Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Hum Brain Mapp ; 45(10): e26786, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38994692

ABSTRACT

Whether in performing arts, sporting, or everyday contexts, when we watch others move, we tend to enjoy bodies moving in synchrony. Our enjoyment of body movements is further enhanced by our own prior experience with performing those movements, or our 'embodied experience'. The relationships between movement synchrony and enjoyment, as well as embodied experience and movement enjoyment, are well known. The interaction between enjoyment of movements, synchrony, and embodiment is less well understood, and may be central for developing new approaches for enriching social interaction. To examine the interplay between movement enjoyment, synchrony, and embodiment, we asked participants to copy another person's movements as accurately as possible, thereby gaining embodied experience of movement sequences. Participants then viewed other dyads performing the same or different sequences synchronously, and we assessed participants' recognition of having performed these sequences, as well as their enjoyment of each movement sequence. We used functional near-infrared spectroscopy to measure cortical activation over frontotemporal sensorimotor regions while participants performed and viewed movements. We found that enjoyment was greatest when participants had mirrored the sequence and recognised it, suggesting that awareness of embodiment may be central to enjoyment of synchronous movements. Exploratory analyses of relationships between cortical activation and enjoyment and recognition implicated the sensorimotor cortices, which subserve action observation and aesthetic processing. These findings hold implications for clinical research and therapies seeking to foster successful social interaction.


Subject(s)
Awareness , Pleasure , Sensorimotor Cortex , Spectroscopy, Near-Infrared , Humans , Male , Female , Young Adult , Adult , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Awareness/physiology , Pleasure/physiology , Psychomotor Performance/physiology , Social Interaction , Movement/physiology , Motor Activity/physiology
2.
Hum Brain Mapp ; 45(8): e26723, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38864296

ABSTRACT

This study aims to investigate the structural reorganization in the sensorimotor area of the brain in patients with gliomas, distinguishing between those with impaired and unimpaired strength. Using voxel-based morphometry (VBM) and region of interest (ROI) analysis, gray matter volumes (GMV) were compared in the contralesional primary motor gyrus, primary sensory gyrus, premotor area, bilateral supplementary motor area, and medial Brodmann area 8 (BA8). The results revealed that in patients with right hemisphere gliomas, the right medial BA8 volume was significantly larger in the impaired group than in the unimpaired group, with both groups exceeding the volume in 16 healthy controls (HCs). In patients with left hemisphere gliomas, the right supplementary motor area (SMA) was more pronounced in the impaired group compared to the unimpaired group, and both groups were greater than HCs. Additionally, the volumes of the right medial BA8 in both the impaired group were greater than HCs. Contralateral expansions in the gray matter of hand- and trunk-related cortices of the premotor area, precentral gyrus, and postcentral gyrus were observed compared to HCs. Furthermore, a negative correlation was found between hand Medical Research Council (MRC) score and volumes of the contralateral SMA and bilateral medial BA8. Notably, our findings reveal consistent results across both analytical approaches in identifying significant structural reorganizations within the sensorimotor cortex. These consistent findings underscore the adaptive neuroplastic responses to glioma presence, highlighting potential areas of interest for further neurosurgical planning and rehabilitation strategies.


Subject(s)
Brain Neoplasms , Functional Laterality , Glioma , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Male , Glioma/diagnostic imaging , Glioma/pathology , Glioma/physiopathology , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/physiopathology , Adult , Middle Aged , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/pathology , Sensorimotor Cortex/physiopathology , Functional Laterality/physiology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Motor Cortex/diagnostic imaging , Motor Cortex/pathology , Motor Cortex/physiopathology , Brain Mapping , Young Adult
3.
Hum Brain Mapp ; 45(9): e26767, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38923184

ABSTRACT

Closed-loop neurofeedback training utilizes neural signals such as scalp electroencephalograms (EEG) to manipulate specific neural activities and the associated behavioral performance. A spatiotemporal filter for high-density whole-head scalp EEG using a convolutional neural network can overcome the ambiguity of the signaling source because each EEG signal includes information on the remote regions. We simultaneously acquired EEG and functional magnetic resonance images in humans during the brain-computer interface (BCI) based neurofeedback training and compared the reconstructed and modeled hemodynamic responses of the sensorimotor network. Filters constructed with a convolutional neural network captured activities in the targeted network with spatial precision and specificity superior to those of the EEG signals preprocessed with standard pipelines used in BCI-based neurofeedback paradigms. The middle layers of the trained model were examined to characterize the neuronal oscillatory features that contributed to the reconstruction. Analysis of the layers for spatial convolution revealed the contribution of distributed cortical circuitries to reconstruction, including the frontoparietal and sensorimotor areas, and those of temporal convolution layers that successfully reconstructed the hemodynamic response function. Employing a spatiotemporal filter and leveraging the electrophysiological signatures of the sensorimotor excitability identified in our middle layer analysis would contribute to the development of a further effective neurofeedback intervention.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Magnetic Resonance Imaging , Neural Networks, Computer , Neurofeedback , Sensorimotor Cortex , Humans , Electroencephalography/methods , Adult , Male , Neurofeedback/methods , Young Adult , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Female
4.
Comput Methods Programs Biomed ; 254: 108292, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936152

ABSTRACT

BACKGROUND AND OBJECTIVES: The exploration of various neuroimaging techniques have become focal points within the field of neuroscience research. Magnetoencephalography based on optically pumped magnetometers (OPM-MEG) has shown significant potential to be the next generation of functional neuroimaging with the advantages of high signal intensity and flexible sensor arrangement. In this study, we constructed a 31-channel OPM-MEG system and performed a preliminary comparison of the temporal and spatial relationship between magnetic responses measured by OPM-MEG and blood-oxygen-level-dependent signals detected by functional magnetic resonance imaging (fMRI) during a grasping task. METHODS: For OPM-MEG, the ß-band (15-30 Hz) oscillatory activities can be reliably detected across multiple subjects and multiple session runs. To effectively localize the inhibitory oscillatory activities, a source power-spectrum ratio-based imaging method was proposed. This approach was compared with conventional source imaging methods, such as minimum norm-type and beamformer methods, and was applied in OPM-MEG source analysis. Subsequently, the spatial and temporal responses at the source-level between OPM-MEG and fMRI were analyzed. RESULTS: The effectiveness of the proposed method was confirmed through simulations compared to benchmark methods. Our demonstration revealed an average spatial separation of 10.57 ± 4.41 mm between the localization results of OPM-MEG and fMRI across four subjects. Furthermore, the fMRI-constrained OPM-MEG localization results indicated a more focused imaging extent. CONCLUSIONS: Taken together, the performance exhibited by OPM-MEG positions it as a potential instrument for functional surgery assessment.


Subject(s)
Magnetic Resonance Imaging , Magnetoencephalography , Sensorimotor Cortex , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Brain Mapping/methods , Adult , Male , Algorithms , Computer Simulation
5.
Elife ; 122024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916598

ABSTRACT

Adaptive motor behavior depends on the coordinated activity of multiple neural systems distributed across the brain. While the role of sensorimotor cortex in motor learning has been well established, how higher-order brain systems interact with sensorimotor cortex to guide learning is less well understood. Using functional MRI, we examined human brain activity during a reward-based motor task where subjects learned to shape their hand trajectories through reinforcement feedback. We projected patterns of cortical and striatal functional connectivity onto a low-dimensional manifold space and examined how regions expanded and contracted along the manifold during learning. During early learning, we found that several sensorimotor areas in the dorsal attention network exhibited increased covariance with areas of the salience/ventral attention network and reduced covariance with areas of the default mode network (DMN). During late learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning phases, with its connectivity suggesting a role in coordinating activity across different networks over time. Our results establish the neural changes that support reward-based motor learning and identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when adapting behavior.


Subject(s)
Learning , Magnetic Resonance Imaging , Reward , Humans , Male , Learning/physiology , Female , Adult , Young Adult , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Brain Mapping , Motor Activity/physiology , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging
6.
Neurosci Biobehav Rev ; 162: 105712, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733896

ABSTRACT

Substance use disorders (SUDs) are severe psychiatric illnesses. Seed region and independent component analyses are currently the dominant connectivity measures but carry the risk of false negatives due to selection. They can be complemented by a data-driven and whole-brain usage of voxel-wise intrinsic measures (VIMs). We meta-analytically integrated VIMs, namely regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), voxel-mirrored homotopy connectivity (VMHC) and degree centrality (DC) across different SUDs using the Activation Likelihood Estimation (ALE) algorithm, functionally decoded emerging clusters, and analysed their connectivity profiles. Our systematic search identified 51 studies including 1439 SUD participants. Although no overall convergent pattern of alterations across VIMs in SUDs was found, sensitivity analyses demonstrated two ALE-derived clusters of increased ReHo and ALFF in SUDs, which peaked in the left pre- and postcentral cortices. Subsequent analyses showed their involvement in action execution, somesthesis, finger tapping and vibrotactile monitoring/discrimination. Their numerous clinical correlates across included studies highlight the under-discussed role of sensorimotor cortices in SUD, urging a more attentive exploration of their clinical significance.


Subject(s)
Sensorimotor Cortex , Substance-Related Disorders , Humans , Substance-Related Disorders/physiopathology , Substance-Related Disorders/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/physiopathology , Magnetic Resonance Imaging , Brain Mapping
7.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664387

ABSTRACT

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Subject(s)
Connectome , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Adolescent , Female , Male , Young Adult , Child , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Child, Preschool , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/growth & development
8.
Sci Rep ; 14(1): 2344, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38282042

ABSTRACT

The age-related degenerative pathologies of the cervical spinal column that comprise degenerative cervical myelopathy (DCM) cause myelopathy due spinal cord compression. Functional neurological assessment of DCM can potentially reveal the severity and pathological mechanism of DCM. However, functional assessment by conventional MRI remains difficult. This study used resting-state functional MRI (rs-fMRI) to investigate the relationship between functional connectivity (FC) strength and neurophysiological indices and examined the feasibility of functional assessment by FC for DCM. Preoperatively, 34 patients with DCM underwent rs-fMRI scans. Preoperative central motor conduction time (CMCT) reflecting motor functional disability and intraoperative somatosensory evoked potentials (SEP) reflecting sensory functional disability were recorded as electrophysiological indices of severity of the cervical spinal cord impairment. We performed seed-to-voxel FC analysis and correlation analyses between FC strength and the two electrophysiological indices. We found that FC strength between the primary motor cortex and the precuneus correlated significantly positively with CMCT, and that between the lateral part of the sensorimotor cortex and the lateral occipital cortex also showed a significantly positive correlation with SEP amplitudes. These results suggest that we can evaluate neurological and electrophysiological severity in patients with DCM by analyzing FC strengths between certain brain regions.


Subject(s)
CME-Carbodiimide/analogs & derivatives , Sensorimotor Cortex , Spinal Cord Compression , Spinal Cord Diseases , Humans , Spinal Cord Compression/surgery , Spinal Cord Diseases/diagnostic imaging , Cervical Vertebrae/surgery , Magnetic Resonance Imaging , Sensorimotor Cortex/diagnostic imaging
9.
Epilepsy Res ; 197: 107233, 2023 11.
Article in English | MEDLINE | ID: mdl-37793284

ABSTRACT

OBJECTIVE: Patients with multifocal or generalized epilepsies manifesting with drop attacks have severe refractory seizures and significant cognitive and behavioural abnormalities. It is unclear to what extent these features relate to network abnormalities and how networks in sensorimotor cortex differ from those in patients with refractory focal epilepsies. Thus, in this study we sought to provide preliminary data on connectivity of sensorimotor cortex in patients with epileptic drop attacks, in comparison to patients with focal refractory epilepsies. METHODS: Resting-state fMRI (rs-fMRI) data was available for 5 patients with epileptic drop attacks and 15 with refractory focal epilepsies undergoing presurgical evaluation. Functional connectivity was analyzed with a seed-based protocol, with primary seeds placed at the precentral gyrus, the postcentral gyrus and the premotor cortex. For each seed, the subjects' timeseries were extracted and transformed to Z scores. Between-group analysis was then performed using the 3dttest+ + AFNI program. RESULTS: Two clusters of reduced connectivity in the group with drop attacks (DA group) in relation to those with focal epilepsies were found in the between-group analysis: the precentral seed showed reduced connectivity in the surrounding motor area, and the postcentral seed, reduced connectivity with the ipsilateral posterior cingulate gyrus. In the intra-group analyses, sensorimotor and premotor networks were abnormal in the DA group, whereas patients with focal epilepsies had the usual connectivity maps with each seed. CONCLUSION: This pilot study shows differences in the cerebral connectivity in the sensorimotor cortex of patients with generalized epilepsies and drop attacks which should be further explored to better understand the biological bases of the seizure generation and cognitive changes in these people.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy, Generalized , Sensorimotor Cortex , Humans , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Magnetic Resonance Imaging/methods , Pilot Projects , Brain Mapping/methods , Sensorimotor Cortex/diagnostic imaging , Seizures , Syncope , Epilepsies, Partial/diagnostic imaging
10.
PeerJ ; 11: e16172, 2023.
Article in English | MEDLINE | ID: mdl-37842067

ABSTRACT

Objective: This study used functional magnetic resonance imaging (fMRI) to explore brain structural and related network changes in patients with spinal cord injury (SCI). Methods: Thirty-one right-handed SCI patients and 31 gender- and age-matched healthy controls (HC) were included. The gray matter volume (GMV) changes in SCI patients were observed using voxel-based morphometry (VBM). Then, these altered gray matter clusters were used as the regions of interest (ROIs) for whole-brain functional connectivity (FC) analysis to detect related functional changes. The potential association between GMV and FC values with the visual analog scale (VAS), the American Spinal Injury Association (ASIA) score, and the course of injuries was investigated through partial correlation analysis. Results: GMV of the frontal, temporal, and insular cortices was lower in the SCI group than in the HC group. No GMV changes were found in the primary sensorimotor area in the SCI group. Besides, the altered FC regions were not in the primary sensorimotor area but in the cingulate gyrus, supplementary motor area, precuneus, frontal lobe, and insular. Additionally, some of these altered GMV and FC regions were correlated with ASIA motor scores, indicating that higher cognitive regions can affect motor function in SCI patients. Conclusions: This study demonstrated that gray matter and related network reorganization in patients with SCI occurred in higher cognitive regions. Future rehabilitation strategies should focus more on cognitive functions.


Subject(s)
Motor Cortex , Sensorimotor Cortex , Spinal Cord Injuries , Humans , Gray Matter/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Cognition , Atrophy/complications , Motor Cortex/diagnostic imaging
11.
BMC Complement Med Ther ; 23(1): 334, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735652

ABSTRACT

BACKGROUND: Tui Na (Chinese massage) is a relatively simple, inexpensive, and non-invasive intervention, and has been used to treat stroke patients for many years in China. Tui Na acts on specific parts of the body which are called meridians and acupoints to achieve the role of treating diseases. Yet the underlying neural mechanism associated with Tui Na is not clear due to the lack of detection methods. OBJECTIVE: Functional near-infrared spectroscopy (fNIRS) was used to explore the changes of sensorimotor cortical neural activity in patients with upper limb motor dysfunction of stroke and healthy control groups during Tui Na Hegu Point. METHODS: Ten patients with unilateral upper limb motor dysfunction after stroke and eight healthy subjects received Tui Na. fNIRS was used to record the hemodynamic data in the sensorimotor cortex and the changes in blood flow were calculated based on oxygenated hemoglobin (Oxy-Hb), the task session involved repetitive Tui Na on Hegu acupoint, using a block design [six cycles: rest (20 seconds); Tui Na (20 seconds); rest (30 seconds)]. The changes in neural activity in sensorimotor cortex could be inferred according to the principle of neurovascular coupling, and the number of activated channels in the bilateral hemisphere was used to calculate the lateralization index. RESULT: 1. For hemodynamic response induced by Hegu acupoint Tui Na, a dominant increase in the contralesional primary sensorimotor cortex during Hegu point Tui Na of the less affected arm in stroke patients was observed, as well as that in healthy controls, while this contralateral pattern was absent during Hegu point Tui Na of the affected arm in stroke patients. 2. Concerning the lateralization index in stroke patients, a significant difference was observed between lateralization index values for the affected arm and the less affected arm (P < 0.05). Wilcoxon tests showed a significant difference between lateralization index values for the affected arm in stroke patients and lateralization index values for the dominant upper limb in healthy controls (P < 0.05), and no significant difference between lateralization index values for the less affected arm in stroke patients and that in healthy controls (P = 0.36). CONCLUSION: The combination of Tui Na and fNIRS has the potential to reflect the functional status of sensorimotor neural circuits. The changes of neuroactivity in the sensorimotor cortex when Tui Na Hegu acupoint indicate that there is a certain correlation between acupoints in traditional Chinese medicine and neural circuits.


Subject(s)
Acupuncture Therapy , Massage , Medicine, Chinese Traditional , Motor Disorders , Sensorimotor Cortex , Stroke , Humans , Acupuncture Points , East Asian People , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/physiopathology , Stroke/complications , Stroke/therapy , Acupuncture Therapy/methods , Medicine, Chinese Traditional/methods , Upper Extremity/innervation , Upper Extremity/physiopathology , Motor Disorders/etiology , Motor Disorders/physiopathology , Motor Disorders/rehabilitation , Stroke Rehabilitation/methods , Meridians , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Spectroscopy, Near-Infrared
12.
Brain Topogr ; 36(3): 283-293, 2023 05.
Article in English | MEDLINE | ID: mdl-36856917

ABSTRACT

To explore alterations of resting-state functional connectivity (rsFC) in sensorimotor cortex following strokes with left or right hemiplegia considering the lateralization and neuroplasticity. Seventy-three resting-state functional near-infrared spectroscopy (fNIRS) files were selected, including 26 from left hemiplegia (LH), 21 from right hemiplegia (RH) and 26 from normal controls (NC) group. Whole-brain analyses matching the Pearson correlation were used for rsFC calculations. For right-handed normal controls, rsFC of motor components (M1 and M2) in the left hemisphere displayed a prominent intensity in comparison with the right hemisphere (p < 0.05), while for stroke groups, this asymmetry has disappeared. Additionally, RH rather than LH showed stronger rsFC between left S1 and left M1 in contrast to normal controls (p < 0.05), which correlated inversely with motor function (r = - 0.53, p < 0.05). Regarding M1, rsFC within ipsi-lesioned M1 has a negative correlation with motor function of the affected limb (r = - 0.60 for the RH group and - 0.43 for the LH group, p < 0.05). The rsFC within contra-lesioned M1 that innervates the normal side was weakened compared with that of normal controls (p < 0.05). Stronger rsFC of motor components in left hemisphere was confirmed by rs-fNIRS as the "secret of dominance" for the first time, while post-stroke hemiplegia broke this cortical asymmetry. Meanwhile, a statistically strengthened rsFC between left S1 and M1 only in right-hemiplegia group may act as a compensation for the impairment of the dominant side. This research has implications for brain-computer interfaces synchronizing sensory feedback with motor performance and transcranial magnetic regulation for cortical excitability to induce cortical plasticity.


Subject(s)
Sensorimotor Cortex , Stroke , Humans , Functional Laterality/physiology , Hemiplegia/diagnostic imaging , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Neuronal Plasticity/physiology
13.
Psychol Med ; 53(3): 771-784, 2023 02.
Article in English | MEDLINE | ID: mdl-34100349

ABSTRACT

BACKGROUND: Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. METHODS: We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls). RESULTS: We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal-parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05). CONCLUSIONS: The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory-motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.


Subject(s)
Connectome , Schizophrenia , Sensorimotor Cortex , Humans , Schizophrenia/diagnostic imaging , Brain/diagnostic imaging , Cognition , Executive Function , Sensation , Sensorimotor Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
14.
Neuroimage ; 263: 119651, 2022 11.
Article in English | MEDLINE | ID: mdl-36206940

ABSTRACT

BACKGROUND: Spontaneous beta activity in the primary motor cortices has been shown to increase in amplitude with advancing age, and that such increases are tightly coupled to stronger motor-related beta oscillations during movement planning. However, the relationship between these age-related changes in spontaneous beta in the motor cortices, local cortical thickness, and overall motor function remains unclear. METHODS: We collected resting-state magnetoencephalography (MEG), high-resolution structural MRI, and motor function scores using a neuropsychological battery from 126 healthy adults (56 female; age range = 22-72 years). MEG data were source-imaged and a whole-brain vertex-wise regression model was used to assess age-related differences in spontaneous beta power across the cortex. Cortical thickness was computed from the structural MRI data and local beta power and cortical thickness values were extracted from the sensorimotor cortices. To determine the unique contribution of age, spontaneous beta power, and cortical thickness to the prediction of motor function, a hierarchical regression approach was used. RESULTS: There was an increase in spontaneous beta power with age across the cortex, with the strongest increase being centered on the sensorimotor cortices. Sensorimotor cortical thickness was not related to spontaneous beta power, above and beyond age. Interestingly, both cortical thickness and spontaneous beta power in sensorimotor regions each uniquely contributed to the prediction of motor function when controlling for age. DISCUSSION: This multimodal study showed that cortical thickness and spontaneous beta activity in the sensorimotor cortices have dissociable contributions to motor function across the adult lifespan. These findings highlight the complexity of interactions between structure and function and the importance of understanding these interactions in order to advance our understanding of healthy aging and disease.


Subject(s)
Healthy Aging , Motor Cortex , Sensorimotor Cortex , Adult , Humans , Female , Young Adult , Middle Aged , Aged , Magnetoencephalography/methods , Sensorimotor Cortex/diagnostic imaging , Motor Cortex/diagnostic imaging , Magnetic Resonance Imaging , Beta Rhythm
15.
J Neurovirol ; 28(4-6): 505-513, 2022 12.
Article in English | MEDLINE | ID: mdl-36207560

ABSTRACT

Human immunodeficiency virus-associated distal sensory polyneuropathy (HIV-DSP) affects up to 50% of people with HIV and is associated with depression, unemployment, and generally worsened quality of life. Previous work on the cortical mechanism of HIV neuropathy found decreased gray matter volume in the bilateral midbrain, thalamus, and posterior cingulate cortex, but structural connectivity in this context remains under-studied. Here we examine alterations in white matter microstructure using diffusion imaging, hypothesizing that cortical white matter degeneration would be observed in continuation of the peripheral white matter atrophy previously observed in HIV-DSP. Male HIV seropositive patients (n = 57) experiencing varying degrees of HIV neuropathy underwent single-shell diffusion tensor imaging with 51 sampling directions. The scans were pooled using tractography and connectometry to create a quantitative map of white matter tract integrity, measured in generalized fractional anisotropy (GFA). The relationship between GFA and neuropathy severity was evaluated with linear regression. Correction for multiple comparisons was done using false discovery rate (FDR), a statistical method commonly used in genomics and imaging to minimize false positives when thousands of individual comparisons are made. Neuropathy severity was associated with decreased GFA along thalamocortical radiations leading along the lateral thalamus to sensorimotor cortex, with r = -0.405 (p < 0.001; FDR), as well as with the superior bilateral cingulum (r = -0.346 (p < 0.05; FDR)). Among a population of HIV neuropathy patients, greater neuropathy severity was correlated with lower white matter integrity running from midbrain to somatosensory cortex. This suggests ascending deafferentation extending from damaged peripheral nerves further downstream than seen previously, into the axons of third-order neurons. There is also evidence of cingulum degeneration, implying some more complex mechanism beyond the ascending atrophy observed here.


Subject(s)
HIV Infections , Peripheral Nervous System Diseases , Sensorimotor Cortex , White Matter , Humans , Male , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging , HIV , Quality of Life , Sensorimotor Cortex/diagnostic imaging , HIV Infections/complications , HIV Infections/diagnostic imaging , HIV Infections/pathology , Peripheral Nervous System Diseases/pathology , Atrophy/pathology
16.
Brain Imaging Behav ; 16(5): 2049-2060, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35994188

ABSTRACT

The objective of this study was to investigate the alterations of brain activation and effective connectivity during motor imagery (MI) in complete spinal cord injury (CSCI) patients and to reveal a potential mechanism of MI in motor rehabilitation of CSCI patients. Fifteen CSCI patients and twenty healthy controls underwent the MI task-related fMRI scan, and the motor execution (ME) task only for healthy controls. The brain activation patterns of the two groups during MI, and CSCI patients during the MI task and healthy controls during the ME task were compared. Then the significantly changed brain activation areas in CSCI patients during the MI task were used as regions of interest for effective connectivity analysis, using a voxel-wise granger causality analysis (GCA) method. Compared with healthy controls, increased activations in left primary sensorimotor cortex and bilateral cerebellar lobules IV-VI were detected in CSCI patients during the MI task, and the activation level of these areas even equaled that of healthy controls during the ME task. Furthermore, GCA revealed decreased effective connectivity from sensorimotor related areas (primary sensorimotor cortex and cerebellar lobules IV-VI) to cognitive related areas (prefrontal cortex, precuneus, middle temporal gyrus, and inferior temporal gyrus) in CSCI patients. Our findings demonstrated that motor related brain areas can be functionally preserved and activated through MI after CSCI, it maybe the potential mechanism of MI in the motor rehabilitation of CSCI patients. In addition, Sensorimotor related brain regions have less influence on the cognitive related regions in CSCI patients during MI (The trial registration number: ChiCTR2000032793).


Subject(s)
Sensorimotor Cortex , Spinal Cord Injuries , Humans , Brain Mapping , Magnetic Resonance Imaging , Imagination/physiology , Sensorimotor Cortex/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging
17.
Hum Brain Mapp ; 43(18): 5562-5578, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35899321

ABSTRACT

The human sensorimotor cortex has multiple subregions showing functional commonalities and differences, likely attributable to their connectivity profiles. However, the molecular substrates underlying such connectivity profiles are unclear. Here, transcriptome-neuroimaging spatial correlation analyses were performed between transcriptomic data from the Allen human brain atlas and resting-state functional connectivity (rsFC) of 24 fine-grained sensorimotor subregions from 793 healthy subjects. Results showed that rsFC of six sensorimotor subregions were associated with expression measures of six gene sets that were specifically expressed in brain tissue. These sensorimotor subregions could be classified into the polygenic- and oligogenic-modulated subregions, whose rsFC were related to gene sets diverging on their numbers (hundreds vs. dozens) and functional characteristics. First, the former were specifically expressed in multiple types of neurons and immune cells, yet the latter were not specifically expressed in any cortical cell types. Second, the former were preferentially expressed during the middle and late stages of cortical development, while the latter showed no preferential expression during any stages. Third, the former were prone to be enriched for general biological functions and pathways, but the latter for specialized biological functions and pathways. Fourth, the former were enriched for neuropsychiatric disorders, whereas this enrichment was absent for the latter. Finally, although the identified genes were commonly associated with sensorimotor behavioral processes, the polygenic-modulated subregions associated genes were additionally related to vision and dementia. These findings may advance our understanding of the functional homogeneity and heterogeneity of the human sensorimotor cortex from the perspective of underlying genetic architecture.


Subject(s)
Brain Mapping , Sensorimotor Cortex , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Sensorimotor Cortex/diagnostic imaging , Neuroimaging
18.
Brain ; 145(10): 3522-3535, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35653498

ABSTRACT

Cortical lesions constitute a key manifestation of multiple sclerosis and contribute to clinical disability and cognitive impairment. Yet it is unknown whether local cortical lesions and cortical lesion subtypes contribute to domain-specific impairments attributable to the function of the lesioned cortex. In this cross-sectional study, we assessed how cortical lesions in the primary sensorimotor hand area relate to corticomotor physiology and sensorimotor function of the contralateral hand. Fifty relapse-free patients with relapsing-remitting or secondary-progressive multiple sclerosis and 28 healthy age- and sex-matched participants underwent whole-brain 7 T MRI to map cortical lesions. Brain scans were also used to estimate normalized brain volume, pericentral cortical thickness, white matter lesion fraction of the corticospinal tract, infratentorial lesion volume and the cross-sectional area of the upper cervical spinal cord. We tested sensorimotor hand function and calculated a motor and sensory composite score for each hand. In 37 patients and 20 healthy controls, we measured maximal motor-evoked potential amplitude, resting motor threshold and corticomotor conduction time with transcranial magnetic stimulation and the N20 latency from somatosensory-evoked potentials. Patients showed at least one cortical lesion in the primary sensorimotor hand area in 47 of 100 hemispheres. The presence of a lesion was associated with worse contralateral sensory (P = 0.014) and motor (P = 0.009) composite scores. Transcranial magnetic stimulation of a lesion-positive primary sensorimotor hand area revealed a decreased maximal motor-evoked potential amplitude (P < 0.001) and delayed corticomotor conduction (P = 0.002) relative to a lesion-negative primary sensorimotor hand area. Stepwise mixed linear regressions showed that the presence of a primary sensorimotor hand area lesion, higher white-matter lesion fraction of the corticospinal tract, reduced spinal cord cross-sectional area and higher infratentorial lesion volume were associated with reduced contralateral motor hand function. Cortical lesions in the primary sensorimotor hand area, spinal cord cross-sectional area and normalized brain volume were also associated with smaller maximal motor-evoked potential amplitude and longer corticomotor conduction times. The effect of cortical lesions on sensory function was no longer significant when controlling for MRI-based covariates. Lastly, we found that intracortical and subpial lesions had the largest effect on reduced motor hand function, intracortical lesions on reduced motor-evoked potential amplitude and leucocortical lesions on delayed corticomotor conduction. Together, this comprehensive multilevel assessment of sensorimotor brain damage shows that the presence of a cortical lesion in the primary sensorimotor hand area is associated with impaired corticomotor function of the hand, after accounting for damage at the subcortical level. The results also provide preliminary evidence that cortical lesion types may affect the various facets of corticomotor function differentially.


Subject(s)
Multiple Sclerosis , Sensorimotor Cortex , Humans , Multiple Sclerosis/pathology , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Evoked Potentials, Motor , Pyramidal Tracts/pathology , Sensorimotor Cortex/diagnostic imaging
19.
J Neurosci Res ; 100(9): 1765-1774, 2022 09.
Article in English | MEDLINE | ID: mdl-35608180

ABSTRACT

Connectivity changes after spinal cord injury (SCI) appear as dynamic post-injury procedures. The present study aimed to investigate the alterations in the functional connectivity (FC) in different injury duration in complete SCI using resting-state functional magnetic resonance imaging (fMRI). A total of 30 healthy controls (HCs) and 27 complete SCI patients were recruited in this study. A seed-based connectivity analysis compared FC differences between HCs and SCI and among SCI subgroups (SCI patients with post-injury within 6 months (early stage, n = 13) vs. those with post-injury beyond 6 months (late stage, n = 14)). Compared to HCs, SCI patients showed an increase in FC between sensorimotor cortex and cognitive, visual, and auditory cortices. The FC between motor cortex and cognitive cortex increased over time after injury. The FC between sensory cortex and visual cortex increased within 6 months after SCI, while FC between the sensory cortex and auditory cortex increased beyond 6 months after injury. The FC between sensorimotor cortex and cognitive, visual, auditory regions increased in complete SCI patients. The brain FC changed dynamically, and rehabilitation might be adapted over time after SCI.


Subject(s)
Sensorimotor Cortex , Spinal Cord Injuries , Brain Mapping , Humans , Magnetic Resonance Imaging , Parietal Lobe , Sensorimotor Cortex/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging
20.
Sci Rep ; 12(1): 4807, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314729

ABSTRACT

Previous animal models have illustrated that reduced cortical activity in the developing brain has cascading activity-dependent effects on the microstructural organization of the spinal cord. A limited number of studies have attempted to translate these findings to humans with cerebral palsy (CP). Essentially, the aberrations in sensorimotor cortical activity in those with CP could have an adverse effect on the spinal cord microstructure. To investigate this knowledge gap, we utilized magnetoencephalographic (MEG) brain imaging to quantify motor-related oscillatory activity in fourteen adults with CP and sixteen neurotypical (NT) controls. A subset of these participants also underwent cervical-thoracic spinal cord MRI. Our results showed that the strength of the peri-movement beta desynchronization and the post-movement beta rebound were each weaker in the adults with CP relative to the controls, and these weakened responses were associated with poorer task performance. Additionally, our results showed that the strength of the peri-movement beta response was associated with the total cross-sectional area of the spinal cord and the white matter cross-sectional area. Altogether these results suggest that the altered sensorimotor cortical activity seen in CP may result in activity-dependent plastic changes within the spinal cord microstructure, which could ultimately contribute to the sensorimotor deficits seen in this population.


Subject(s)
Cerebral Palsy , Sensorimotor Cortex , Cerebral Palsy/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography , Sensorimotor Cortex/diagnostic imaging , Spinal Cord/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL