Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.351
Filter
1.
Curr Protoc ; 4(6): e1068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837274

ABSTRACT

Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.


Subject(s)
Ceramics , Dependovirus , Durapatite , Genetic Vectors , Serogroup , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors/isolation & purification , Genetic Vectors/genetics , Humans , Ceramics/chemistry , Durapatite/chemistry , Chromatography/methods , HEK293 Cells
2.
J Vet Sci ; 25(3): e39, 2024 May.
Article in English | MEDLINE | ID: mdl-38834509

ABSTRACT

IMPORTANCE: Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. OBJECTIVE: This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. METHODS: From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. RESULTS: Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. CONCLUSIONS AND RELEVANCE: This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.


Subject(s)
Abattoirs , Chickens , Salmonella , Animals , Republic of Korea/epidemiology , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/physiology , Poultry Diseases/microbiology , Poultry Diseases/transmission , Poultry Diseases/epidemiology , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/transmission , Salmonella Infections, Animal/epidemiology , Food Microbiology , Poultry/microbiology , Serogroup , Meat/microbiology
3.
Front Immunol ; 15: 1392681, 2024.
Article in English | MEDLINE | ID: mdl-38835751

ABSTRACT

Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Cattle Diseases , Hemorrhagic Septicemia , Pasteurella multocida , Animals , Cattle , Pasteurella multocida/immunology , Hemorrhagic Septicemia/prevention & control , Hemorrhagic Septicemia/veterinary , Hemorrhagic Septicemia/immunology , Hemorrhagic Septicemia/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Cattle Diseases/prevention & control , Cattle Diseases/immunology , Cattle Diseases/microbiology , Mice , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Female , Serogroup , Pasteurella Infections/prevention & control , Pasteurella Infections/veterinary , Pasteurella Infections/immunology , Pasteurella Infections/microbiology , Adjuvants, Immunologic/administration & dosage , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice, Inbred BALB C , Vaccination
4.
Front Immunol ; 15: 1388721, 2024.
Article in English | MEDLINE | ID: mdl-38840926

ABSTRACT

The disaccharide (ß-D-glucopyranosyluronic acid)-(1→4)-ß-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.


Subject(s)
Interleukin-17 , Pneumococcal Vaccines , Serum Albumin, Bovine , Streptococcus pneumoniae , Animals , Interleukin-17/immunology , Interleukin-17/metabolism , Streptococcus pneumoniae/immunology , Mice , Serum Albumin, Bovine/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Disaccharides/immunology , Bacterial Capsules/immunology , Polysaccharides, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Female , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Intraepithelial Lymphocytes/immunology , Serogroup , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism
6.
J Infect Dev Ctries ; 18(4): 495-500, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728633

ABSTRACT

INTRODUCTION: After the Coronavirus Disease 2019 pandemic, a high number of cases and severe dengue in children were reported in some provinces in the south of Vietnam. This study aimed to determine the distribution of dengue virus serotypes and their correlation with demographic factors, disease severity, clinical manifestations, and laboratory findings. METHODOLOGY: This study employed a cross-sectional design. Ninety-six dengue-infected children admitted to Can Tho Children's Hospital between October 2022 and March 2023 were included. Confirmation of dengue infection was achieved through the real-time polymerase chain reaction (RT-PCR). RESULTS: Among the identified serotypes, DENV-2 accounted for the highest proportion (71.87%), followed by DENV-1 (23.96%), and DENV-4 (4.17%). DENV-3 was not detected. No significant demographic, disease severity, or laboratory differences were observed among the identified dengue serotypes. However, DENV-2 was associated with a higher occurrence of mucous membrane hemorrhages and gastrointestinal bleeding compared to other serotypes. CONCLUSIONS: Although DENV-2 was the most prevalent serotype responsible for dengue in children in southern Vietnam, it did not lead to more severe cases compared to other serotypes. This finding is crucial for evaluating the illness's prognosis.


Subject(s)
Dengue Virus , Serogroup , Severe Dengue , Humans , Vietnam/epidemiology , Severe Dengue/epidemiology , Severe Dengue/virology , Cross-Sectional Studies , Male , Dengue Virus/classification , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Child , Child, Preschool , Adolescent , Infant , Severity of Illness Index
7.
J Infect Dev Ctries ; 18(4): 579-586, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728636

ABSTRACT

INTRODUCTION: Streptococcus pneumoniae cause a significant global health challenge. We aimed to determine nasopharyngeal carriage, serotypes distribution, and antimicrobial profile of pneumococci among the children of Aden. METHODOLOGY: A total of 385 children, aged 2-17 years, were included. Asymptomatic samples were randomly collected from children in selected schools and vaccination centers. Symptomatic samples were obtained from selected pediatric clinics. The nasopharyngeal swabs were tested for pneumococci using culture and real time polymerase chain reaction (RT-PCR). Serotyping was done with a pneumotest-latex kit and antimicrobial susceptibility was tested by disc diffusion and Epsilometer test. RESULTS: The total pneumococcal carriage was 44.4% and 57.1% by culture and RT-PCR, respectively. There was a statistically significant association between carriage rate and living in single room (OR = 7.9; p = 0.00001), sharing a sleeping space (OR = 15.1; p = 0.00001), and low monthly income (OR = 2.02; p = 0.007). The common serotypes were 19, 1, 4, 5, 2, and 23. The proportion of non-pneumococcal conjugate vaccine (non-PCV13) serotypes was 24%. Pneumococci were resistant to penicillin (96.5%), cefepime (15.8%), ceftriaxone (16.4%), and amoxicillin-clavulanate (0%). Erythromycin, azithromycin, and doxycycline had resistance rates of 48%, 31%, and 53.3%, respectively. CONCLUSIONS: A high pneumococcal carriage rate was observed in Yemeni children, particularly in low-income households and shared living conditions. There was significant penicillin resistance at meningitis breakpoint. Furthermore, non-PCV13 serotypes were gradually replacing PCV13 serotypes. The findings underscore the urgent need for enhanced surveillance and stewardship to improve vaccination and antibiotic policies in Yemen.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Vaccines, Conjugate , Humans , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Child , Child, Preschool , Cross-Sectional Studies , Yemen/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Female , Male , Pneumococcal Vaccines/administration & dosage , Adolescent , Carrier State/epidemiology , Carrier State/microbiology , Nasopharynx/microbiology , Vaccines, Conjugate/administration & dosage , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Serotyping
8.
PLoS One ; 19(5): e0301388, 2024.
Article in English | MEDLINE | ID: mdl-38722868

ABSTRACT

Salmonella is a primary cause of foodborne diseases globally. Despite food contamination and clinical infections garnering substantial attention and research, asymptomatic Salmonella carriers, potential sources of infection, have been comparatively overlooked. In this study, we conducted a comparative analysis of serotype distribution, antimicrobial resistance phenotypes, and genetic profiles of archived Salmonella strains isolated from food (26), asymptomatic carriers (41), and clinical cases (47) in Shiyan City, China. Among the 114 Salmonella strains identified, representing 31 serotypes and 34 Sequence Types (STs), the most prevalent serovars included Typhimurium, Derby, Enteritidis, Thompson, and London, with the most predominant STs being ST11, ST40, ST26, ST34, and ST155. Antimicrobial resistance testing revealed that all strains were only sensitive to meropenem, with 74.6% showing antimicrobial resistance (AMR) and 53.5% demonstrating multidrug resistance (MDR). Strains resistant to five and six classes of antibiotics were the most common. Pearson's chi-square test showed no statistically significant difference in the occurrence of AMR (p = 0.105) or MDR (p = 0.326) among Salmonella isolates from the three sources. Our findings underscore associations and diversities among Salmonella strains isolated from food, asymptomatic carriers, and clinical patients, emphasizing the need for increased vigilance towards asymptomatic Salmonella carriers by authorities.


Subject(s)
Anti-Bacterial Agents , Salmonella , Serogroup , China/epidemiology , Salmonella/genetics , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/classification , Humans , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Food Microbiology , Carrier State/microbiology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/drug therapy , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
9.
Vet Res ; 55(1): 57, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715138

ABSTRACT

Streptococcus suis is a bacterial pathogen that causes important economic losses to the swine industry worldwide. Since there are no current commercial vaccines, the use of autogenous vaccines applied to gilts/sows to enhance transfer of passive immunity is an attractive alternative to protect weaned piglets. However, there is no universal standardization in the production of autogenous vaccines and the vaccine formulation may be highly different among licenced manufacturing laboratories. In the present study, an autogenous vaccine that included S. suis serotypes 2, 1/2, 5, 7 and 14 was prepared by a licensed laboratory and administrated to gilts using a three-dose program prior to farrowing. The antibody response in gilts as well as the passive transfer of antibodies to piglets was then evaluated. In divergence with previously published data with an autogenous vaccine produced by a different company, the increased response seen in gilts was sufficient to improve maternal antibody transfer to piglets up to 5 weeks of age. However, piglets would still remain susceptible to S. suis disease which often appears during the second part of the nursery period. Vaccination did not affect the shedding of S. suis (as well as that of the specific S. suis serotypes included in the vaccine) by either gilts or piglets. Although all antibiotic treatments were absent during the trial, the clinical protective effect of the vaccination program with the autogenous vaccine could not be evaluated, since limited S. suis cases were present during the trial, confirming the need for a complete evaluation of the clinical protection that must include laboratory confirmation of the aetiological agent involved in the presence of S. suis-associated clinical signs. Further studies to evaluate the usefulness of gilt/sow vaccination with autogenous vaccines to protect nursery piglets should be done.


Subject(s)
Autovaccines , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Streptococcus suis/immunology , Swine , Swine Diseases/prevention & control , Swine Diseases/microbiology , Swine Diseases/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Female , Immunity, Maternally-Acquired , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Serogroup , Vaccination/veterinary
10.
Can Vet J ; 65(5): 429-436, 2024 May.
Article in English | MEDLINE | ID: mdl-38694742

ABSTRACT

Objective: Streptococcus suis is a major agent of disease in modern swine operations, linked to increased mortality, treatment costs, and secondary infections. Although it is ubiquitous in swine, only a fraction of pigs develop clinical disease. The goals of this study were to profile isolates obtained from diseased pigs in western Canada and to investigate potential associations with disease severity. Procedure: Isolates of S. suis (n = 128) from 75 diagnostic submission and 63 premises were paired with epidemiological surveys completed by submitting practitioners (n = 22). Whole-genome sequencing was used to type isolates. Results: The most prevalent serotypes identified were 1/2 (7.8%, 10/128), 2 (9.3%, 12/128), 3 (9.3%, 12/128), and 7 (7.8%, 10/128); and sequence types 28 (17%, 23/128) and 839 (14%, 19/128). There was no association between serotype or sequence type and organ source or barn location. Approximately 74% (14/19) of the premises had diseased animals colonized by > 1 S. suis serotype, but only 1 pig was simultaneously infected with multiple serotypes and sequence types. Serotype distribution from diseased pigs in western Canada differed from that of those in other geographic regions. Conclusion: Infection of diseased pigs by multiple serotypes should be considered when disease control strategies are implemented. No association between S. suis type and isolation organ was identified.


Le profil moléculaire et les caractéristiques épidémiologiques de Streptococcus suis isolés de porcs malades dans l'ouest du Canada révèlent une infection à sérotypes multiples : implications pour la maitrise de la maladie. Objectif: Streptococcus suis est un agent pathogène majeur dans les exploitations porcines modernes, lié à une mortalité accrue, aux coûts de traitement et aux infections secondaires. Bien qu'elle soit omniprésente chez le porc, seule une fraction des porcs développe une maladie clinique. Les objectifs de cette étude étaient de dresser le profil des isolats obtenus à partir de porcs malades dans l'ouest du Canada et d'étudier les associations potentielles avec la gravité de la maladie. Procédure: Des isolats de S. suis (n = 128) provenant de 75 soumissions pour diagnostic et de 63 sites ont été associés à des enquêtes épidémiologiques réalisées auprès des praticiens soumettant les échantillons (n = 22). Le séquençage du génome entier a été utilisé pour typer les isolats. Résultats: Les sérotypes les plus répandus identifiés étaient 1/2 (7,8 %, 10/128), 2 (9,3 %, 12/128), 3 (9,3 %, 12/128) et 7 (7,8 %, 10/128); et les types de séquence 28 (17 %, 23/128) et 839 (14 %, 19/128). Il n'y avait aucune association entre le sérotype ou le type de séquence et la source d'organes ou l'emplacement de la ferme. Environ 74 % (14/19) des exploitations abritaient des animaux malades colonisés par > 1 sérotype de S. suis, mais 1 seul porc était infecté simultanément par plusieurs sérotypes et types de séquences. La répartition des sérotypes chez les porcs malades de l'ouest du Canada différait de celle des porcs d'autres régions géographiques. Conclusion: L'infection des porcs malades par plusieurs sérotypes doit être envisagée lors de la mise en oeuvre de stratégies de maitrise de la maladie. Aucune association entre le type de S. suis et l'organe d'isolement n'a été identifiée.(Traduit par Dr Serge Messier).


Subject(s)
Serogroup , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Streptococcal Infections/veterinary , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Canada/epidemiology
11.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717818

ABSTRACT

Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.


Subject(s)
Plasmids , Salmonella enterica , Serogroup , Plasmids/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Salmonella Infections/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Salmonella Phages/genetics , Salmonella Phages/classification , Humans , Phylogeny , Gene Transfer, Horizontal , Retrospective Studies
12.
Front Public Health ; 12: 1377861, 2024.
Article in English | MEDLINE | ID: mdl-38751577

ABSTRACT

Background: Hand, foot, and mouth disease (HFMD) is a common infectious disease in children. Enterovirus A71 (EV71) and coxsackievirus A16 (CA16) have been identified as the predominant pathogens for several decades. In recent years, coxsackievirus A6 (CA6) and coxsackievirus A10 (CA10) have played increasingly important roles in a series of HFMD outbreaks. We performed a retrospective analysis of the epidemiology of HFMD and the spectrum of different viral serotypes, to elucidate the genetic and phylogenetic characteristics of the main serotypes in the Jiashan area during 2016 to 2022. Methods: Descriptive epidemiological methods were used to analyze the time and population distribution of HFMD in Jiashan during 2016 to 2022 based on surveillance data. Molecular diagnostic methods were performed to identify the viral serotypes and etiological characteristics of HFMD. Phylogenetic analyses was based on VP1 region of CA16 and CA6. Results: The average annual incidence rate of HFMD fluctuated from 2016 to 2022. Children aged 1-5 years accounted for 81.65% of cases and boys were more frequently affected than girls. Except when HFMD was affected by the COVID-19 epidemic in 2020 and 2022, epidemics usually peak in June to July, followed by a small secondary peak from October to December and a decline in February. Urban areas had a high average incidence and rural areas had the lowest. Among 560 sample collected in Jiashan, 472 (84.29%) were positive for enterovirus. The most frequently identified serotypes were CA6 (296, 52.86%), CA16 (102, 18.21%), EV71 (16, 2.86%), CA10 (14, 2.50%) and other enteroviruses (44, 7.86%). There were 71 and 142 VP1 sequences from CA16 and CA6, respectively. Substitution of N218D, A220L and V251I was detected in CA16 and may have been related to viral infectivity. Phylogenetic analysis showed that CA16 could be assigned to two genogroups, B1a and B1b, while all the CA6 sequences belonged to the D3a genogroup. Conclusion: CA6 and CA16 were the two major serotypes of enteroviruses circulating in the Jiashan area during 2016 to 2022. Continuous and comprehensive surveillance for HFMD is needed to better understand and evaluate the prevalence and evolution of the associated pathogens.


Subject(s)
Hand, Foot and Mouth Disease , Phylogeny , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/virology , Humans , China/epidemiology , Male , Female , Child, Preschool , Infant , Retrospective Studies , Child , Incidence , Enterovirus/genetics , Enterovirus/isolation & purification , Enterovirus/classification , Serogroup , Disease Outbreaks/statistics & numerical data , Adolescent
13.
PLoS One ; 19(5): e0297767, 2024.
Article in English | MEDLINE | ID: mdl-38768099

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is a leading cause of morbidity and mortality globally, causing bacteremic pneumonia, meningitis, sepsis, and other invasive pneumococcal diseases. Evidence supports nasopharyngeal pneumococcal carriage as a reservoir for transmission and precursor of pneumococcal disease. OBJECTIVES: To estimate the pneumococcal nasopharyngeal burden in all age groups in Latin America and the Caribbean (LAC) before, during, and after the introduction of pneumococcal vaccine conjugate (PVC). METHODS: Systematic literature review of international, regional, and country-published and unpublished data, together with reports including data from serotype distribution in nasopharyngeal carriage in children and adults from LAC countries following Cochrane methods. The protocol was registered in PROSPERO database (ID: CRD42023392097). RESULTS: We included 54 studies with data on nasopharyngeal pneumococcal carriage and serotypes from 31,803 patients. In children under five years old, carriage was found in 41% and in adults over 65, it was 26%. During the study period, children under five showed a colonization proportion of 34% with PCV10 serotypes and 45% with PCV13 serotypes. When we analyze the carriage prevalence of PCV serotypes in all age groups between 1995 and 2019, serotypes included in PCV10 and those included in PCV13, both showed a decreasing trend along analysis by lustrum. CONCLUSION: The data presented in this study highlights the need to establish national surveillance programs to monitor pneumococcal nasopharyngeal carriage to monitor serotype prevalence and replacement before and after including new pneumococcal vaccines in the region. In addition, to analyze differences in the prevalence of serotypes between countries, emphasize the importance of approaches to local realities to reduce IPD effectively.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/isolation & purification , Latin America/epidemiology , Caribbean Region/epidemiology , Nasopharynx/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Pneumococcal Vaccines/administration & dosage , Serogroup , Child, Preschool , Adult , Child , Prevalence
14.
Sci Rep ; 14(1): 11660, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777847

ABSTRACT

The presence of Salmonella in dry fermented sausages is source of recalls and outbreaks. The genomic diversity of 173 Salmonella isolates from the dry fermented sausage production chains (pig carcasses, pork, and sausages) from France and Spain were investigated through their core phylogenomic relationships and accessory genome profiles. Ten different serovars and thirteen sequence type profiles were identified. The most frequent serovar from sausages was the monophasic variant of S. Typhimurium (1,4,[5],12:i:-, 72%) while S. Derby was in pig carcasses (51%). Phylogenomic clusters found in S. 1,4,[5],12:i:-, S. Derby, S. Rissen and S. Typhimurium serovars identified closely related isolates, with less than 10 alleles and 20 SNPs of difference, displaying Salmonella persistence along the pork production chain. Most of the S. 1,4,[5],12:i:- contained the Salmonella genomic island-4 (SGI-4), Tn21 and IncFIB plasmid. More than half of S. Derby strains contained the SGI-1 and Tn7. S. 1,4,[5],12:i:- genomes carried the most multidrug resistance genes (91% of the strains), whereas extended-spectrum ß-lactamase genes were found in Typhimurium and Derby serovars. Salmonella monitoring and characterization in the pork production chains, specially S. 1,4,[5],12:i:- serovar, is of special importance due to its multidrug resistance capacity and persistence in dry fermented sausages.


Subject(s)
Food Microbiology , Meat Products , Phylogeny , Salmonella , Meat Products/microbiology , Spain , France , Animals , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Swine , Fermentation , Genome, Bacterial , Serogroup , Genomics/methods , Genomic Islands/genetics
15.
PeerJ ; 12: e17306, 2024.
Article in English | MEDLINE | ID: mdl-38784399

ABSTRACT

Background: Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods: Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results: wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion: The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.


Subject(s)
Genome, Bacterial , Genomics , Multilocus Sequence Typing , Salmonella enterica , Brazil , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Genome, Bacterial/genetics , Humans , Animals , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Serogroup , Food Microbiology , Phylogeny , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology
16.
PLoS One ; 19(5): e0302400, 2024.
Article in English | MEDLINE | ID: mdl-38787847

ABSTRACT

BACKGROUND: In 2012, Botswana introduced 13-valent pneumococcal conjugate vaccine (PCV-13) to its childhood immunization program in a 3+0 schedule, achieving coverage rates of above 90% by 2014. In other settings, PCV introduction has been followed by an increase in carriage or disease caused by non-vaccine serotypes, including some serotypes with a high prevalence of antibiotic resistance. METHODS: We characterized the serotype epidemiology and antibiotic resistance of pneumococcal isolates cultured from nasopharyngeal samples collected from infants (≤12 months) in southeastern Botswana between 2016 and 2019. Capsular serotyping was performed using the Quellung reaction. E-tests were used to determine minimum inhibitory concentrations for common antibiotics. RESULTS: We cultured 264 pneumococcal isolates from samples collected from 150 infants. At the time of sample collection, 81% of infants had received at least one dose of PCV-13 and 53% had completed the three-dose series. PCV-13 serotypes accounted for 27% of isolates, with the most prevalent vaccine serotypes being 19F (n = 20, 8%), 19A (n = 16, 6%), and 6A (n = 10, 4%). The most frequently identified non-vaccine serotypes were 23B (n = 29, 11%), 21 (n = 12, 5%), and 16F (n = 11, 4%). Only three (1%) pneumococcal isolates were resistant to amoxicillin; however, we observed an increasing prevalence of penicillin resistance using the meningitis breakpoint (2016: 41%, 2019: 71%; Cochran-Armitage test for trend, p = 0.0003) and non-susceptibility to trimethoprim-sulfamethoxazole (2016: 55%, 2019: 79%; p = 0.04). Three (1%) isolates were multi-drug resistant. CONCLUSIONS: PCV-13 serotypes accounted for a substantial proportion of isolates colonizing infants in Botswana during a four-year period starting four years after vaccine introduction. A low prevalence of amoxicillin resistance supports its continued use as the first-line agent for non-meningeal pneumococcal infections. The observed increase in penicillin resistance at the meningitis breakpoint and the low prevalence of resistance to ceftriaxone supports use of third-generation cephalosporins for empirical treatment of suspected bacterial meningitis.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Botswana/epidemiology , Infant , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/drug therapy , Pneumococcal Vaccines/immunology , Female , Anti-Bacterial Agents/pharmacology , Male , Drug Resistance, Bacterial , Serotyping , Nasopharynx/microbiology , Prevalence
17.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38787376

ABSTRACT

Lyme disease (LD), caused by spirochete bacteria of the genus Borrelia burgdorferi sensu lato, remains the most common vector-borne disease in the northern hemisphere. Borrelia outer surface protein A (OspA) is an integral surface protein expressed during the tick cycle, and a validated vaccine target. There are at least 20 recognized Borrelia genospecies, that vary in OspA serotype. This study presents a new in silico sequence-based method for OspA typing using next-generation sequence data. Using a compiled database of over 400 Borrelia genomes encompassing the 4 most common disease-causing genospecies, we characterized OspA diversity in a manner that can accommodate existing and new OspA types and then defined boundaries for classification and assignment of OspA types based on the sequence similarity. To accommodate potential novel OspA types, we have developed a new nomenclature: OspA in silico type (IST). Beyond the ISTs that corresponded to existing OspA serotypes 1-8, we identified nine additional ISTs that cover new OspA variants in B. bavariensis (IST9-10), B. garinii (IST11-12), and other Borrelia genospecies (IST13-17). The IST typing scheme and associated OspA variants are available as part of the PubMLST Borrelia spp. database. Compared to traditional OspA serotyping methods, this new computational pipeline provides a more comprehensive and broadly applicable approach for characterization of OspA type and Borrelia genospecies to support vaccine development.


Subject(s)
Antigens, Surface , Bacterial Outer Membrane Proteins , Lipoproteins , Lyme Disease , Bacterial Outer Membrane Proteins/genetics , Lyme Disease/microbiology , Lipoproteins/genetics , Antigens, Surface/genetics , Borrelia burgdorferi/genetics , Borrelia burgdorferi/classification , Computer Simulation , Humans , Genome, Bacterial , Borrelia burgdorferi Group/genetics , Borrelia burgdorferi Group/classification , High-Throughput Nucleotide Sequencing/methods , Serogroup , Phylogeny , Bacterial Vaccines
18.
Mol Genet Genomics ; 299(1): 61, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806731

ABSTRACT

Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Bacterial , Salmonella enterica , Brazil , Salmonella enterica/genetics , Salmonella enterica/classification , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Bacterial/genetics , Humans , Phylogeny , Multilocus Sequence Typing , Animals , CRISPR-Cas Systems/genetics , Serogroup
19.
Sci Transl Med ; 16(749): eadn2199, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809964

ABSTRACT

Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.


Subject(s)
Dengue Virus , Dengue , Serogroup , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Child , Female , Male , Nicaragua/epidemiology , Child, Preschool , Risk Factors , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cohort Studies
20.
PLoS Negl Trop Dis ; 18(5): e0011292, 2024 May.
Article in English | MEDLINE | ID: mdl-38758957

ABSTRACT

BACKGROUND: Leptospirosis is a zoonosis caused by pathogenic species of bacteria belonging to the genus Leptospira. Most studies infer the epidemiological patterns of a single serogroup or aggregate all serogroups to estimate overall seropositivity, thus not exploring the risks of exposure to distinct serogroups. The present study aims to delineate the demographic, socioeconomic and environmental factors associated with seropositivity of Leptospira serogroup Icterohaemorraghiae and serogroup Cynopteri in an urban high transmission setting for leptospirosis in Brazil. METHODS/PRINCIPAL FINDINGS: We performed a cross-sectional serological study in five informal urban communities in the city of Salvador, Brazil. During the years 2018, 2020 2021, we recruited 2.808 residents and collected blood samples for serological analysis using microagglutination assays. We used a fixed-effect multinomial logistic regression model to identify risk factors associated with seropositivity for each serogroup. Seropositivity to Cynopteri increased with each year of age (OR 1.03; 95% CI 1.01-1.06) and was higher in those living in houses with unplastered walls (exposed brick) (OR 1.68; 95% CI 1.09-2.59) and where cats were present near the household (OR 2.00; 95% CI 1.03-3.88). Seropositivity to Icterohaemorrhagiae also increased with each year of age (OR 1.02; 95% CI 1.01-1.03) and was higher in males (OR 1.51; 95% CI 1.09-2.10), in those with work-related exposures (OR 1.71; 95% CI 1.10-2.66) or who had contact with sewage (OR 1.42; 95% CI 1.00-2.03). Spatial analysis showed differences in distribution of seropositivity to serogroups Icterohaemorrhagiae and Cynopteri within the five districts where study communities were situated. CONCLUSIONS/SIGNIFICANCE: Our data suggest distinct epidemiological patterns associated with the Icterohaemorrhagiae and Cynopteri serogroups in the urban environment at high risk for leptospirosis and with differences in spatial niches. We emphasize the need for studies that accurately identify the different pathogenic serogroups that circulate and infect residents of low-income areas.


Subject(s)
Leptospira interrogans , Leptospira , Leptospirosis , Serogroup , Leptospirosis/epidemiology , Leptospirosis/microbiology , Leptospirosis/transmission , Brazil/epidemiology , Humans , Male , Adult , Female , Cross-Sectional Studies , Middle Aged , Leptospira/classification , Leptospira/immunology , Leptospira/isolation & purification , Young Adult , Adolescent , Leptospira interrogans/immunology , Leptospira interrogans/classification , Leptospira interrogans/isolation & purification , Risk Factors , Seroepidemiologic Studies , Urban Population , Antibodies, Bacterial/blood , Animals , Child , Aged
SELECTION OF CITATIONS
SEARCH DETAIL