Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Sci Rep ; 14(1): 22491, 2024 09 28.
Article in English | MEDLINE | ID: mdl-39341972

ABSTRACT

Reptiles in the wild or as pets may act as spreaders of bacteria, viruses, fungi and parasites. However, studies on the mycobiota of these animals are scanty. This study investigates the occurrence of yeasts from the cloacal swabs of snakes of different origins and the antifungal profile of the isolated strains. A total of 180 cloacal samples of snakes were collected from Morocco (Group I: n = 68) and Italy (Group II: n = 112). Yeast species were biochemically and molecularly identified. A total of 72 yeast strains belonging to 13 genera, 8 from snakes in Group I and five from snakes in Group II were identified. The most frequently isolated species were Trichosporon asahii (22.2%) and Candida tropicalis (15.3%) from snakes in Group I and Debaryomyces spp. (16.7%) and Metahyphopichia silvanorum (11.1%) from snakes in Group II. Multiple azole and amphotericin B (AmB) resistance phenomena were detected among isolated yeasts. Azole multi drug resistance phenomena were detected among yeasts from Group I and Rhodotorula mucilaginosa from Group II, whereas AmB resistance phenomena among those from Group II. Data suggest that snakes may harbor pathogenetic yeasts, being potential reservoirs and spreaders of these organisms in the environment. Since the yeast species community from different groups of animals as well as their antifungal profile reflects the epidemiology of human yeast infections in the same geographical areas, the results indicate that snakes may be considered as sentinels for human/animal pathogenic microorganisms and bio-indicators of environmental quality.


Subject(s)
Snakes , Yeasts , Animals , Snakes/microbiology , Yeasts/isolation & purification , Yeasts/classification , Zoonoses/microbiology , Antifungal Agents/pharmacology , Italy , Morocco , Humans , Cloaca/microbiology , Drug Resistance, Fungal , Sentinel Species , Microbial Sensitivity Tests
2.
Mar Pollut Bull ; 207: 116898, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39217868

ABSTRACT

The Western Mediterranean coast is under the influence of anthropogenic pressures, including land use, increasing amounts of dangerous waste and habitat destruction. In 2021, the French RINBIO network (http://www.ifremer.fr/envlit/) originally dedicated to assess chemical contamination in the region, focused on biological effects produced by contaminants and the interaction with natural variability in mussels using an active caging strategy. Cell and tissue level biomarkers were applied for 17 sampling sites divided in three sub-regions categorized by different environmental conditions. Results provide critical information for ecosystem health assessment using mussels as sentinel species in the Western Mediterranean Sea. The influence of natural and confounding factors (trophic condition, reproductive cycle, caging strategy), on biological responses to mild chemical contamination, was discussed and discriminated for health status assessment. Results provide valuable data available as reference values for the assessment of biomarkers and histopathological alterations for large-scale active biomonitoring campaigns in the Western Mediterranean Sea.


Subject(s)
Biological Monitoring , Biomarkers , Environmental Monitoring , Water Pollutants, Chemical , Mediterranean Sea , Animals , Biological Monitoring/methods , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Bivalvia , Ecosystem , Sentinel Species
3.
Environ Toxicol Chem ; 43(10): 2169-2175, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39177425

ABSTRACT

Due to widespread atmospheric deposition of mercury (Hg), all aquatic food webs are contaminated with toxic methyl mercury (MeHg). At high concentrations, MeHg poses a health hazard to wildlife and humans. Spiders feeding in riparian habitats (hereafter referred to as riparian spiders) have been proposed as sentinels of MeHg contamination of aquatic systems. Riparian spiders are exposed to MeHg through their diets, and the concentration of MeHg in spiders is positively related to the proportion of MeHg-contaminated emergent aquatic insects in their diets. The use of spiders as sentinels is complex because their MeHg concentrations can vary, not only among ecosystems but also between different spider taxa and as a function of spider body size. The objective of the present study was to examine how the level of ecosystem contamination, spider taxon, and spider body size interact to influence MeHg concentrations in four genera of riparian spiders from two rivers with different levels of Hg contamination. We collected four genera of riparian spiders (Tetragnatha sp., Larinioides sp., Pardosa sp., and Rabidosa sp.) from two sites along both the Clear Fork of the Trinity River and the West Fork of the Trinity River (Fort Worth, TX, USA). We analyzed concentrations of MeHg in different body sizes of spiders from each genus. We found that MeHg contamination of the river ecosystem, spider taxon, and spider body size were important determinants of MeHg concentration in riparian spiders. The results suggest that any of the four taxa of riparian spiders from the present study could be used as sentinels of aquatic MeHg contamination, but they should not be used interchangeably because of the interdependence between the effects of ecosystem contamination level, spider taxon, and body size. Future studies utilizing riparian spiders as sentinels of biomagnifying aquatic contaminants (e.g., MeHg, polychlorinated biphenyls) should consider the potentially complex interaction effects between ecosystem contamination level, spider taxon, and spider body size. Environ Toxicol Chem 2024;43:2169-2175. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Body Size , Environmental Monitoring , Mercury , Rivers , Spiders , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Rivers/chemistry , Mercury/analysis , Methylmercury Compounds/analysis , Sentinel Species
4.
Environ Pollut ; 360: 124661, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39111525

ABSTRACT

Water pollution is a significant threat to aquatic ecosystems. Various methods of monitoring, such as in situ approaches, are currently available to assess its impact. In this paper we examine the use of fish in active biomonitoring to study contamination and toxicity of surface waters. We analysed 148 previous studies conducted between 2005 and 2022, including both marine and freshwater environments, focusing on the characteristics of the organisms used as well as the principal goals of these studies. The main conclusions we drew are that a wide range of protocols and organisms have been used but there is no standardised method for assessing the quality of aquatic ecosystems on a more global scale. Additionally, the most commonly used developmental stages have been juveniles and adults. At these stages, the most frequently used species were the fathead minnow (Pimephales promelas) and two salmonids: rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Few studies used earlier stages of development (embryos or larvae), mostly due to the difficulty of obtaining fish embryos and caging them in the field. Finally, we identified research gaps in active biomonitoring for water quality assessment which could indicate useful directions for future research and development.


Subject(s)
Biological Monitoring , Environmental Monitoring , Fishes , Water Pollutants, Chemical , Animals , Biological Monitoring/methods , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Sentinel Species , Water Pollution/statistics & numerical data
5.
Sci Total Environ ; 949: 174963, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39069192

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) arise from incomplete combustion of oil, coal, and gasoline, with lipophilic properties facilitating their widespread distribution and persistence. Due to their biochemical attributes, PAHs can accumulate in animal tissues, potentially causing mutagenic and carcinogenic effects. Since the industrial revolution, PAH concentrations in the environment have risen, with lakes showing levels from 0.159 to 33,090 µg/kg sediment. Despite acute toxicity studies showing adverse effects on freshwater organisms, the long-term impacts and synergistic interactions with other pollutants remain largely unexplored. This study investigates the impact of phenanthrene (PHE), a prominent PAH found in aquatic environments, on Daphnia magna, a species of significant ecological importance in freshwater ecosystems globally, being both a sentinel species for chemical pollution and a keystone organism in freshwater aquatic ecosystems. Leveraging the dormancy of D. magna, which spans decades or even centuries, we exposed strains with diverse histories of chemical contaminant exposure to environmentally relevant concentrations of PHE. Initially, acute exposure experiments were conducted in accordance with OECD guidelines across 16 Daphnia strains, revealing substantial variation in acute toxic responses, with strains naïve to chemical pollutants showing the lowest toxicity. Utilizing the median effect concentration EC10 derived from acute exposures, we assessed the impacts of chronic PHE exposure on life history traits and ecological endpoints of the 16 strains. To elucidate how historical exposure to other environmental stressors may modulate the toxicity of PHE, temporal populations of D. magna resurrected from a lake with a well-documented century-spanning history of environmental impact were utilized. Our findings demonstrate that PHE exposure induces developmental failure, delays sexual maturation, and reduces adult size in Daphnia. Populations of Daphnia historically exposed to chemical stress exhibited significantly greater fitness impacts compared to naïve populations. This study provides crucial insights into the augmented effects of PAHs interacting with other environmental stressors.


Subject(s)
Daphnia magna , Phenanthrenes , Water Pollutants, Chemical , Animals , Daphnia magna/drug effects , Daphnia magna/physiology , Environmental Monitoring/methods , Phenanthrenes/toxicity , Sentinel Species , Stress, Physiological/drug effects , Water Pollutants, Chemical/toxicity
6.
Environ Toxicol Chem ; 43(9): 2071-2079, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980263

ABSTRACT

The long-term impacts of radiocontaminants (and the associated risks) for ecosystems are still subject to vast societal and scientific debate while wildlife is chronically exposed to various sources and levels of either environmental or anthropogenic ionizing radiation from the use of nuclear energy. The present study aimed to assess induced phenotypical responses in both male and female gammarids after short-term continuous γ-irradiation, acting as a typical well-characterized genotoxic stressor that can interact directly with living matter. In particular, we started characterizing the effects using standardized measurements for biological effects on few biological functions for this species, especially feeding inhibition tests, molting, and reproductive ability, which have already been proven for chemical substances and are likely to be disturbed by ionizing radiation. The results show no significant differences in terms of the survival of organisms (males and females), of their short-term food consumption which is linked to the general health status (males and females), and of the molting cycle (females). In contrast, exposure significantly affected fecundity (number of embryos produced) at the highest dose rates for irradiated females (51 mGy h-1) and males (5 and 51 mGy h-1). These results showed that, in gammarids, reproduction, which is a critical endpoint for population dynamics, is the most radiosensitive phenotypic endpoint, with significant effects recorded on male reproductive capacity, which is more sensitive than in females. Environ Toxicol Chem 2024;43:2071-2079. © 2024 SETAC.


Subject(s)
Gamma Rays , Reproduction , Animals , Male , Female , Reproduction/drug effects , Amphipoda/drug effects , Sentinel Species , Molting/drug effects
7.
Sci Total Environ ; 947: 174562, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38981544

ABSTRACT

The Ross Sea Marine Protected Area (RS-MPA) hosts endemic species that have to cope with multiple threats, including chemical contamination. Adèlie penguin is considered a good sentinel species for monitoring pollutants. Here, 23 unhatched eggs, collected from three colonies along the Ross Sea coasts, were analysed to provide updated results on legacy pollutants and establish a baseline for newer ones. Average sum of polychlorinated biphenyls (∑PCBs) at the three colonies ranged 20.9-24.3 ng/g lipid weight (lw) and included PCBs IUPAC nos. 28, 118, 153, 138, 180. PCBs were dominated by hexachlorinated congeners as previously reported. Hexachlorobenzene (HCB) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) ranged between 134 and 166 and 181-228 ng/g lw, respectively. Overall, ∑PCBs was exceeded by pesticides, contrary to previous studies from the Ross Sea. Sum of polybrominated diphenyl ethers (∑PBDEs) ranged between 0.90 and 1.18 ng/g lw and consisted of BDE-47 (that prevailed as expected, representing 60-80 % of the ∑PBDEs) and BDE-85. Sum of perfluoroalkyl substances (∑PFAS) ranged from 1.04 to 1.53 ng/g wet weight and comprised five long-chain perfluorinated carboxylic acids (PFCAs), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA); perfluorooctane sulfonamide (PFOSA) was also detected. The PFAS profile was dominated by PFCAs as already observed in Arctic seabirds. Mercury ranged from 0.07 to 0.15 mg/kg dry weight similarly to previous studies. Legacy pollutants confirmed their ongoing presence in Antarctic biota and their levels seemed mostly in line with the past, but with minor variations in some cases, likely due to continued input or release from past reservoirs. PFAS were reported for the first time in penguins from the Ross Sea, highlighting their ubiquity. Although further studies would be useful to increase the sample size and accordingly improve our knowledge on spatial and temporal trends, this study provides interesting data for future monitoring programs within the RS-MPA that will be crucial to test its effectiveness against human impacts.


Subject(s)
Environmental Monitoring , Fluorocarbons , Mercury , Persistent Organic Pollutants , Water Pollutants, Chemical , Animals , Fluorocarbons/analysis , Antarctic Regions , Water Pollutants, Chemical/analysis , Mercury/analysis , Polychlorinated Biphenyls/analysis , Sentinel Species , Spheniscidae , Halogenated Diphenyl Ethers/analysis
8.
Article in English | MEDLINE | ID: mdl-39054003

ABSTRACT

Micronucleus (MN) cell counting emerged in 1973-1975 as a valid alternative for characterizing chromosomal damage caused by different agents. It was first described in mammals, but its application was rapidly extended to other vertebrates, mainly fish. However, it was not until 28 years later that this test was implemented in studies on reptiles. Nowadays, reptiles are found to be excellent non-target species from environmental contamination exposure and MN test has become a fundamental tool for analyzing genotoxic effects induced by various xenobiotics. In this article we provide an updated review of the application of the MN test in reptile species, from an ecotoxicological perspective. Therefore, we present (I) a bibliometric analysis of the available research on genotoxic-induced MN formation in reptile species; (II) the use of reptiles as sentinel organisms in ecotoxicological studies; and (III) the strength and weakness of the application of the MN test in this group. With this review, we aim to provide a comprehensive view on the use of the MN test in ecotoxicology and to encourage further studies involving reptile species.


Subject(s)
Micronucleus Tests , Reptiles , Animals , Reptiles/genetics , Micronucleus Tests/methods , Mutagens/toxicity , Ecotoxicology/methods , DNA Damage/drug effects , Sentinel Species/genetics
9.
Environ Pollut ; 356: 124283, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823546

ABSTRACT

Alaska contains over 600 formerly used defense (FUD) sites, many of which serve as point sources of pollution. These sites are often co-located with rural communities that depend upon traditional subsistence foods, especially lipid-rich animals that bioaccumulate and biomagnify persistent organic pollutants (POPs). Many POPs are carcinogenic and endocrine-disrupting compounds that are associated with adverse health outcomes. Therefore, elevated exposure to POPs from point sources of pollution may contribute to disproportionate incidence of disease in arctic communities. We investigated PCB concentrations and the health implications of POP exposure in sentinel fishes collected near the Northeast Cape FUD site on Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq residents are almost exclusively Yupik and rely on subsistence foods. At the request of the Sivuqaq community, we examined differential gene expression and developmental pathologies associated with exposure to POPs originating at the Northeast Cape FUD site. We found significantly higher levels of PCBs in Alaska blackfish (Dallia pectoralis) collected from contaminated sites downstream of the FUD site compared to fish collected from upstream reference sites. We compared transcriptomic profiles and histopathologies of these same blackfish. Blackfish from contaminated sites overexpressed genes involved in ribosomal and FoxO signaling pathways compared to blackfish from reference sites. Contaminated blackfish also had significantly fewer thyroid follicles and smaller pigmented macrophage aggregates. Conversely, we found that ninespine stickleback (Pungitius pungitius) from contaminated sites exhibited thyroid follicle hyperplasia. Despite our previous research reporting transcriptomic and endocrine differences in stickleback from contaminated vs. reference sites, we did not find significant differences in kidney or gonadal histomorphologies. Our results demonstrate that contaminants from the Northeast Cape FUD site are associated with altered gene expression and thyroid development in native fishes. These results are consistent with our prior work demonstrating disruption of the thyroid hormone axis in Sivuqaq residents.


Subject(s)
Environmental Monitoring , Fishes , Persistent Organic Pollutants , Transcriptome , Water Pollutants, Chemical , Animals , Alaska , Polychlorinated Biphenyls , Arctic Regions , Sentinel Species
10.
J Water Health ; 22(6): 1033-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935454

ABSTRACT

The misuse of antibiotics and the emergence of antimicrobial resistance (AMR) is a concern in the aquaculture industry because it contributes to global health risks and impacts the environment. This study analyzed the AMR of sentinel bacteria associated with striped catfish (Pangasisanodon hypophthalmus) and giant snakehead (Channa micropeltes), the two main fish species reared in the pond culture in Cambodia. Phenotypic and genotypic characterization of the recovered isolates from fish, water, and sediment samples revealed the presence of bacteria, such as 22 species belonging to families Aeromonadaceae, Enterobacteriaceae, and Pseudomonadaceae. Among 48 isolates, Aeromonas caviae (n = 2), Aeromonas hydrophila (n = 2), Aeromonas ichthiosmia (n = 1), Aeromonas salmonicida (n = 4) were detected. A. salmonicida and A. hydrophilla are known as fish pathogens that occur worldwide in both fresh and marine water aquaculture. Antibiotic susceptibility testing revealed antibiotic resistance patterns of 24 (50 %) isolates among 48 isolates with higher multiple antibiotic resistance index (> 0.2). All the isolates of Enterobacteriaceae were susceptible to ciprofloxacin. Ciprofloxacin is a frontline antibiotic that is not recommended to use in aquaculture. Therefore, its use has to be strictly controlled. This study expands our knowledge of the AMR status in aquaculture farms which is very limited in Cambodia.


Subject(s)
Aquaculture , Drug Resistance, Bacterial , Water Microbiology , Cambodia , Catfishes/microbiology , Sentinel Species , Phenotype , Genotype , Aeromonadaceae/classification , Aeromonadaceae/isolation & purification , Aeromonadaceae/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/physiology , Pseudomonadaceae/classification , Pseudomonadaceae/isolation & purification , Pseudomonadaceae/physiology , Aeromonas caviae/isolation & purification , Aeromonas caviae/physiology , Aeromonas hydrophila/isolation & purification , Aeromonas hydrophila/physiology , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fish Diseases/drug therapy , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary , Environmental Monitoring
11.
Mar Environ Res ; 199: 106596, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38905865

ABSTRACT

The health of migratory eastern Australian humpback whales (Megaptera novaeangliae) can reflect the condition of their remote polar foraging environments. This study used gene expression (LEP, LEPR, ADIQ, AhR, TNF-α, HSP-70), blubber hormone concentrations (cortisol, testosterone), and photogrammetric body condition to assess this sentinel species during a period of unprecedented changes to anthropogenic activity and natural processes. The results revealed higher cortisol concentrations in 2020 compared to 2021, suggesting a decline in physiological stress between years. Additionally, metabolic transcripts LEPR, and AhR, which is also linked to xenobiotic metabolism, were upregulated during the 2020 southbound migration. These differences suggest that one or more environmental stressors were reduced between 2020 and 2021, with upregulated AhR possibly indicating a Southern Ocean pollutant declined between the years. This research confirms a Southern Ocean-wide decrease in whale stress during the study period and informs efforts to identify key stressors on Antarctic marine ecosystems.


Subject(s)
Environmental Monitoring , Humpback Whale , Hydrocortisone , Stress, Physiological , Animals , Hydrocortisone/metabolism , Antarctic Regions , Humpback Whale/physiology , Humpback Whale/metabolism , Humpback Whale/genetics , Sentinel Species/genetics , Sentinel Species/metabolism , Gene Expression , Adipose Tissue/metabolism , Male , Female
12.
Sci Total Environ ; 946: 173809, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38848913

ABSTRACT

Drugs are chemical compounds used to treat and improve organic dysfunctions caused by diseases. These include analgesics, antibiotics, antidepressants, and antineoplastics. They can enter aquatic environments through wastewater streams, where their physico-chemical properties allow metabolites to distribute and accumulate. Current climate change and associated extreme weather events may significantly impact these substances' toxicity and aquatic organisms' sensitivity. Among the chemicals present in aquatic environments is the non-steroidal anti-inflammatory drug diclofenac (DIC), which the EU monitors due to its concentration levels. This study investigated the influence of temperature (control at 17 °C vs. 21 °C) on the effects of DIC (0 µg/L vs. 1 µg/L) in the mussel species Mytilus galloprovincialis. Significant results were observed between 17 and 21 °C. Organisms exposed to the higher temperature showed a decrease in several parameters, including metabolic capacity and detoxification, particularly with prolonged exposure. However, in some parameters, after 21 days, the M. galloprovincialis showed no differences from the control, indicating adaptation to the stress. The results of this study confirm that DIC concentrations in the environment, particularly when combined with increased temperatures, can produce oxidative stress and adversely affect M. galloprovincialis biochemical and physiological performance. This study also validates this species as a bioindicator for assessing environmental contamination with DIC. Beyond its direct impact on aquatic organisms, the presence of pharmaceuticals like DIC in the environment highlights the interconnectedness of human, animal, and ecosystem health, underscoring the One Health approach to understanding and mitigating environmental pollution.


Subject(s)
Diclofenac , Environmental Monitoring , Mytilus , Water Pollutants, Chemical , Mytilus/drug effects , Mytilus/physiology , Diclofenac/toxicity , Animals , Water Pollutants, Chemical/toxicity , Environmental Monitoring/methods , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Climate Change , Sentinel Species
13.
Environ Sci Technol ; 58(23): 10028-10040, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38822757

ABSTRACT

Our understanding of connections between human and animal health has advanced substantially since the canary was introduced as a sentinel of toxic conditions in coal mines. Nonetheless, the development of wildlife sentinels for monitoring human exposure to toxins has been limited. Here, we capitalized on a three-decade long child blood lead monitoring program to demonstrate that the globally ubiquitous and human commensal house sparrow (Passer domesticus) can be used as a sentinel of human health risks in urban environments impacted by lead mining. We showed that sparrows are a viable proxy for the measurement of blood lead levels in children at a neighborhood scale (0.28 km2). In support of the generalizability of this approach, the blood lead relationship established in our focal mining city enabled us to accurately predict elevated blood lead levels in children from another mining city using only sparrows from the second location. Using lead concentrations and lead isotopic compositions from environmental and biological matrices, we identified shared sources and pathways of lead exposure in sparrows and children, with strong links to contamination from local mining emissions. Our findings showed how human commensal species can be used to identify and predict human health risks over time and space.


Subject(s)
Environmental Exposure , Lead , Sparrows , Animals , Lead/blood , Humans , Child , Mining , Environmental Monitoring , Sentinel Species , Environmental Pollutants
14.
J Hazard Mater ; 472: 134617, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749247

ABSTRACT

The worldwide mangrove shorelines are experiencing considerable contamination from microplastics (MPs). Finding an effective sentinel species in the mangrove ecosystem is crucial for early warning of ecological and human health risks posed by coastal microplastic pollution. This study collected 186 specimens of the widely distributed mangrove clam (Geloina expansa, Solander, 1786) from 18 stations along the Leizhou Peninsula, the largest mangrove coast in Southern China. This study discovered that mangrove mud clams accumulated a relatively high abundance of MPs (2.96 [1.61 - 6.03] items·g-1) in their soft tissue, wet weight, as compared to previously reported levels in bivalves. MPs abundance is significantly (p < 0.05 or 0.0001) influenced by coastal urban development, aquaculture, and shell size. Furthermore, the aggregated MPs exhibit a significantly high polymer risk index (Level III, H = 353.83). The estimated annual intake risk (EAI) from resident consumption, as calculated via a specific questionnaire survey, was at a moderate level (990 - 2475, items·g -1·Capita -1). However, the EAI based on suggested nutritional standards is very high, reaching 113,990 (79,298 - 148,681), items·g -1·Capita -1. We recommend utilizing the mangrove mud clam as sentinel species for the monitoring of MPs pollution changing across global coastlines.


Subject(s)
Bivalvia , Environmental Monitoring , Microplastics , Sentinel Species , Water Pollutants, Chemical , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , China , Humans , Aquaculture
15.
Sci Total Environ ; 934: 172969, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754506

ABSTRACT

Blue mussels are often abundant and widely distributed in polar marine coastal ecosystems. Because of their wide distribution, ecological importance, and relatively stationary lifestyle, bivalves have long been considered suitable indicators of ecosystem health and changes. Monitoring the population dynamics of blue mussels can provide information on the overall biodiversity, species interactions, and ecosystem functioning. In the present work, we combined the concept of liquid biopsy (LB), an emerging concept in medicine based on the sequencing of free circulating DNA, with the Oxford Nanopore Technologies (ONT) platform using a portable laboratory in a remote area. Our results demonstrate that this platform is ideally suited for sequencing hemolymphatic circulating cell-free DNA (ccfDNA) fragments found in blue mussels. The percentage of non-self ccfDNA accounted for >50 % of ccfDNA at certain sampling Sites, allowing the quick, on-site acquisition of a global view of the biodiversity of a coastal marine ecosystem. These ccfDNA fragments originated from viruses, bacteria, plants, arthropods, algae, and multiple Chordata. Aside from non-self ccfDNA, we found DNA fragments from all 14 blue mussel chromosomes, as well as those originating from the mitochondrial genomes. However, the distribution of nuclear and mitochondrial DNA was significantly different between Sites. Similarly, analyses between various sampling Sites showed that the biodiversity varied significantly within microhabitats. Our work shows that the ONT platform is well-suited for LB in sentinel blue mussels in remote and challenging conditions, enabling faster fieldwork for conservation strategies and resource management in diverse settings.


Subject(s)
Cell-Free Nucleic Acids , Animals , Cell-Free Nucleic Acids/analysis , Environmental Monitoring/methods , Sentinel Species , Mytilus edulis , Nanopores , Proof of Concept Study , Hemolymph
16.
J Environ Manage ; 358: 120784, 2024 May.
Article in English | MEDLINE | ID: mdl-38603847

ABSTRACT

Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.


Subject(s)
Biomarkers , Environmental Monitoring , Sentinel Species , Environmental Monitoring/methods , Biomarkers/analysis , France , Animals , Fishes
17.
Acta Trop ; 254: 107202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565332

ABSTRACT

Cervids are highly exposed to ticks, however, their role in the life cycle of these rickettsiae has not been fully elucidated. Given the expanding distribution and growing population of deer species in Portugal, coupled with their direct and indirect interactions with humans during hunting, it becomes crucial to explore their role as sentinels and potential reservoirs of Rickettsia. The present investigation aimed to detect and evaluate exposure to Rickettsia in free-living deer from Portugal. Blood samples (n = 77) were collected from hunted game animals (red deer and fallow deer) from different areas throughout Portugal (Idanha-a-Nova, Monte Fidalgo, Montalvão and Arraiolos) and sera were tested by immunofluorescence assay, to detect antibodies. Additionally, blood DNA samples were screened for SFGR by nested-polymerase chain reaction targeting a fragment of the outer membrane protein B (ompB) gene, as well as for Anaplasma and Ehrlichia spp. targeting the 16S rRNA gene. Thirty-five per cent (25 deer and two fallow deer) tested positive (sera with a titer ≥1:64) for IgG antibodies against Rickettsia conorii. No rickettsial DNA was detected by PCR for the ompB gene, and all DNA samples tested negative for Anaplasma and Ehrlichia. As far as we know, this study is the first screening of cervid species in Portugal for Rickettsia antibodies. The findings suggest that these animals serve as useful sentinel indicators for the circulation of rickettsiae, offering a complementary perspective to studies focused on ticks. The increasing numbers of hunted deer in Portugal and the potential zoonotic features of Rickettsia spp. highlight the importance of continued surveillance directed at tick-borne diseases, especially those involving wild animals.


Subject(s)
Antibodies, Bacterial , Deer , Rickettsia , Animals , Portugal , Deer/microbiology , Antibodies, Bacterial/blood , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/immunology , Rickettsia Infections/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Sentinel Species/microbiology , DNA, Bacterial/genetics , Immunoglobulin G/blood , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Anaplasma/isolation & purification , Anaplasma/genetics , Anaplasma/immunology , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ehrlichia/immunology , Rickettsia conorii/genetics , Rickettsia conorii/isolation & purification , Rickettsia conorii/immunology , Bacterial Outer Membrane Proteins/genetics , Male
18.
Anal Bioanal Chem ; 416(12): 2893-2911, 2024 May.
Article in English | MEDLINE | ID: mdl-38492024

ABSTRACT

The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry-based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.


Subject(s)
Amphipoda , Lipids , Metabolomics , Animals , Amphipoda/metabolism , Amphipoda/chemistry , Lipids/chemistry , Lipids/analysis , Metabolomics/methods , Lipidomics/methods , Mass Spectrometry/methods , Sentinel Species/metabolism , Electrons
19.
Bull Environ Contam Toxicol ; 112(3): 43, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409431

ABSTRACT

In aquatic ecosystem, metal pollution is an important environmental hazard. Mussels as a bioindicator species are often used for assessment the presence of potentially toxic metals. Hence, the present study aimed to assess the effect of seasonal variations on some heavy metals (Cd, Cr, Pb, As, Zn and Cu) accumulation in water and Dreissena polymorpha from lake habitat. Our result indicated that Zn accumulated at a very high level in the zebra mussels while As accumulated at a high level in water samples. Seasonal variations significantly affected Cu concentration in the water samples (P < 0.05) while Cr concentration in the mussel samples was significantly affected by seasonal variations (P < 0.05). According to the water analysis, mean concentrations of metals are below the maximum limits established by the World Health Organization and USEPA, except As. Overall, our data emphasize anthropogenic pollution in the Turkish aquatic environment and confirm the use of D. polymorpha as a prospective biomonitor for metal polluted sites'.


Subject(s)
Bivalvia , Dreissena , Metals, Heavy , Water Pollutants, Chemical , Animals , Sentinel Species , Lakes , Water/analysis , Ecosystem , Seasons , Prospective Studies , Water Pollutants, Chemical/analysis , Environmental Monitoring , Metals, Heavy/analysis
20.
Sci Rep ; 14(1): 861, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195849

ABSTRACT

In the context of global climate change, monitoring focused on temperature and benthic animals in intertidal flats and the development of metrics to assess climate change and ecosystem responses are essential for a sustainable society. However, few studies have assessed the relationship between intertidal sediment temperature and the distribution of benthic animals. To address this gap, in the present study, intertidal sediment temperatures were observed in 12 intertidal flats in 11 survey areas over 335 days, from October 2, 2019, to August 31, 2020, using water temperature data loggers. The characteristics of intertidal sediment temperatures were variable among the survey areas, and a correlation analysis suggested that such characteristics are possibly influenced by various spatial-scale factors, such as geographical, basin, and habitat scales. Furthermore, two sentinel crab species, Macrophthalmus japonicus and Macrophthalmus banzai were collected, and the number of wintering individuals of each species was estimated based on their carapace width to analyze the changes in abundances of the two species in each survey area. The results show that the number of days with daily minimum temperature ≥ 19 °C was the factor that influenced the abundance rate, suggesting that M. japonicus and M. banzai populations may decrease and increase, respectively, according to future climate change in Japan. Our findings emphasize the importance of long-term monitoring of sediment temperatures and benthic animals in intertidal flats to evaluate the influence of future climate change.


Subject(s)
Brachyura , Animals , Ecosystem , Japan , Temperature , Animal Shells , Sentinel Species
SELECTION OF CITATIONS
SEARCH DETAIL