Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.178
Filter
1.
J Biol Chem ; 300(9): 107684, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39159811

ABSTRACT

Ticks are notable vectors of diseases affecting both humans and animals, with Hyalomma anatolicum being of particular significance due to its wide distribution and capability to transmit a variety of pathogens, including Theileriaannulata and Crimean-Congo haemorrhagic fever virus. This study aimed to investigate the inhibitory effects of H. anatolicum salivary gland extract (HaSGE) and the identification of its key component on the complement system of the host's innate immune defense. We demonstrated that HaSGE exerts a dose-dependent inhibition on the complement activation in a host-specific manner. Mechanistic studies revealed that HaSGE interferes with deposition and cleavage of complement proteins C3 and C5, thus preventing the formation of the membrane attack complex. Further, we identified a serine protease inhibitor, Hyalomma anatolicum serpin-1 (HAMpin-1), from the HaSGE through proteomic analysis and characterized its structure, function, and interaction with complement proteins. HAMpin-1 exhibited potent inhibitory activity against chymotrypsin and cathepsin-G, and notably, it is the first serpin from ticks shown to inhibit the classical and lectin pathways of the complement system. The expression of HAMpin-1 was highest in the salivary glands, suggesting its crucial role in blood feeding and immune evasion. Our findings revealed one of the potential mechanisms used by H. anatolicum to modulate host immune responses at the interface, offering new insights into tick-host interactions.


Subject(s)
Salivary Glands , Serpins , Animals , Salivary Glands/metabolism , Serpins/metabolism , Serine Proteinase Inhibitors/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Humans , Arthropod Proteins/metabolism , Arthropod Proteins/immunology , Arthropod Proteins/genetics , Ixodidae/metabolism , Complement Activation
2.
J Biol Chem ; 300(9): 107627, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098536

ABSTRACT

Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.


Subject(s)
Bacterial Proteins , Leukocyte Elastase , Staphylococcus aureus , Crystallography, X-Ray , Staphylococcus aureus/enzymology , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Leukocyte Elastase/metabolism , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/chemistry , Cathepsin G/metabolism , Cathepsin G/chemistry , Cathepsin G/antagonists & inhibitors , Neutrophils/metabolism , Neutrophils/enzymology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Protein Domains , Protein Binding , Binding Sites , RNA-Binding Proteins
3.
PLoS One ; 19(7): e0303706, 2024.
Article in English | MEDLINE | ID: mdl-39042609

ABSTRACT

Serine proteases (SPs) are distributed among all living cells accounting for almost one-third of all proteases. Dysregulation of SPs during inflammation and/or infection can result in devastating consequences, such as skin and lung inflammation, neuroinflammation, arthritis, as well as metastasis of cancerous cells. Such activities are tightly regulated by various inhibitors known as serine protease inhibitors (SERPIN). The thermodynamic investigations previously revealed that L-ascorbic acid binds to trypsin more firmly than pepsin and the binding force of L-ascorbic acid is driven by hydrogen bonds and van der Waals forces. However, the physiochemical effects of such interaction on trypsin and/or pepsin have not yet been reported. Ascorbic acid, also known as vitamin C, is one of the essential nutrients and most common food supplements, fortificants, and preservatives. The aim of this study was to explore the inhibitory effects of ascorbic acid on serine proteases at various concentrations on the in-vitro digestion and/or hydrolysis of intercellular matrix of cell monolayer and human serum albumin (HSA). The inhibitory effects of ascorbic on trypsin are investigated by qualitative and quantitative analysis using SDS-PAGE imaging and NIH densitometric software. Upon the addition of ascorbic acid in both indicator systems, the detachment and/or dissociation of cell monolayer and the digestion of HSA were inhibited in the presence of EDTA-Trypsin. The inhibitory effect of ascorbic acid on the digestion of intercellular matrix and/or hydrolysis of HSA showed a dose-dependent trend until it reached the maximum extent of inhibition. At an equal concentration (2.5mg/mL) ascorbic acid and EDTA-Trypsin exhibited the most potent inhibitory effect on the in vitro digestion of protein either in the form of intercellular matrix in cell monolayer and/or HSA respectively. Overall, our results based on two indicator systems strongly indicate that ascorbic acid may function as a serine protease inhibitor (SERPIN) beyond other important functions.


Subject(s)
Ascorbic Acid , Serine Proteinase Inhibitors , Humans , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Trypsin/metabolism , Trypsin/chemistry , Cell Line, Tumor , A549 Cells
4.
Pest Manag Sci ; 80(9): 4470-4481, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38666388

ABSTRACT

BACKGROUND: The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS: We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION: Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Nicotiana , Plant Proteins , Serine Proteinase Inhibitors , Animals , Aphids/genetics , Nicotiana/genetics , Nicotiana/parasitology , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Serpins/genetics , Serpins/metabolism
5.
Sci Rep ; 14(1): 7703, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565937

ABSTRACT

Bioactive molecules in tick saliva are considered to be key to successful feeding and further the transmission of tick-borne pathogens. Problems such as pathogen transmission and animal weight loss result in tick infestation can cause tremendous economic losses to the livestock industry. Therefore, the development of a universal tick vaccine is urgently needed. In this paper, three serine protease inhibitor (serpin) proteins RMS-3, L7LRK7 and L7LTU1 were analyzed with bioinformatics methods. Subsequently the proteins were expressed and purified, and inoculated into Kunming mice for immune protection analysis. The amino acid sequence similarities between RMS-3, L7LRK7 and L7LTU1 were up to 90% in Rhipicephalus sanguineus. The recombinant RMS-3 + L7LRK7 + L7LTU1 showed anticoagulant reaction function and could inhibit the activity of CD4+ lymphocytes, when inoculated into Kunming mice. Additionally, After the immunized mice were challenged with Rhipicephalus sanguineus, the percentage of larvae and nymphs that were fully engorged dropped to 40.87% (P < 0.05) and 87.68% (P > 0.05) in the RmS-3 + L7LRK7 immune group, 49.57% (P < 0.01) and 52.06% (P < 0.05) in the RmS-3 + L7LTU1 group, and 45.22% (P < 0.05) and 60.28% (P < 0.05) in the RmS-3 + L7LRK7 + L7LTU1 immune group, in comparison with the control group. These data indicate that RmS-3 + L7LRK7 + L7LTU1 has good immune protection and has the potential to be developed into a vaccine against the larvae and nymphs of R. sanguineus.


Subject(s)
Animals, Outbred Strains , Rhipicephalus sanguineus , Rhipicephalus , Vaccines , Mice , Animals , Serine Proteinase Inhibitors/metabolism , Rhipicephalus/metabolism , Nymph , Larva
6.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38477878

ABSTRACT

Glycosylation is essential to facilitate cell-cell adhesion and differentiation. We determined the role of the dolichol phosphate mannosyltransferase (DPM) complex, a central regulator for glycosylation, for desmosomal adhesive function and epidermal differentiation. Deletion of the key molecule of the DPM complex, DPM1, in human keratinocytes resulted in weakened cell-cell adhesion, impaired localization of the desmosomal components desmoplakin and desmoglein-2, and led to cytoskeletal organization defects in human keratinocytes. In a 3D organotypic human epidermis model, loss of DPM1 caused impaired differentiation with abnormally increased cornification, reduced thickness of non-corneal layers, and formation of intercellular gaps in the epidermis. Using proteomic approaches, SERPINB5 was identified as a DPM1-dependent interaction partner of desmoplakin. Mechanistically, SERPINB5 reduced desmoplakin phosphorylation at serine 176, which was required for strong intercellular adhesion. These results uncover a novel role of the DPM complex in connecting desmosomal adhesion with epidermal differentiation.


Subject(s)
Keratinocytes , Mannosyltransferases , Proteomics , Serine Proteinase Inhibitors , Humans , Cell Adhesion , Cell Differentiation , Desmoplakins , Dolichols , Phosphates , Serine Proteinase Inhibitors/metabolism , Mannosyltransferases/metabolism
7.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339082

ABSTRACT

Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.


Subject(s)
Serpins , Serpins/metabolism , Heparin/chemistry , Serine Proteases , Serine Proteinase Inhibitors/metabolism , Anticoagulants , Thrombin/metabolism
8.
Mar Biotechnol (NY) ; 26(1): 37-49, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38117374

ABSTRACT

Serine protease inhibitors (SPIs) are abundantly reported for its inhibition against specific proteases involved in the immune responses, but SPI data related to calcareous shells are scarce. Previously, our research group has reported the proteome analysis of non-nucleated pearl powder, and a candidate matrix protein containing two Kunitz domains in the acid soluble fraction caught our attention. In the present study, the full-length cDNA sequence of HcKuSPI was obtained from Hyriopsis cumingii. HcKuSPI was specifically expressed in the mantle, with hybridization signals mainly concentrated to dorsal epithelial cells at the mantle edge and weak signals at the mantle pallium, suggesting HcKuSPI was involved in shell formation. HcKuSPI expression in the mantle was upregulated after Aeromonas hydrophila and Staphylococcus aureus challenge to extrapallial fluids (EPFs). A glutathione S transferase (GST)-HcKuSPI recombinant protein showed strong inhibitory activity against the proteases, trypsin and chymotrypsin. Moreover, HcKuSPI expression in an experimental group was significantly higher when compared with a control group during pellicle growth and crystal deposition in shell regeneration processes, while the organic shell framework of newborn prisms and nacre tablets was completely destroyed after HcKuSPI RNA interference (RNAi). Therefore, HcKuSPI secreted by the mantle may effectively neutralize excess proteases and bacterial proteases in the EPF during bacterial infection and could prevent matrix protein extracellular degradation by suppressing protease proteolytic activity, thereby ensuring a smooth shell biomineralization. In addition, GST-HcKuSPI was also crucial for crystal morphology regulation. These results have important implications for our understanding of the potential roles of SPIs during shell biomineralization.


Subject(s)
Serine Proteinase Inhibitors , Unionidae , Animals , Humans , Infant, Newborn , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/metabolism , Unionidae/genetics , Unionidae/metabolism , Immunity, Innate/genetics , Anti-Bacterial Agents/metabolism , Peptide Hydrolases/metabolism
9.
Infect Immun ; 91(11): e0010323, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37874164

ABSTRACT

In eukaryotes, autophagy is induced as an innate defense mechanism against pathogenic microorganisms by self-degradation. Although trichinellosis is a foodborne zoonotic disease, there are few reports on the interplay between Trichinella spiralissurvival strategies and autophagy-mediated host defense. Therefore, this study focused on the association between T. spiralis and autophagy of host small intestinal cells. In this study, the autophagy-related indexes of host small intestinal cells after T. spiralis infection were detected using transmission electron microscopy, hematoxylin and eosin staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting. The results showed that autophagosomes and autolysosomes were formed in small intestinal cells, intestinal villi appeared edema, epithelial compactness was decreased, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was expressed in lamina propria stromal cells of small intestine, and the expression of autophagy-related genes and proteins was changed significantly, indicating that T. spiralis induced autophagy of host small intestinal cells. Then, the effect of T. spiralis on autophagy-related pathways was explored by Western blotting. The results showed that the expression of autophagy-related pathway proteins was changed, indicating that T. spiralis regulated autophagy by affecting autophagy-related pathways. Finally, the roles of T. spiralis serine protease inhibitors (TsSPIs), such as T. spiralis Kazal-type SPI (TsKaSPI) and T. spiralis Serpin-type SPI (TsAdSPI), were further discussed in vitro and in vivo experiments. The results revealed that TsSPIs induced autophagy by influencing autophagy-related pathways, and TsAdSPI has more advantages. Overall, our results indicated that T. spiralis induced autophagy of host small intestinal cells, and its TsSPIs play an important role in enhancing autophagy flux by affecting autophagy-related pathways. These findings lay a foundation for further exploring the pathogenesis of intestinal dysfunction of host after T. spiralis infection, and also provide some experimental and theoretical basis for the prevention and treatment of trichinellosis.


Subject(s)
Trichinella spiralis , Trichinellosis , Animals , Mice , Trichinella spiralis/genetics , Trichinella spiralis/metabolism , Trichinellosis/metabolism , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/metabolism , Intestine, Small , Autophagy , Mice, Inbred BALB C
10.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298647

ABSTRACT

There is an urgent need for the identification as well as clinicopathological and functional characterization of potent prognostic biomarkers and therapeutic targets in acute myeloid leukemia (AML). Using immunohistochemistry and next-generation sequencing, we investigated the protein expression as well as clinicopathological and prognostic associations of serine protease inhibitor Kazal type 2 (SPINK2) in AML and examined its potential biological functions. High SPINK2 protein expression was an independent adverse biomarker for survival and an indicator of elevated therapy resistance and relapse risk. SPINK2 expression was associated with AML with an NPM1 mutation and an intermediate risk by cytogenetics and European LeukemiaNet (ELN) 2022 criteria. Furthermore, SPINK2 expression could refine the ELN2022prognostic stratification. Functionally, an RNA sequencing analysis uncovered a potential link of SPINK2 with ferroptosis and immune response. SPINK2 regulated the expression of certain P53 targets and ferroptosis-related genes, including SLC7A11 and STEAP3, and affected cystine uptake, intracellular iron levels and sensitivity to erastin, a specific ferroptosis inducer. Furthermore, SPINK2 inhibition consistently increased the expression of ALCAM, an immune response enhancer and promoter of T-cell activity. Additionally, we identified a potential small-molecule inhibitor of SPINK2, which requires further characterization. In summary, high SPINK2 protein expression was a potent adverse prognostic marker in AML and might represent a druggable target.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , Ferroptosis/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Prognosis , Serine Proteinase Inhibitors/blood , Serine Proteinase Inhibitors/metabolism , Serpins/blood , Serpins/metabolism
11.
EMBO Mol Med ; 15(6): e17144, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37158379

ABSTRACT

In the practice of medicine, many fundamental biological pathways that require tight on/off control, such as inflammation and circulatory homeostasis, are regulated by serine proteinases, but we rarely consider the unique protease inhibitors that, in turn, regulate these proteases. The serpins are a family of proteins with a shared tertiary structure, whose members largely act as serine protease inhibitors, found in all forms of life, ranging from viruses, bacteria, and archaea to plants and animals. These proteins represent up to 2-10% of proteins in the human blood and are the third most common protein family.


Subject(s)
Serpins , Animals , Humans , Serpins/genetics , Serpins/chemistry , Serpins/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Serine Proteases/metabolism , Inflammation
12.
Biomol NMR Assign ; 17(1): 129-134, 2023 06.
Article in English | MEDLINE | ID: mdl-37160842

ABSTRACT

The S. aureus extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Serine Proteinase Inhibitors , Humans , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Neutrophils/metabolism , Leukocyte Elastase/metabolism , Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Nuclear Magnetic Resonance, Biomolecular
13.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903318

ABSTRACT

It was found that silkworm serine protease inhibitors BmSPI38 and BmSPI39 were very different from typical TIL-type protease inhibitors in sequence, structure, and activity. BmSPI38 and BmSPI39 with unique structure and activity may be good models for studying the relationship between the structure and function of small-molecule TIL-type protease inhibitors. In this study, site-directed saturation mutagenesis at the P1 position was conducted to investigate the effect of P1 sites on the inhibitory activity and specificity of BmSPI38 and BmSPI39. In-gel activity staining and protease inhibition experiments confirmed that BmSPI38 and BmSPI39 could strongly inhibit elastase activity. Almost all mutant proteins of BmSPI38 and BmSPI39 retained the inhibitory activities against subtilisin and elastase, but the replacement of P1 residues greatly affected their intrinsic inhibitory activities. Overall, the substitution of Gly54 in BmSPI38 and Ala56 in BmSPI39 with Gln, Ser, or Thr was able to significantly enhance their inhibitory activities against subtilisin and elastase. However, replacing P1 residues in BmSPI38 and BmSPI39 with Ile, Trp, Pro, or Val could seriously weaken their inhibitory activity against subtilisin and elastase. The replacement of P1 residues with Arg or Lys not only reduced the intrinsic activities of BmSPI38 and BmSPI39, but also resulted in the acquisition of stronger trypsin inhibitory activities and weaker chymotrypsin inhibitory activities. The activity staining results showed that BmSPI38(G54K), BmSPI39(A56R), and BmSPI39(A56K) had extremely high acid-base and thermal stability. In conclusion, this study not only confirmed that BmSPI38 and BmSPI39 had strong elastase inhibitory activity, but also confirmed that P1 residue replacement could change their activity and inhibitory specificity. This not only provides a new perspective and idea for the exploitation and utilization of BmSPI38 and BmSPI39 in biomedicine and pest control, but also provides a basis or reference for the activity and specificity modification of TIL-type protease inhibitors.


Subject(s)
Bombyx , Protease Inhibitors , Animals , Protease Inhibitors/chemistry , Bombyx/chemistry , Amino Acid Substitution , Amino Acid Sequence , Serine Proteinase Inhibitors/metabolism , Subtilisins/metabolism , Pancreatic Elastase/metabolism
14.
Fungal Biol ; 127(1-2): 881-890, 2023.
Article in English | MEDLINE | ID: mdl-36746560

ABSTRACT

Lentinula edodes (Shiitake) is one of the most heavily cultivated mushrooms in the world with proven antioxidant and antibacterial properties, among others. Evidence indicates that the choice of mushroom cultivation technique strongly influences the production of bioactive compounds, but to date the nature of many of these compounds has not been fully established. This work focuses on the proteomic characterization of L. edodes to highlight the main active processes two days after harvest and elucidates the proteins involved in the known antioxidant and antibacterial proprieties of Shiitake fruit bodies cultivated on oak logs. A label-free approach allowed us to identify a total of 2702 proteins which were mainly involved in carbohydrate and protein metabolism, cell growth and replication, indicating that several developmental processes remain active in fruit bodies post-harvest. Proteins with antioxidant activities were identified, indicating the contribution of proteins to the antioxidant properties of L. edodes extracts. Antibacterial assays also reveal the activity of a serine protease inhibitor that strongly accumulates in the post-harvest fruit body grown on oak logs. Overall, this study contributes to the understanding of the impact of the log cultivation method on the production of Shiitake mushrooms richest in high-value bioactive compounds.


Subject(s)
Shiitake Mushrooms , Shiitake Mushrooms/metabolism , Serine Proteinase Inhibitors/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Fruit , Proteomics
15.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675071

ABSTRACT

Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel ß-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.


Subject(s)
Cystatins , Serpins , Ticks , Animals , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Serine Proteinase Inhibitors/metabolism , Serpins/metabolism , Saliva/metabolism , Cystatins/metabolism
16.
Parasitol Res ; 122(1): 245-255, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36376587

ABSTRACT

Serpins represent one of the most diverse families of serine protease inhibitors. Despite their complexity, they are virtually found in all organisms and play an important role in homeostasis processes such as blood coagulation, inflammation, fibrinolysis, immune responses, chromatin condensation, tumor suppression, and apoptosis. There has recently been particular interest in studying serpin functions in infection and inflammation, especially since more serpins from parasites have been identified and characterized. Among helminths, Trichinella spiralis is one of the few parasites with an extremely strong ability to induce host immune suppression. Previous studies show that serpins are present in Trichinella and are expressed differentially at different parasite stages. More interesting, there is evidence of a recombinant serpin from Trichinella pseudospiralis that alters macrophage polarization in vitro. This finding could be relevant to comprehend the modulation process of the immune response. We expressed Tsp_01570, a putative serpin gene from Trichinella spiralis, in the eukaryotic system Pichia pastoris SMD1168H and evaluated its presence at different parasite stages, finding the serine protease inhibitor in the crude extract of adult worms. The effect of recombinant serpin on THP-1 cells was tested by quantification of IL-12p40, TNF-α, IL-4, and IL-10 cytokines released by ELISA. We also evaluated the expression of the M1 markers, CCR7 and CD86, and the M2 markers, CD163 and CD206, by immunofluorescence staining. This study represents the first insight in elucidating the importance of serpin Tsp_01570 as a potential molecular modulator.


Subject(s)
Saccharomycetales , Serpins , Trichinella spiralis , Trichinella , Trichinellosis , Animals , Serpins/genetics , Serpins/metabolism , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/metabolism , Inflammation , Trichinellosis/parasitology
17.
J Zhejiang Univ Sci B ; 23(9): 747-759, 2022.
Article in English | MEDLINE | ID: mdl-36111571

ABSTRACT

The mechanisms underlying pregnancy complications caused by advanced maternal age (AMA) remain unclear. We analyzed the cellular signature and transcriptomes of human placentas in AMA women to elucidate these mechanisms. Placental tissues from two AMA women and two controls were used for single-cell RNA-sequencing (scRNA-seq). Controls consisted of AMA women who did not experience any pregnancy complications and pregnant women below the age of 35 years without pregnancy complications. Trophoblast cells were obtained from the placentas of another six pregnant women (three AMA women and three controls), and in-vitro transwell assays were conducted to observe the cell invasion ability. Thirty additional samples (from 15 AMA women and 15 controls) were analyzed to verify the specific expression of serine protease inhibitor clade E member 1 (SERPINE1). Preliminary study of the role of SERPINE1 in cell invasion was carried out with HTR8-S/Vneo cells. High-quality transcriptomes of 27 |607 cells were detected. Three types of trophoblast cells were detected, which were further classified into eight subtypes according to differences in gene expression and Gene Ontology (GO) function. We identified 110 differentially expressed genes (DEGs) in trophoblast cells between the AMA and control groups, and the DEGs were enriched in multiple pathways related to cell invasion. In-vitro transwell assays suggested that the invading trophoblast cells in AMA women were reduced. SERPINE1 was specifically expressed in the trophoblast, and its expression was higher in AMA women (P<0.05). Transfection of human SERPINE1 (hSERPINE1) into HTR8-S/Vneo trophoblast cells showed fewer invading cells in the hSERPINE1 group. Impaired cell invasion may underlie the increased risk of adverse pregnancy outcomes in AMA women. Abnormal expression of SERPINE1 in extravillous trophoblast (EVT) cells appears to play an important role.


Subject(s)
Placenta , Pregnancy Complications , Adult , Cell Line , Cell Movement , Female , Humans , Maternal Age , Placenta/metabolism , Pregnancy , Pregnant Women , RNA/metabolism , Serine Proteinase Inhibitors/metabolism
18.
Biophys J ; 121(20): 3940-3949, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36039386

ABSTRACT

Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases produced during the coagulation cascade and inflammation. Previous studies showed that NM was a highly safe drug for the treatment of different cancers, but the precise functions and mechanisms of NM are not clear. In this study, we determined a series of crystal structures of NM and its hydrolysates in complex with a serine protease (urokinase-type plasminogen activator [uPA]). These structures reveal that NM was cleaved by uPA and that a hydrolyzed product (4-guanidinobenzoic acid [GBA]) remained covalently linked to Ser195 of uPA, and the other hydrolyzed product (6-amidino-2-naphthol [6A2N]) released from uPA. Strikingly, in the inactive uPA (uPA-S195A):NM structure, the 6A2N side of intact NM binds to the specific pocket of uPA. Molecular dynamics simulations and end-point binding free-energy calculations show that the conf1 of NM (6A2N as P1 group) in the uPA-S195A:NM complex may be more stable than conf2 of NM (GBA as P1 group). Moreover, in the structure of uPA:NM complex, the imidazole group of His57 flips further away from Ser195 and disrupts the stable canonical catalytic triad conformation. These results not only reveal the inhibitory mechanism of NM as an efficient serine protease inhibitor but also might provide the structural basis for the further development of serine protease inhibitors.


Subject(s)
Serine Proteinase Inhibitors , Urokinase-Type Plasminogen Activator , Urokinase-Type Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Serine Proteases , Imidazoles
19.
Arch Insect Biochem Physiol ; 111(3): e21948, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35749627

ABSTRACT

Serine protease inhibitors (SPIs) act in diverse biological processes in insects such as immunity, development, and digestion by preventing the unwanted proteolysis. So far, the repertoire of genes encoding SPIs has been identified from few insect species. In this study, 62 SPI genes were identified from the genome of the yellow mealworm, Tenebrio molitor. According to their modes of action, they were classified into three families, serpin (26), canonical SPI (31), and α-macroglobulins (A2M) (5). These SPIs feature eight domains including serpin, Kazal, TIL, Kunitz, WAP, Antistasin, pacifastin, and A2M. In total, 39 SPIs contain a single SPI domain, while the others encode at least two inhibitor units. Based on the amino acids in the cleaved reactive sites, the abilities of these SPIs to inhibit trypsin, chymotrypsin, or elastase-like enzymes are predicted. The expression profiling based on the RNA-seq data showed that these genes displayed stage-specific expression patterns during development, suggesting to us their significance in development. Some of the SPI genes were exclusively expressed in particular tissues such as hemocyte, fat body, gut, ovary, and testis, which may be involved in biological processes specific to the indicated tissues. These findings provide necessary information for further investigation of insect SPIs.


Subject(s)
Serpins , Tenebrio , Amino Acid Sequence , Amino Acids , Animals , Chymotrypsin , Female , Male , Pancreatic Elastase/metabolism , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/metabolism , Serpins/genetics , Trypsin/metabolism , alpha-Macroglobulins
20.
Inflammation ; 45(5): 2052-2065, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35668155

ABSTRACT

Acute kidney injury (AKI) is an important complication of rhabdomyolysis (RM), but there is lack of effective treatments. Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor isolated and purified from human urine with strong anti-inflammatory and cytoprotective actions. The aim of this research was to investigate the effect and potential mechanism of UTI on RM-induced AKI (RM-AKI). We established RM-induced AKI model and myoglobin (Mb)-stimulated NRK-52E cell model. In vivo, twenty-four rats were randomly divided into three groups (n = 8): control, RM-AKI, and RM-AKI + UTI. In vitro, the NRK-52E cells were divided into six groups according to the different treatment method. Mb-stimulated NRK-52E cells were treated with UTI or si-TLR4 transfection to characterize the mechanisms of UTI in RM-AKI. Indicators of the kidney injury, cell viability, cell cycle, oxidative stress, inflammation, apoptosis, and TLR4/NF-κB signaling pathway were assessed. In vivo and in vitro, UTI significantly decreased the expression of TLR4 and p65. In vivo, UTI significantly improved renal function and reduced inflammatory reaction and kidney injury. In vitro, UTI protected NRK-52E cells from Mb stimulation by suppressing cell cytotoxicity, cell cycle inhibition, overproduction of ROS, inflammation, and apoptosis. Additionally, UTI played a protective role by downregulating the TLR4 expression. The results indicate that UTI alleviates RM-AKI by suppressing the inflammatory response and apoptosis via inhibiting TLR4/NF-κB signaling pathway. Our study provides a new mechanism for the protective effect of UTI on RM-AKI.


Subject(s)
Acute Kidney Injury , Rhabdomyolysis , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis , Glycoproteins , Humans , Inflammation/drug therapy , Inflammation/metabolism , Kidney , Myoglobin/metabolism , Myoglobin/pharmacology , Myoglobin/therapeutic use , NF-kappa B/metabolism , Rats , Reactive Oxygen Species/metabolism , Rhabdomyolysis/complications , Rhabdomyolysis/drug therapy , Rhabdomyolysis/metabolism , Serine Proteinase Inhibitors/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Signal Transduction , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL