Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.658
Filter
1.
Protein Expr Purif ; 225: 106597, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39233018

ABSTRACT

A trypsin affinity material was prepared by covalently immobilizing buckwheat trypsin inhibitor (BTI) on epichlorohydrin-activated cross-linked agarose gel (Selfinose CL 6 B). The optimal conditions for activating Selfinose CL 6 B were 15 % epichlorohydrin and 0.8 M NaOH at 40 °C for 2 h. The optimal pH for immobilizing BTI was 9.5. BTI-Sefinose CL 6 B showed a maximum adsorption capacity of 2.25 mg trypsin/(g support). The material also displayed good reusability, retaining over 90 % of its initial adsorption capacity after 30 cycles. High-purity trypsin was obtained from locust homogenate using BTI-Selfinose CL 6 B through one-step affinity chromatography. The molecular mass and Km value of locust trypsin were determined as 27 kDa and 0.241 mM using N-benzoyl-DL-arginine-nitroanilide as substrate. The optimal temperature and pH of trypsin activity were 55 °C and 9.0, respectively. The enzyme exhibited good stability in the temperature range of 30-50 °C and pH range of 4.0-10.0. BTI-Selfinose CL 6 B demonstrates potential application in the preparation of high-purity trypsin and the discovery of more novel trypsin from various species.


Subject(s)
Chromatography, Affinity , Recombinant Proteins , Trypsin Inhibitors , Trypsin , Trypsin/chemistry , Trypsin/metabolism , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Chromatography, Affinity/methods , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Hydrogen-Ion Concentration , Fagopyrum/chemistry , Temperature , Sepharose/chemistry , Enzyme Stability
2.
Bioorg Med Chem Lett ; 112: 129943, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39222892

ABSTRACT

Increased expression and activity of the PD-L1/PD-1 pathway suppresses the activation of cytotoxic T cells, which is vital in anti-tumour defence, allowing tumours to rise, expand and progress. Current strategies using antibodies to target PD-1/PD-L1 have been very effective in cancer therapeutics and companion diagnostics. Aptamers are a new class of molecules that offer an alternative to antibodies. Herein, the systematic evolution of ligands by exponential enrichment (SELEX) using agarose slurry beads was conducted to isolate DNA aptamers specific to recombinant human PD-L1 (rhPD-L1). Isolated aptamers were sequenced and analysed using MEGA X and structural features were examined using mFold. Three aptamer candidates (P33, P32, and P12) were selected for evaluation of binding affinity (dissociation constant, Kd) using ELONA and specificity and competitive inhibition assessment using the potentiostat-electrochemical method. Among those three, P32 displayed the highest specificity (8 nM) against PD-L1. However, P32 competes for the same binding site with the control antibody, 28-8. This study warrants further assessment of P32 aptamer as a potential, cost-effective alternative tool for targeting PD-L1.


Subject(s)
Aptamers, Nucleotide , B7-H1 Antigen , SELEX Aptamer Technique , Aptamers, Nucleotide/chemistry , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Humans , Sepharose/chemistry , Molecular Structure
3.
Carbohydr Polym ; 343: 122495, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174106

ABSTRACT

Bacterial cellulose (BC) is gathering increased attention due to its remarkable physico-chemical features. The high biocompatibility, hydrophilicity, and mechanical and thermal stability endorse BC as a suitable candidate for biomedical applications. Nonetheless, exploiting BC for tissue regeneration demands three-dimensional, intricately shaped implants, a highly ambitious endeavor. This challenge is addressed here by growing BC within a sacrificial viscoelastic medium consisting of an agarose gel cast inside polydimethylsiloxane (PDMS) molds imprinted with the features of the desired implant. BC produced with and without agarose has been compared through SEM, TGA, FTIR, and XRD, probing the mild impact of the agarose on the BC properties. As a first proof of concept, a PDMS mold shaped as a doll's ear was used to produce a BC perfect replica, even for the smallest features. The second trial comprised a doll face imprinted on a PDMS mold. In that case, the BC production included consecutive deactivation and activation of the aerial oxygen stream. The resulting BC face clone fitted perfectly and conformally with the template doll face, while its rheological properties were comparable to those of collagen. This streamlining concept conveys to the biosynthesized nanocelluloses broader opportunities for more advanced prosthetics and soft tissue engineering uses.


Subject(s)
Cellulose , Dimethylpolysiloxanes , Oxygen , Sepharose , Cellulose/chemistry , Sepharose/chemistry , Oxygen/chemistry , Dimethylpolysiloxanes/chemistry , Rheology , Tissue Engineering/methods , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry
4.
Int J Biol Macromol ; 277(Pt 3): 134487, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102910

ABSTRACT

Ficin has been immobilized at full loading on glyoxyl agarose beads. Then, ficin was blocked with 2,2'-dipyridyldisulfide. To be effective, the modification must be performed in the presence of 0.5 M urea, as the enzyme was not inhibited under standard conditions, very likely because the catalytic Cys was not fully exposed to the medium. Activity could be fully recovered by incubation with 1 M mercaptoethanol. This biocatalyst could hydrolyze hemoglobin and casein. The objective of this paper was to increase the enzyme specificity versus small proteins by generating steric hindrances to the access of large proteins. The step by step blocking via ionic exchange of the biocatalyst with aminated bovine serum albumin (BSA), aldehyde dextran and a second layer of aminated BSA produced a biocatalyst that maintained its activity versus small synthetic substrates, increased the biocatalyst stability, while reduced its activity to over 50 % versus casein. Interestingly, this treatment almost fully annulled the activity versus hemoglobin, more effectively at 37 °C than at 55 °C. The biocatalyst could be reused 5 times without changes in activity. The changes could be caused by steric hindrances, but it cannot be discarded some changes in enzyme sequence specificity caused by the modifications.


Subject(s)
Caseins , Dextrans , Enzymes, Immobilized , Ficain , Hemoglobins , Hemoglobins/chemistry , Hemoglobins/metabolism , Caseins/chemistry , Caseins/metabolism , Dextrans/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Ficain/chemistry , Ficain/metabolism , Substrate Specificity , Cattle , Animals , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Sepharose/chemistry , Aldehydes/chemistry , Aldehydes/metabolism , Enzyme Stability , Glyoxylates
5.
Int J Biol Macromol ; 277(Pt 3): 134510, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111473

ABSTRACT

Photoaged skin, a consequence of UV radiation-induced collagen degradation, presents a significant challenge for skin rejuvenation. Synthetic polymer microspheres, while offering collagen regeneration potential, carry risks like granulomas. To overcome this, we developed a novel agarose-collagen composite microsphere implant for skin tissue regeneration. Fabricated using an emulsification-crosslinking method, these microspheres exhibited excellent uniformity and sphericity (with a diameter of ~38.5 µm), as well as attractive injectability. In vitro studies demonstrated their superior biocompatibility, promoting cell proliferation, adhesion, and migration. Further assessments revealed favorable biosafety and blood compatibility. In vivo experiments in photoaged mice showed that implantation of these microspheres effectively reduced wrinkles, increased skin density, and improved elasticity by stimulating fibroblast encapsulation and collagen regeneration. These findings highlight the potential of agarose-collagen microspheres in dermatological and tissue engineering applications, offering a safer alternative for skin rejuvenation.


Subject(s)
Biocompatible Materials , Collagen , Microspheres , Sepharose , Skin Aging , Skin , Sepharose/chemistry , Animals , Collagen/chemistry , Mice , Skin/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Skin Aging/drug effects , Regeneration/drug effects , Cell Proliferation/drug effects , Humans , Fibroblasts/drug effects , Tissue Engineering/methods
6.
Int J Biol Macromol ; 277(Pt 4): 134513, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111468

ABSTRACT

The early diagnosis and real-time monitoring of bacterial infections are of great significance for the establishment of integrated diagnosis and treatment systems. In this study, a pH-responsive smart hydrogel patch system, named CABP, was developed to monitor and treat wound infections. CABP has a sandwich structure, with non-woven fabric/chitosan (NF/CS) as the intermediate skeleton layer, Agarose/chitosan/Bromothymol Blue (AG/CS/BTB) hydrogel as the detection layer, and Agarose/chitosan/phthalocyanine (AG/CS/Pc) hydrogel as the treatment layer. When Staphylococcus aureus (S. aureus) infection occurs, the pH of the environment decreases, which triggers the CABP to change from its original blue color to yellow, achieving an intuitive visual transformation. Moreover, the hydrogel patch showed a significant inhibition rate of up to 99.99971 % against S. aureus under 660 nm light radiation, showing a good photodynamic therapy (PDT)/ chemotherapy (CT) synergistic effect. In addition, CABP showed excellent antibacterial and wound healing effects on S. aureus infection in a full-layer skin defect experiment. In short, the patch system is simple to prepare and easy to use, and can provide important research value for the integrated diagnosis and treatment system in biomedical applications.


Subject(s)
Chitosan , Hydrogels , Photochemotherapy , Sepharose , Staphylococcus aureus , Chitosan/chemistry , Photochemotherapy/methods , Staphylococcus aureus/drug effects , Hydrogen-Ion Concentration , Sepharose/chemistry , Animals , Hydrogels/chemistry , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Wound Infection/drug therapy , Wound Infection/microbiology , Staphylococcal Infections/drug therapy , Bandages
7.
Sci Rep ; 14(1): 19411, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169092

ABSTRACT

Uncontrolled bleeding during surgery is associated with high mortality and prolonged hospital stay, necessitating the use of hemostatic agents. Fibrin sealant patches offer an efficient solution to achieve hemostasis and improve patient outcomes in liver resection surgery. We have previously demonstrated the efficacy of a nanostructured fibrin-agarose hydrogel (NFAH). However, for the widespread distribution and commercialization of the product, it is necessary to develop an optimal preservation method that allows for prolonged stability and facilitates storage and distribution. We investigated cryopreservation as a potential method for preserving NFAH using trehalose. Structural changes in cryopreserved NFAH (Cryo-NFAH) were investigated and comparative in vitro and in vivo efficacy and safety studies were performed with freshly prepared NFAH. We also examined the long-term safety of Cryo-NFAH versus TachoSil in a rat partial hepatectomy model, including time to hemostasis, intra-abdominal adhesion, hepatic hematoma, inflammatory factors, histopathological variables, temperature and body weight, hemocompatibility and cytotoxicity. Structural analyses demonstrated that Cryo-NFAH retained most of its macro- and microscopic properties after cryopreservation. Likewise, hemostatic efficacy assays showed no significant differences with fresh NFAH. Safety evaluations indicated that Cryo-NFAH had a similar overall profile to TachoSil up to 40 days post-surgery in rats. In addition, Cryo-NFAH demonstrated superior hemostatic efficacy compared with TachoSil while also demonstrating lower levels of erythrolysis and cytotoxicity than both TachoSil and other commercially available hemostatic agents. These results indicate that Cryo-NFAH is highly effective hemostatic patch with a favorable safety and tolerability profile, supporting its potential for clinical use.


Subject(s)
Cryopreservation , Hemostatics , Hydrogels , Nanostructures , Sepharose , Animals , Hydrogels/chemistry , Hemostatics/pharmacology , Hemostatics/chemistry , Rats , Sepharose/chemistry , Cryopreservation/methods , Nanostructures/chemistry , Fibrin/chemistry , Male , Hepatectomy/methods , Humans , Hemostasis/drug effects , Rats, Sprague-Dawley
8.
Int J Biol Macromol ; 276(Pt 2): 133900, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019377

ABSTRACT

An innovative pH-responsive nanocomposite, comprising agarose (AGA) modified with polyethylene glycol (PEG) hydrogel and coated with ferric oxide (Fe2O3), has been formulated to facilitate the precise administration of 5-fluorouracil (5-Fu) to breast cancer cells. By utilizing a double emulsion technique, the size of the nanocomposites was significantly reduced through the application of almond oil; the inclusion of span 80 further improved their uniformity. The physiochemical properties of the nanocomposite were thoroughly examined by Fourier Transformed Infrared (FT-IR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM), Vibrating Sample Magnetometer (VSM), dynamic light scattering (DLS), and zeta potential tests. The verification of the uniform particle distribution was achieved by employing FE-SEM and VSM analyses. The average diameter of the particles was 223 nm, and their zeta potential was -47.6 mV. In addition, the nanocomposite exhibited a regulated release of 5-Fu at pH 5.4 and pH 7.4, as indicated by an in vitro drug release profile. PEG-AGA- Fe2O3@5-Fu exhibited biocompatibility, as indicated by the lack of deleterious effects observed in tumor cells. This revolutionary nanocomposite demonstrates exceptional promise for breast cancer treatment, underscoring its significance as a major advancement in the pursuit of novel nanotechnologies for cancer therapy.


Subject(s)
Ferric Compounds , Fluorouracil , Hydrogels , Nanocomposites , Polyethylene Glycols , Sepharose , Fluorouracil/chemistry , Fluorouracil/pharmacology , Polyethylene Glycols/chemistry , Sepharose/chemistry , Ferric Compounds/chemistry , Humans , Nanocomposites/chemistry , Hydrogels/chemistry , Drug Liberation , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Drug Delivery Systems , Cell Line, Tumor
9.
ACS Synth Biol ; 13(8): 2447-2456, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39042670

ABSTRACT

The realization of soft robotic devices with life-like properties requires the engineering of smart, active materials that can respond to environmental cues in similar ways as living cells or organisms. Cell-free expression systems provide an approach for embedding dynamic molecular control into such materials that avoids many of the complexities associated with genuinely living systems. Here, we present a strategy to integrate cell-free protein synthesis within agarose-based hydrogels that can be spatially organized and supplied by a synthetic vasculature. We first utilize an indirect printing approach with a commercial bioprinter and Pluronic F-127 as a fugitive ink to define fluidic channel structures within the hydrogels. We then investigate the impact of the gel matrix on the expression of proteins in E. coli cell-extract, which is found to depend on the gel density and the dilution of the expression system. When supplying the vascularized hydrogels with reactants, larger components such as DNA plasmids are confined to the channels or immobilized in the gels while nanoscale reaction components can diffusively spread within the gel. Using a single supply channel, we demonstrate different spatial protein concentration profiles emerging from different cell-free gene circuits comprising production, gene activation, and negative feedback. Variation of the channel design allows the creation of specific concentration profiles such as a long-term stable gradient or the homogeneous supply of a hydrogel with proteins.


Subject(s)
Bioprinting , Cell-Free System , Escherichia coli , Hydrogels , Hydrogels/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Bioprinting/methods , Poloxamer/chemistry , Plasmids/genetics , Gene Regulatory Networks , Gene Expression/genetics , Sepharose/chemistry , Synthetic Biology/methods
10.
Biomacromolecules ; 25(8): 4965-4976, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39007721

ABSTRACT

As an emerging biomedical material, wound dressings play an important therapeutic function in the process of wound healing. It can provide an ideal healing environment while protecting the wound from a complex external environment. A hydrogel wound dressing composed of tilapia skin gelatin (Tsg) and fucoidan (Fuc) was designed in this article to enhance the microenvironment of wound treatment and stimulate wound healing. By mixing horseradish peroxidase (HRP), hydrogen peroxide (H2O2), tilapia skin gelatin-tyramine (Tsg-Tyr), and carboxylated fucoidan-tyramine in agarose (Aga), using the catalytic cross-linking of HRP/H2O2 and the sol-gel transformation of Aga, a novel gelatin-fucoidan (TF) double network hydrogel wound dressing was constructed. The TF hydrogels have a fast and adjustable gelation time, and the addition of Aga further enhances the stability of the hydrogels. Moreover, Tsg and Fuc are coordinated with each other in terms of biological efficacy, and the TF hydrogel demonstrated excellent antioxidant properties and biocompatibility in vitro. Also, in vivo wound healing experiments showed that the TF hydrogel could effectively accelerate wound healing, reduce wound microbial colonization, alleviate inflammation, and promote collagen deposition and angiogenesis. In conclusion, TF hydrogel wound dressings have the potential to replace traditional dressings in wound healing.


Subject(s)
Gelatin , Hydrogels , Hydrogen Peroxide , Polysaccharides , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Polysaccharides/chemistry , Polysaccharides/pharmacology , Gelatin/chemistry , Mice , Tyramine/chemistry , Tyramine/pharmacology , Horseradish Peroxidase/chemistry , Bandages , Humans , Sepharose/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry
11.
J Chromatogr A ; 1731: 465198, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39059303

ABSTRACT

Exploiting high-performance magnetic beads for specific enrichment of ribonucleic acid (RNA) has important significance in the biomedical research field. Herein, a simple strategy was proposed for fabricating boronate-decorated polyethyleneimine-grafted magnetic agarose beads (BPMAB), which can selectively isolate cis-diol-containing substances through boronate affinity. The size of the basic magnetic agarose beads was controlled through the emulsification of the water-in-oil emulsion with a high-speed shear machine, which enhanced the specific surface area of BPMAB. Subsequently, to modify more boronic acid ligands, branched PEI with excellent hydrophilicity and numerous reaction sites was grafted. 2,4-Difluoro-3-formylphenyl boronic acid (2,4-DFPBA) was covalently immobilized for selectively capturing cis-diol-containing substances under physiological condition (pH 7.4). The BPMAB with a diameter range from 1.86 µm to 11.60 µm possessed clearly spherical structure, and excellent magnetic responsiveness and suspension ability in aqueous solution. ß-Nicotinamide adenine dinucleotide (ß-NAD), a short-chain cis-diol carrying agent, was selected as a target molecule for evaluating the adsorption property of BPMAB and the maximum adsorption capacity of BPMAB for ß-NAD could reach 205.11 mg g-1. In addition, the BPMAB as adsorbent was used to selectively enrich RNA from mammalian cells. The maximum adsorption capacity of BPMAB for RNA was 140.50 mg g-1. Under optimized conditions, the BPMAB-based MSPE successfully enriched the high-quality total RNA with 28S to 18S ribosomal RNA ratios ranging from 2.06 to 2.16. According to the PCR analysis of GADPH gene, the extracted total RNA was successfully reverse transcribed into cDNA. Therefore, we believe that the BPMAB-based MSPE could be applicable for the specific enrichment of RNA from complex biological systems.


Subject(s)
Boronic Acids , Polyethyleneimine , RNA , Sepharose , Boronic Acids/chemistry , Polyethyleneimine/chemistry , Sepharose/chemistry , RNA/chemistry , Humans , Adsorption , Animals , Particle Size
12.
Biofabrication ; 16(4)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38955197

ABSTRACT

Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g. in various malignant and non-malignant diseases such as multiple myeloma, primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived fromin vivostudies in mice, asin vitrostudies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survivalin vitrofor up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCsin vitro. Our innovative model system is suitable for in-depthin vitrostudies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.


Subject(s)
Hydrogels , Plasma Cells , Humans , Plasma Cells/cytology , Plasma Cells/metabolism , Hydrogels/chemistry , Cell Survival/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Bone Marrow Cells/cytology , Collagen/chemistry , Bone Marrow/metabolism , Cells, Cultured , Cell Culture Techniques, Three Dimensional , Models, Biological , Tissue Scaffolds/chemistry , Sepharose/chemistry
13.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39066496

ABSTRACT

AIMS: Staphylococcus aureus is an opportunistic pathogen whose treatment is further complicated by its ability to form biofilms. In this study, we examine the impact of growing S. aureus biofilms on different polymerizing surfaces, specifically agar and agarose, on the pathogen's tolerance to fluoroquinolones. METHODS AND RESULTS: Biofilms of two methicillin-resistant strains of S. aureus were grown on agar or agarose in the presence of the same added nutrients, and their antibiotic susceptibility to two fluoroquinolones, moxifloxacin (MXF) and delafloxacin (DLX), were measured. We also compared the metabolism and extracellular polymeric substances (EPS) production of biofilms that were grown on agar and agarose. CONCLUSIONS: Biofilms that were grown on agarose were consistently more susceptible to antibiotics than those grown on agar. We found that in biofilms that were grown on agar, extracellular protein composition was higher, and adding EPS to agarose-grown biofilms increased their tolerance to DLX to levels that were comparable to agar-grown biofilms.


Subject(s)
Agar , Anti-Bacterial Agents , Biofilms , Fluoroquinolones , Microbial Sensitivity Tests , Sepharose , Staphylococcus aureus , Biofilms/drug effects , Biofilms/growth & development , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcus aureus/growth & development , Culture Media/chemistry , Moxifloxacin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology
14.
Int J Pharm ; 661: 124436, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38977165

ABSTRACT

Biotherapeutics is the fastest growing class of drugs administered by subcutaneous injection. In vitro release testing mimicking physiological conditions at the injection site may guide formulation development and improve biopredictive capabilities. Here, anin vitrorelease cartridge (IVR cartridge) comprising a porous agarose matrix emulating subcutaneous tissue was explored. The objective was to assess effects of medium composition and incorporation of human serum albumin into the matrix. Drug disappearance was assessed for solution, suspension and in situ precipitating insulin products (Actrapid, Levemir, Tresiba, Mixtard 30, Insulatard, Lantus) using the flow-based cartridge. UV-Vis imaging and light microscopy visualized dissolution, precipitation and albumin binding phenomena at the injection site. Divalent cations present in the release medium resulted in slower insulin disappearance for suspension-based and in situ precipitating insulins. Albumin-binding acylated insulin analogs exhibited rapid disappearance from the cartridge; however, sustained retention was achieved by coupling albumin to the matrix. An in vitro-in vivorelation was established for the non-albumin-binding insulins.The IVR cartridge is flexible with potential in formulation development as shown by the ability to accommodate solutions, suspensions, and in situ forming formulations while tailoring of the system to probe in vivo relevant medium effects and tissue constituent interactions.


Subject(s)
Drug Liberation , Injections, Subcutaneous , Humans , Insulin/administration & dosage , Insulin/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Sepharose/chemistry , Protein Binding , Chemistry, Pharmaceutical/methods , Male
15.
Int J Biol Macromol ; 277(Pt 1): 133960, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39029832

ABSTRACT

Agarose from biomass can be used to synthesize the rare sugar 3,6-anhydro-L-galactose (L-AHG), and the new synthesis route and functional properties of L-AHG have always been the focus of research. Here we developed a novel method to co-immobilize Aga50D and BpGH117 onto streptavidin-coated magnetic nanoparticles and achieved the conversion of agarose to bioactive L-AHG in one pot. Results showed that enzymes were successfully immobilized on the carrier. The activity of co-immobilized enzymes was 2.5-fold higher than that of single immobilized enzymes. Compared with free enzymes, co-immobilized enzymes exhibited enhanced thermal stability. The co-immobilized enzymes retained 79.45 % relative activity at 40 °C for 3 h, while the free enzymes only possessed 21.40 % residual activity. After eight cycles, the co-immobilized enzymes still retained 73.47 % of the initial activity. After silica gel chromatography, the purity of L-AHG obtained by co-immobilized enzymes hydrolysis reached 83.02 %. Furthermore, bioactivity experiments demonstrated that L-AHG displayed better antioxidant and antibacterial effects than neoagarobiose. L-AHG had broad-spectrum antibacterial activity, while neoagarobiose and D-galactose did not show an obvious antibacterial effect. This study provides a feasible method for the production of L-AHG by a co-immobilized multi-enzyme system and confirms that L-AHG plays a key role in the bioactivity of neoagarobiose.


Subject(s)
Enzymes, Immobilized , Galactose , Glycoside Hydrolases , Sepharose , Sepharose/chemistry , Sepharose/analogs & derivatives , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Galactose/analogs & derivatives , Galactose/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrolysis , Enzyme Stability , Antioxidants/pharmacology , Antioxidants/chemistry , Temperature
16.
Environ Microbiol ; 26(7): e16679, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039815

ABSTRACT

Bacteria are often found in environments where space is limited, and they attach themselves to surfaces. One common form of movement on these surfaces is bacterial twitching motility, which is powered by the extension and retraction of type IV pili. Although twitching motility in unrestricted conditions has been extensively studied, the effects of spatial confinement on this behaviour are not well understood. In this study, we explored the diffusive properties of individual twitching Pseudomonas aeruginosa cells in spatially confined conditions. We achieved this by placing the bacteria between layers of agarose and glass, and then tracking the long-term twitching motility of individual cells. Interestingly, we found that while confinement reduced the immediate speed of twitching, it paradoxically increased diffusion. Through a combination of mechanical and geometrical analysis, as well as numerical simulations, we showed that this increase in diffusion could be attributed to mechanical factors. The constraint imposed by the agarose altered the diffusion pattern of the bacteria from normal to superdiffusion. These findings provide valuable insights into the motile behaviour of bacteria in confined environments.


Subject(s)
Fimbriae, Bacterial , Pseudomonas aeruginosa , Pseudomonas aeruginosa/physiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/physiology , Movement , Sepharose , Diffusion , Glass
17.
J Biol Inorg Chem ; 29(5): 531-540, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39066798

ABSTRACT

The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.


Subject(s)
Chelating Agents , Copper , Phosphines , Sepharose , Copper/chemistry , Ligands , Sepharose/chemistry , Animals , Mice , Phosphines/chemistry , Chelating Agents/chemistry , Sulfides/chemistry , Culture Media/chemistry
18.
Int J Biol Macromol ; 277(Pt 1): 133753, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084974

ABSTRACT

In the study, lycopene and resveratrol nanoemulsion hydrogel beads were prepared by using agarose­sodium alginate as a carrier and the semi-interpenetrating polymer network technique, characteristics and morphologies were evaluated by scanning electron microscopy, fluorescence microscopy, rheological measurement. The synergistic antioxidant effect of lycopene and resveratrol was confirmed, the best synergistic antioxidant performance is achieved when the ratio of 1:1. To increase the solubility and improve the stability, the lycopene was prepared as solid dispersion added to the nanoemulsion. The encapsulation rate of lycopene and resveratrol reached 93.60 ± 2.94 % and 89.30 ± 1.75 %, respectively, and the cumulative release showed that the addition of agarose slowed down the release rate of the compound, which improves the applicability of lycopene and resveratrol and development of carriers for the delivery of different bioactive ingredients.


Subject(s)
Alginates , Antioxidants , Emulsions , Hydrogels , Lycopene , Resveratrol , Sepharose , Alginates/chemistry , Resveratrol/chemistry , Resveratrol/pharmacology , Lycopene/chemistry , Lycopene/pharmacology , Sepharose/chemistry , Emulsions/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Hydrogels/chemistry , Drug Carriers/chemistry , Solubility , Rheology , Drug Compounding , Nanoparticles/chemistry , Drug Liberation , Carotenoids/chemistry
19.
Biomed Pharmacother ; 177: 117051, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959608

ABSTRACT

Due to the limitations of the current skin wound treatments, it is highly valuable to have a wound healing formulation that mimics the extracellular matrix (ECM) and mechanical properties of natural skin tissue. Here, a novel biomimetic hydrogel formulation has been developed based on a mixture of Agarose-Collagen Type I (AC) combined with skin ECM-related components: Dermatan sulfate (DS), Hyaluronic acid (HA), and Elastin (EL) for its application in skin tissue engineering (TE). Different formulations were designed by combining AC hydrogels with DS, HA, and EL. Cell viability, hemocompatibility, physicochemical, mechanical, and wound healing properties were investigated. Finally, a bilayered hydrogel loaded with fibroblasts and mesenchymal stromal cells was developed using the Ag-Col I-DS-HA-EL (ACDHE) formulation. The ACDHE hydrogel displayed the best in vitro results and acceptable physicochemical properties. Also, it behaved mechanically close to human native skin and exhibited good cytocompatibility. Environmental scanning electron microscopy (ESEM) analysis revealed a porous microstructure that allows the maintenance of cell growth and ECM-like structure production. These findings demonstrate the potential of the ACDHE hydrogel formulation for applications such as an injectable hydrogel or a bioink to create cell-laden structures for skin TE.


Subject(s)
Biomimetic Materials , Hydrogels , Tissue Engineering , Hydrogels/chemistry , Humans , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Tissue Engineering/methods , Cell Survival/drug effects , Mesenchymal Stem Cells/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Wound Healing/drug effects , Collagen Type I/metabolism , Skin/drug effects , Skin/metabolism , Dermatan Sulfate/chemistry , Dermatan Sulfate/pharmacology , Fibroblasts/drug effects , Elastin/chemistry , Extracellular Matrix/metabolism , Biomimetics/methods , Sepharose/chemistry , Dermis/drug effects , Dermis/metabolism , Dermis/cytology , Animals
20.
Int J Biol Macromol ; 275(Pt 2): 133460, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945321

ABSTRACT

Cancer poses a significant threat to human health, and monotherapy frequently fails to achieve optimal therapeutic outcomes. Based on this premise, porphyran (PHP), a marine polysaccharide with immunomodulatory function, was used as a framework to coat gold nanorods and construct a novel nanomedicine (PHP-MPBA-GNRs) combining photothermal therapy and immunotherapy. In this design, PHP not only maintained the dispersion stability and photothermal stability of gold nanorods but also could be released under weakly acidic conditions to activate anti-tumor immunity. In vivo studies have shown that PHP-MPBA-GNRs can effectively inhibit tumor cell proliferation and reduce metastasis under near-infrared (NIR) light irradiation. Preliminary mechanistic investigations revealed that PHP-MPBA-GNRs could increase reactive oxygen species (ROS) and induce apoptosis in cancer cells. The PHP in PHP-MPBA-GNRs can also activate dendritic cells and up-regulate the expression of co-stimulatory molecules and antigen-presenting complexes. All biological experiments, including in vivo tests, demonstrated that PHP-MPBA-GNRs achieved a combination of photothermal therapy and immunotherapy for tumors.


Subject(s)
Gold , Immunotherapy , Nanotubes , Photothermal Therapy , Gold/chemistry , Nanotubes/chemistry , Immunotherapy/methods , Animals , Humans , Hydrogen-Ion Concentration , Mice , Photothermal Therapy/methods , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/immunology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Phototherapy/methods , Cell Proliferation/drug effects , Dendritic Cells/immunology , Sepharose/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL