, and CYP90 constrained 97.35% of the variance in bioactive compounds in leaves, whereas CYP72, UGT73, ACAT, and GPPS constrained 98.61% of the variance in phytochemicals in rhizomes. This study provided critical information for enhancing the production of steroidal saponins by biotechnological approaches and methodologies.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Transcriptome/genetics , Gene Expression Profiling , Liliaceae/genetics , Liliaceae/chemistry , Plant Leaves , Saponins/genetics , Saponins/analysis , Saponins/chemistry , Melanthiaceae/genetics , Melanthiaceae/chemistry
17.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3463-3474, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850797

ABSTRACT

The difference of astragaloside Ⅳ content and the expression of its biosynthesis related genes in imitating wild Astragalus mongolicus(IWA) and cultivated A.mongolicus(CA) under different growth years were systematically compared and analyzed.Then the key enzyme genes affected the difference of astragaloside Ⅳ content in the above two A.mongolicus were screened.High-perfo-rmance liquid chromatography(HPLC)was used to determine the content of astragaloside Ⅳ in A.mongolicusunderthe above two diffe-rent growth patterns.Based on the Illumina HiSeq and PacBio high-throughput sequencing platforms, thesecond-and third-generation transcriptome sequencing(RNA-Seq)databaseof the two A.mongolicuswas constructed.The related enzyme genes in the biosynthetic pathway of astragaloside Ⅳ were screened and verified byquantitative reverse transcriptase polymerase chain reaction(RT-qPCR).The RNA-sequencing(RNA-Seq) and RT-qPCR data of each gene were subjected to correlation analysis and trend analysis.The results showed that the variation trend of astragaloside Ⅳ contentby HPLC wasthe same as that of genes by RNA-Seq and RT-qPCR in 1-4 year IWA and 1-2 year CA.The trend level of astragaloside Ⅳ contentwas lower in 2-year IWA than 1-year IWA.Compared with 2-year IWA, 3-year IWA had an upward trend, while 4-year IWA hada downward trend versus 3-year IWA.Additionally, 1-year CA had increased trendthan 2-year CA.However, the content of astragaloside Ⅳ in 5-year IWA was higher than that of 6-year IWA, which wasinconsistent with the findings of RNA-Seq and RT-qPCR.This study preliminarily clarifiedthat the difference of astragaloside Ⅳ contentin 1-4 year IWA and 1-2 year CA wasclosely related to the expression of the upstream and midstream genes(MVK, CMK, PMK, MVD, SS) in the biosynthetic pathway.The results facilitate the production and planting of Radix Astragali seu Hedysari.


Subject(s)
Astragalus Plant , Saponins , Triterpenes , Astragalus Plant/genetics , Astragalus Plant/metabolism , Astragalus propinquus/genetics , Saponins/analysis , Saponins/genetics , Triterpenes/analysis
18.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2623-2633, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718480

ABSTRACT

To investigate the responses of key enzymes involved in steroidal saponin biosynthesis of Dioscorea zingiberensis to low phosphorus stress, we designed three treatments of severe phosphorus stress, moderate phosphorus stress, and normal phosphorus level. The D. zingiberensis plants were collected at the early, middle, and late stages of treatment. The content of total steroidal saponins in different tissues of D. zingiberensis was determined by spectrophotometry for the identification of the critical stage in response to low phosphorus stress. BGI 500 sequencing platform was employed to obtain the transcript information of D. zingiberensis samples at the critical stage of low phosphorus stress, and then a transcriptome library was constructed. The correlation between the expression of genes involved in steroidal saponin biosynthesis and the content of total steroidal saponins was analyzed for the screening of the key enzyme genes in response to low phosphorus stress. Further, the expression patterns of these genes were analyzed by real-time fluorescence PCR(qRT-PCR). The content of total steroidal saponins in D. zingiberensis had obvious tissue specificity under low phosphorus stress, and the early stage of stress was particularly important for D. zingiberensis to respond to low phosphorus stress. A total of 101 593 unigenes were obtained by transcriptome sequencing, of which 77.35% were annotated in NT, NR, SwissProt, KOG, GO, and KEGG. A total of 256 transcripts of known key enzyme genes in the biosynthetic pathway of steroidal saponins were identified. The expression levels of 69 transcripts encoding 18 catalytic enzymes were significantly correlated with the content of total steroidal saponins. The qRT-PCR results showed that several key enzyme genes presented different expression patterns in four tissues under low phosphorus stress. The results indicated that the content of total steroidal saponins and the expression of key enzyme genes regulating steroidal saponin biosynthesis in D. zingensis changed under low phosphorus stress. This study provides the biological information for elucidating the molecular mechanism of steroidal saponin biosynthesis in D. zingensis exposed to low phosphorus stress.


Subject(s)
Dioscorea , Saponins , Dioscorea/genetics , Phosphorus , Saponins/genetics , Steroids , Transcriptome
19.
Mol Ecol Resour ; 22(8): 3049-3067, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35661414

ABSTRACT

As a medicinal herbal plant, Entada phaseoloides has high levels of secondary metabolites, particularly triterpenoid saponins, which are important resources for scientific research and medical applications. However, the lack of a reference genome for this genus has limited research on its evolution and utilization of its medicinal potential. In this study, we report a chromosome-scale genome assembly for E. phaseoloides using Illumina, Nanopore long reads and high-throughput chromosome conformation capture technology. The assembled reference genome is 456.18 Mb (scaffold N50 = 30.9 Mb; contig N50 = 6.34 Mb) with 95.71% of the sequences anchored onto 14 pseudochromosomes. E. phaseoloides was estimated to have diverged from the Leguminosae lineage at ~72.0 million years ago. With the integration of transcriptomic and metabolomic data, gene expression patterns and metabolite profiling of E. phaseoloides were determined in different tissues. The pattern of gene expression and metabolic profile of the kernel were distinct from those of other tissues. Furthermore, the evolution of certain gene families involved in the biosynthesis of triterpenoid saponins and terpenes was analysed and offers new insights into the formation of these two metabolites. Four CYP genes, one UGT gene and related transcription factors were identified as candidate genes contributing to regulation of triterpenoid saponin biosynthesis. As the first high-quality assembled reference genome in the genus Entada, it will not only provide new information for the evolutionary study of this genus and conservation biology of E. phaseoloides but also lay a foundation for the formation and utilization of secondary metabolites in medicinal plants.


Subject(s)
Fabaceae , Plants, Medicinal , Saponins , Triterpenes , Chromosomes , Evolution, Molecular , Fabaceae/genetics , Fabaceae/metabolism , Phylogeny , Plants, Medicinal/genetics , Saponins/genetics , Transcription Factors/genetics , Triterpenes/metabolism
20.
J Agric Food Chem ; 70(23): 7095-7109, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35638867

ABSTRACT

Soapberry (Sapindus mukorossi Gaertn.) pericarps are rich in valuable bioactive triterpenoid saponins. However, the saponin content dynamics and the molecular regulatory network of saponin biosynthesis in soapberry pericarps remain largely unclear. Here, we performed combined metabolite profiling and transcriptome analysis to identify saponin accumulation kinetic patterns, investigate gene networks, and characterize key candidate genes and transcription factors (TFs) involved in saponin biosynthesis in soapberry pericarps. A total of 54 saponins were tentatively identified, including 25 that were differentially accumulated. Furthermore, 49 genes putatively involved in sapogenin backbone biosynthesis and some candidate genes assumed to be responsible for the backbone modification, including 41 cytochrome P450s and 45 glycosyltransferases, were identified. Saponin-specific clusters/modules were identified by Mfuzz clustering and weighted gene coexpression network analysis, and one TF-gene regulatory network underlying saponin biosynthesis was proposed. The results of yeast one-hybrid assay and electrophoretic mobility shift assay suggested that SmbHLH2, SmTCP4, and SmWRKY27 may play important roles in the triterpenoid saponin biosynthesis by directly regulating the transcription of SmCYP71D-3 in the soapberry pericarp. Overall, these findings provide valuable information for understanding the molecular regulatory mechanism of saponin biosynthesis, enriching the gene resources, and guiding further research on triterpenoid saponin accumulation in soapberry pericarps.


Subject(s)
Sapindus , Saponins , Triterpenes , Gene Expression Profiling , Metabolome , Sapindus/genetics , Sapindus/metabolism , Saponins/genetics , Transcriptome , Triterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL