Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 713
Filter
1.
J Oleo Sci ; 73(10): 1267-1276, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39313399

ABSTRACT

The roasting process of sesame oil is expected to alter its internal composition and stability under oxidation condition. Presumably, the effect of roasting may differ with oxidation conditions (i.e., thermal and photo-oxidation), but such studies have not been undertaken. To further evaluate this notion, several type of sesame oils (raw and refined as unroasted oil, and roasted oil) and rapeseed oils as comparison were subjected to thermal oxidation (120℃) and photo-oxidation (50,000 lx) for 5 and 10 hours. The result revealed that the roasting sesame oil exhibited good stability under thermal oxidation, possibly due to the change on antioxidant agents such as sesamol and Maillard products during the roasting process. In contrast, the refined sesame oil (unroasted) demonstrated high stability under photo-oxidation, indicating that the refining process has a more significant impact on the oxidative stability in sesame oil compared to the alterations in its components caused by the roasting process. Taken together, this study is the first to show that the roasting and refining processes of sesame oil alter its internal composition and show different variations in sesame oils' oxidative stability under thermal and photo-oxidation, which holds significance considering its global consumption.


Subject(s)
Antioxidants , Hot Temperature , Oxidation-Reduction , Sesame Oil , Sesame Oil/chemistry , Antioxidants/chemistry , Phenols/analysis , Phenols/chemistry , Food Handling/methods , Rapeseed Oil/chemistry , Photochemical Processes , Time Factors , Maillard Reaction , Benzodioxoles
2.
J Indian Soc Pedod Prev Dent ; 42(3): 235-239, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39250208

ABSTRACT

INTRODUCTION: Fixed orthodontic appliances create areas of plaque stagnation leading to an increase in the volume, structure, and composition of plaque. This increases the chances of decalcification and white spot lesions. Oil pulling, an ancient practice involving swishing oil in the mouth, has demonstrated a significant reduction in plaque scores after 45 days, and a reduction in salivary Streptococcus mutans concentration in few studies done in nonorthodontic subjects. The aim was to compare the concentration of S. mutans in plaque around orthodontic brackets in patients using oil pulling with sesame oil and those on routine oral hygiene. SUBJECTS AND METHODS: Twenty subjects requiring fixed orthodontic treatment were divided into two equal groups: Group A-Oil pulling and Group B-Control. All subjects were instructed to follow common oral hygiene methods and in addition, Group A was instructed to perform oil pulling for 30 days starting 1 month after placement of fixed appliances. Plaque specimens were collected from labial surfaces of maxillary lateral incisors and quantification of S. mutans was done using real-time polymerase chain reaction. Mean and standard deviations for descriptive statistics, paired, and unpaired sample t-tests were analyzed. RESULTS: Comparison of S. mutans concentration between T1 and T2 demonstrated a significant difference in both control and study groups. The experimental group showed significantly lesser S. mutans concentration compared to the control group. CONCLUSIONS: Oil-pulling therapy with sesame oil resulted in a statistically significant reduction in the concentration of S. mutans in the plaque around orthodontic brackets.


Subject(s)
Dental Plaque , Orthodontic Brackets , Sesame Oil , Streptococcus mutans , Humans , Orthodontic Brackets/microbiology , Orthodontic Brackets/adverse effects , Streptococcus mutans/drug effects , Streptococcus mutans/isolation & purification , Dental Plaque/microbiology , Prospective Studies , Male , Female , Adolescent , Oral Hygiene
3.
Anal Methods ; 16(36): 6210-6219, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39193637

ABSTRACT

Exploring and accurately detecting new adulteration markers in sesame oil is an important measure for sesame oil adulteration monitoring. In this study, two endogenous flavors sulfurol and γ-nonalactone which can be used as potential adulteration markers were first discovered in sesame oil and accurately quantified. First, the two endogenous flavors were discovered using gas chromatography-mass spectrometry (GC-MS), and their structures were confirmed by comparing the mass spectrograms with the NIST spectral library. Then the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using direct methanol extraction pretreatment and vanillin-D3 as an internal standard was developed for rapid quantitation and application. The method was successfully validated with recoveries ranging from 88.5% to 102.2% and relative standard deviations between 2.6% and 10.5% (n = 6). The combined method of GC-MS and LC-MS/MS was indicated to be efficient and highly sensitive for detection of sulfurol and γ-nonalactone in edible oil. Subsequently, 31 sesame oils from the market were detected, revealing that 31 samples contained the identified flavors within a relatively consistent range. However, the concentration of these flavor substances in one sample was abnormally high, indicating that there was a potential risk of adulteration. Therefore, the developed method shows good potential for quality evaluation and adulteration screening of sesame oil.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Sesame Oil , Tandem Mass Spectrometry , Sesame Oil/chemistry , Sesame Oil/analysis , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Food Contamination/analysis , Chromatography, Liquid/methods , Flavoring Agents/analysis , Flavoring Agents/chemistry , Lactones/analysis , Lactones/chemistry
4.
Ultrason Sonochem ; 110: 107042, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39182341

ABSTRACT

In this research, yarrow phenolic-rich extract was produced using pulsed electric field (PEF)-ultrasound assisted technology. The highest extraction efficiency (5.99 %) was obtained at 6.25 kV/cm of PEF and the sonication time of 60 min. As the PEF intensity and sonication time rose, the total phenolic content (TPC) and ferric-reducing power (RP) of the extracts increased. The PEF intensity of 2.70 kV/cm and sonication time of 45.83 min were the optimum extraction conditions resulting in the highest extraction efficiency, TPC, and RP. Then, this optimum extract was loaded into nanoliposomes. At higher extract levels, the encapsulation efficiency lowered, while the particle size, polydispersity index (PDI), and zeta potential of the nanoliposomal samples elevated. The results of Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) confirmed the successful encapsulation of yarrow extract into nanoliposomal carriers; the sample containing the extract had the highest enthalpy (3600 J/g) and nanoliposomes loaded with yarrow antioxidant extract (0.11 mL/mg) was the optimum sample. Finally, the sesame oil containing 500 ppm free and nanoliposome extract, as well as the sample with 200 ppm BHT were evaluated for oxidative stability. The highest oxidation stability (14.21 h) belonged to the oil containing nanoliposomal yarrow phenolic extract.


Subject(s)
Liposomes , Oxidation-Reduction , Phenols , Sesame Oil , Liposomes/chemistry , Phenols/chemistry , Phenols/isolation & purification , Sesame Oil/chemistry , Electricity , Ultrasonic Waves , Sonication/methods , Chemical Fractionation/methods , Particle Size
5.
Fitoterapia ; 177: 106128, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025316

ABSTRACT

The long-term stability in real and accelerated time for galenic oils based on full-spectrum cannabis has been studied, using sesame oil as a dilutant. Sesame oil is one of the most used vehicles in the cannabis pharmaceutical industry due to the costs and increased oral bioavailability of cannabinoids. The real-time assays conducted at 25 °C over twelve months demonstrated high stability and showed no significant changes in the composition of cannabinoids, total polyphenols, flavonoids, or antioxidant capacity. In these studies, it was observed that there was no development of microorganisms compromising the stability of the oils over a year. The three oil varieties exhibited a high bactericidal capacity against E. coli, S. aureus, and P. larvae.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Cannabis , Escherichia coli , Plant Oils , Cannabis/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Drug Stability , Sesame Oil/chemistry , Sesame Oil/pharmacology , Cannabinoids/pharmacology , Cannabinoids/chemistry , Larva/drug effects , Polyphenols/pharmacology , Polyphenols/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
6.
Cell Biochem Biophys ; 82(2): 1477-1488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898335

ABSTRACT

BACKGROUND: Sesame oil and sunflower oil are popular cooking oils in southern India. Deep-frying is a frequent method of food preparation. Deep-frying at high temperatures has been linked with several disorders, including cancer, diabetes, and unknown metabolic problems. There have been no long-term investigations on the influence of deep-fried oils on PUFA metabolism and pathogenesis. As a result, the current study aimed to explore the effect of deep-fried frying oil on Wistar rats by continuous treatment. Furthermore, the pathophysiology of MSG-induced neurotoxicity in Wistar rats was investigated. METHODS: Wistar rats weighing 200-260 g were used in this study. Female rats were divided into five groups fed with (1) standard chow (control group), (2) unheated sesame oil (UHSO) along with standard chow, and (3) reheated sesame oil (RHSO) along with standard chow, (4) unheated sunflower oil (UHSFO) along with standard chow, and (5) reheated sunflower oil (RHSFO) along with standard chow and continued up to F1 generation. Furthermore, F1 male rats were treated with MSG of 2 g/kg body weight for 10 alternative days and were sacrificed for major tissues. RESULTS: We found that rats treated with RHSO and RHSFO showed increased body weight. Deep-fried oil-fed rats (RHSO and RHSFO) showed a significant increase in total cholesterol- 100 mg/dl, LDL- 23 mg/dl, & TAG-100 mg/dl, when compared to unheated oil rats. Liver function tests revealed that AST and ALT levels were significantly elevated in RHSO and RHSFO when compared to unheated oils and the control group. Inflammatory markers revealed that Hs-CRP (0.35 mg/dl) and LDH levels (6000 U/L) were significantly elevated in RHSO and RHSFO when compared to the unheated oils and control group. RT-PCR results showed significant elevation in the antioxidant genes SOD (twofold) and GPX (3-fold) when compared to UHSO and UHSFO groups. Liver and colon histology showed significant damage in the cell structure of RHSO and RHSFO-treated rats. Further, rats treated with unheated oils and MSG showed statistically significantly higher mRNA expression of neuroplasticity genes CREB, BDNF and reduced NMDA levels (UHSO, UHSFO) when compared to reheated oil groups (RHSO & RHSFO). Proinflammatory marker TNF-α expression was significantly elevated in RHSFO-treated rats when compared to control. Brain histology showed focal damage in glial cell degeneration in rats treated with RHSO and RHSFO when compared to other groups. CONCLUSION: The results from the present study proved that continuous supplementation deep-fried reheated oil consumption increased serum TGL and oxidative stress markers. Impaired liver metabolism and the involvement of the gut-liver-brain axis increased the risk of neurodegeneration.


Subject(s)
Colon , Oxidative Stress , Rats, Wistar , Sesame Oil , Sunflower Oil , Animals , Oxidative Stress/drug effects , Rats , Male , Sesame Oil/pharmacology , Female , Colon/drug effects , Colon/pathology , Colon/metabolism , Cooking , Dietary Supplements
7.
Food Chem ; 457: 140079, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901343

ABSTRACT

The unknown effect of sesame lignans on aroma formation in sesame oil via the Maillard reaction (MR) and lipid oxidation was investigated. Sesamin, sesamolin, or sesamol was added to 3 models: lysine+glucose (MR), cold-pressed sesame oil (SO), and MR + SO, and were heated at 120 °C for 60 min. All three lignans suppressed SO oxidation while increasing DPPH scavenging ability (p < 0.05). Lignans increased depletions of lysine and glucose and MR browning (p < 0.05). Lignans reduced most aroma-active pyrazines, aldehydes, ketones, alcohols, and esters (p < 0.05). Sesamol and sesamolin increased perceptions of the preferable aromas of nutty, roasted sesame, and popcorn while reducing the undesirable green and rancid aromas (p < 0.05). Sesamol demonstrated a stronger effect on lipid oxidation, MR browning, aroma formation, and sensory perception than sesamin and sesamolin. This study suggests that sesame lignans can modulate aroma formation and sensory perception of sesame oil by interacting with the MR and lipid oxidation pathways.


Subject(s)
Lignans , Maillard Reaction , Odorants , Oxidation-Reduction , Sesame Oil , Sesamum , Lignans/chemistry , Sesame Oil/chemistry , Sesamum/chemistry , Odorants/analysis , Humans , Phenols/chemistry , Dioxoles/chemistry , Benzodioxoles/chemistry
8.
Int Wound J ; 21(6): e14907, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822706

ABSTRACT

Recent randomised controlled trials (RCTs) have investigated the analgesic activity of sesame oil among patients with limb trauma; nevertheless, their findings are inconsistent. Hence, this review aimed to clarify the impact of topical administration of sesame oil on acute pain of adult outpatients with minor limb trauma. The online databases (e.g., Scopus, PubMed, Web of Science) were searched up to 31 January 2024. The RCTs were included if they compared the effect of applying standard treatments plus topical sesame oil to administering standard treatments alone or with a placebo/sham treatment. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) and the Cochrane Collaboration's risk of bias tool were applied to address the evidence quality and the study's methodological rigour, respectively. Four RCTs had the inclusion criteria, and their findings were pooled in a meta-analysis employing a random-effects approach. According to the pooled analysis, the reduction in mean change of the pain score from baseline to the second/third intervention day was significantly higher in favour of clients who received standard care plus daily massage of the trauma site with sesame oil compared to those who received a control condition (weighted mean difference: -1.10; 95% confidence interval [-1.62, -0.57]; p < 0.001). However, the evidence quality was moderate, and only two studies had good methodological rigour. Hence, more high-quality studies are needed to make a solid evidence-based conclusion about the favourable consequence of topical sesame oil on alleviating acute traumatic limb pain.


Subject(s)
Administration, Topical , Randomized Controlled Trials as Topic , Sesame Oil , Humans , Sesame Oil/therapeutic use , Sesame Oil/administration & dosage , Pain Management/methods , Pain Management/standards , Adult , Female , Male , Analgesics/administration & dosage , Analgesics/therapeutic use , Pain Measurement/methods , Middle Aged , Extremities/injuries
9.
AAPS PharmSciTech ; 25(5): 136, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862810

ABSTRACT

Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.


Subject(s)
Cannabidiol , Chemistry, Pharmaceutical , Drug Delivery Systems , Emulsions , Solubility , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Emulsions/chemistry , Drug Delivery Systems/methods , Administration, Oral , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology/methods , Drug Liberation , Particle Size , Biological Availability , Drug Compounding/methods , Polyethylene Glycols/chemistry , Drug Stability , Sesame Oil/chemistry , Polyvinyls
10.
Prostaglandins Other Lipid Mediat ; 174: 106862, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38936541

ABSTRACT

Atherosclerosis is a chronic inflammatory disease forming plaques in medium and large-sized arteries. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) is an extracellular-matrix remodelling enzyme involved in the degradation of versican in the arterial wall. Recent reports indicated that increased expression of ADAMTS-4 is associated with plaque progression and vulnerability. Bioactive components of dietary oil, like sesame oil, are reported to have anti-inflammatory and antioxidant properties. Here, we studied the effect of sesame oil on regulating ADAMTS-4 in high-fat diet-induced atherosclerosis rat model. Our results indicated that sesame oil supplementation improved the anti-inflammatory and anti-oxidative status of the body. It also reduced atherosclerotic plaque formation in high-fat diet-fed rats. Our results showed that the sesame oil supplementation significantly down-regulated the expression of ADAMTS-4 in serum and aortic samples. The versican, the large proteoglycan substrate of ADAMTS-4 in the aorta, was downregulated to normal control level on sesame oil supplementation. This study, for the first time, reveals that sesame oil could down-regulate the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis, imparting a new therapeutic potential for sesame oil in the management of atherosclerosis.


Subject(s)
ADAMTS4 Protein , Atherosclerosis , Diet, High-Fat , Down-Regulation , Sesame Oil , Animals , Sesame Oil/pharmacology , ADAMTS4 Protein/metabolism , ADAMTS4 Protein/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Diet, High-Fat/adverse effects , Down-Regulation/drug effects , Rats , Male , Versicans/metabolism , Versicans/genetics , Rats, Sprague-Dawley , ADAM Proteins/metabolism , ADAM Proteins/genetics , Aorta/metabolism , Aorta/drug effects , Aorta/pathology
11.
Food Res Int ; 186: 114397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729739

ABSTRACT

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Subject(s)
Glucose , Lysine , Maillard Reaction , Odorants , Oxidation-Reduction , Sesame Oil , Sesame Oil/chemistry , Glucose/chemistry , Odorants/analysis , Lysine/chemistry , Phenols/chemistry , Benzodioxoles
12.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729483

ABSTRACT

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.


Subject(s)
Charcoal , Lignin , Sesame Oil , Lignin/chemistry , Charcoal/chemistry , Adsorption , Sesame Oil/chemistry , Benzo(a)pyrene/chemistry , Kinetics
13.
Anim Reprod Sci ; 266: 107500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820784

ABSTRACT

This study aimed to evaluate the effects of replacing egg yolk extender with sesame oil on the quality of sperm in goats following incubation at 37°C, chilling at 4°C, and freezing. Semen samples were collected from four intact male goats. The individual semen sample was divided into six groups consisting of a control group and five treatment groups with different egg yolk-to-sesame oil ratios. Seminal plasma was removed, and the sperm pellet was diluted with experimental semen extenders. The control group contained an extender of 10 % egg yolk (SO0), and the experimental extenders were composed of 8.75 % egg yolk and 1.25 % sesame oil (SO1.25); 7.5 % egg yolk and 2.5 % sesame oil (SO2.5); 5 % egg yolk and 5 % sesame oil (SO5); 2.5 % egg yolk and 7.5 % sesame oil (SO7.5); and 10 % sesame oil (SO10). Each group of semen was divided into three groups, incubated at 37°C for 1 h, chilled at 4°C for 4 h, or frozen for 24 h. Five replicates were performed. Sperm quality was evaluated, including motility, viability, and functional membrane integrity. The SO1.25 group achieved the highest sperm quality rate among the treatment groups, and the extender did not have a negative effect compared to the control. However, the total replacement of egg yolk with sesame oil in an extender resulted in the lowest sperm quality. In conclusion, the ratios of egg yolk and sesame oil that were acceptable for goat semen cryopreservation were 8.75 % and 1.25 %, respectively.


Subject(s)
Cryopreservation , Egg Yolk , Goats , Semen Analysis , Semen Preservation , Sesame Oil , Animals , Goats/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Egg Yolk/chemistry , Male , Sesame Oil/pharmacology , Sesame Oil/chemistry , Semen Analysis/veterinary , Cryopreservation/veterinary , Cryopreservation/methods , Sperm Motility/drug effects , Cryoprotective Agents/pharmacology , Spermatozoa/drug effects , Spermatozoa/physiology
14.
Support Care Cancer ; 32(6): 379, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789656

ABSTRACT

PURPOSE: The purpose of this phase III randomized double-blinded controlled trial was to investigate the efficacy of a rose geranium in sesame oil (RG) nasal spray compared with an isotonic saline (IS) nasal spray for alleviating nasal vestibulitis symptoms among patients undergoing chemotherapy. METHODS: Patients undergoing active chemotherapy who reported associated nasal symptoms were randomized 1:1 to receive RG or IS, administered twice daily for 2 weeks. Consenting participants completed nasal symptom questionnaires at baseline and then weekly while on treatment. The proportion of patients experiencing improvements in their nasal symptoms 2 weeks after initiating the nasal spray, using a six-point global impression of change score, was estimated within and between each randomized arm, and compared between arms, using Fisher's exact test. The estimated odds ratio was determined (95% confidence interval). RESULTS: One hundred and six patients consented to this study; 43 participants in the RG arm and 41 in the IS arm were evaluable for the primary endpoint. Participants had a mean age of 57.8 years (SD 13.9). Demographic characteristics and baseline nasal symptoms were similar between arms. Of the evaluable participants who received RG, 67.4% reported improved nasal symptoms, compared with 36.6% of the participants who received IS (P = 0.009). Adverse events were sparse and did not differ between arms. CONCLUSION: Rose geranium in sesame oil significantly improves nasal vestibulitis symptoms among patients undergoing chemotherapy. TRIAL REGISTRATION: NCT04620369.


Subject(s)
Nasal Sprays , Sesame Oil , Humans , Middle Aged , Female , Male , Double-Blind Method , Aged , Adult , Sesame Oil/administration & dosage , Sesame Oil/therapeutic use , Surveys and Questionnaires , Geranium , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Treatment Outcome
15.
Food Chem ; 452: 139555, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728896

ABSTRACT

This study presents the employment of Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection and principal component analysis (PCA) to analyze the stability of a Pickering emulsion stabilized by carboxylated-cellulose nanocrystal (cCNC) comprising sesame oil phases with or without sesamolin. FTIR measurements identified an intermolecular hydrogen bond between the ester group of the triglyceride and the carboxyl group of the cCNC to create the emulsion droplet. The spectral bands from the hydroxyl group vibration (3700-3050 cm-1), carbonyl (1744 cm-1), CO groups of the ester triglyceride and cCNC (1160-998 cm-1) markedly discriminated between stabilized and destabilized emulsions. The PCA of FTIR spectra detected the change of molecular interaction during storage according to creaming, aggregation, and coalescence and changes in physicochemical parameters such as droplet size, refractive index, and zeta potential. Hence, PCA enabled the observation of the destabilization of emulsion in real-time.


Subject(s)
Cellulose , Emulsions , Sesame Oil , Emulsions/chemistry , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared , Sesame Oil/chemistry , Chemometrics , Particle Size , Dioxoles/chemistry , Dioxoles/analysis
16.
BMC Microbiol ; 24(1): 104, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539071

ABSTRACT

BACKGROUND: While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can produce toxins that are harmful to humans. RESULTS: In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics from homogenised food waste - sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Additionally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further biomedical applications. CONCLUSIONS: Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Furthermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 has a favourable preclinical safety profile, without significant threats to human health. Collectively, these findings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical development.


Subject(s)
Bacillus , Probiotics , Refuse Disposal , Humans , Bacillus subtilis/genetics , Sesame Oil , Caco-2 Cells , Prospective Studies , Probiotics/pharmacology
17.
Behav Brain Res ; 465: 114969, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38548024

ABSTRACT

Chronic exposure to manganese (Mn) results in motor dysfunction, biochemical and pathological alterations in the brain. Oxidative stress, inflammation, and dysfunction of dopaminergic and GABAergic systems stimulate activating transcription factor-6 (ATF-6) and protein kinase RNA-like ER kinase (PERK) leading to apoptosis. This study aimed to investigate the protective effect of sesame oil (SO) against Mn-induced neurotoxicity. Rats received 25 mg/kg MnCl2 and were concomitantly treated with 2.5, 5, or 8 ml/kg of SO for 5 weeks. Mn-induced motor dysfunction was indicated by significant decreases in the time taken by rats to fall during the rotarod test and in the number of movements observed during the open field test. Also, Mn resulted in neuronal degeneration as observed by histological staining. The striatal levels of lipid peroxides and reduced glutathione (oxidative stress markers), interleukin-6 and tumor necrosis factor-α (inflammatory markers) were significantly elevated. Mn significantly reduced the levels of dopamine and Bcl-2, while GABA, PERK, ATF-6, Bax, and caspase-3 were increased. Interestingly, all SO doses, especially at 8 ml/kg, significantly improved locomotor activity, biochemical deviations and reduced neuronal degeneration. In conclusion, SO may provide potential therapeutic benefits in enhancing motor performance and promoting neuronal survival in individuals highly exposed to Mn.


Subject(s)
Manganese Poisoning , Parkinson Disease , Rats , Animals , Manganese/toxicity , Sesame Oil/pharmacology , Parkinson Disease/drug therapy , Oxidative Stress , Manganese Poisoning/drug therapy , Manganese Poisoning/metabolism , Manganese Poisoning/pathology
18.
Sci Rep ; 14(1): 6409, 2024 03 17.
Article in English | MEDLINE | ID: mdl-38494538

ABSTRACT

Dysregulation of key transcription factors involved in hepatic energy metabolism, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and liver X receptor alpha (LXRα), has been observed in T2DM. The present study aims to investigate the effects of aerobic training and vitamin D supplementation on liver enzyme levels and the levels of PGC-1α and LXRα proteins in hepatocytes, in a rat model of T2DM. The study involved 56 male Wistar rats, divided into two groups: one was non-diabetic and acted as a control group (n = 8), and the other had induced diabetes (n = 48). The diabetic rats were then split into six subgroups: two groups received high or moderate doses of vitamin D and aerobic training (D + AT + HD and D + AT + MD); two groups received high or moderate doses of vitamin D alone (D + HD and D + MD); one group underwent aerobic training with vehicle (sesame oil; D + AT + oil), and one group was a diabetic control receiving only sesame oil (oil-receiving). The D + AT + HD and D + HD groups received 10,000 IU of vitamin D, while the D + AT + MD and D + MD groups received 5000 IU of vitamin D once a week by injection. The D + AT + oil group and the sham group received sesame oil. After eight weeks of treatment, body weight, BMI, food intake, serum insulin, glucose, 25-hydroxyvitamin D, ALT, AST, and visceral fat were measured. The levels of PGC-1α and LXRα proteins in the liver was assessed by western blotting. Statistical analysis was performed using the paired t-test, one-way analysis of variance (ANOVA), and the Tukey post hoc test at a significance level of P < 0.05. Body weight, food intake, and BMI decreased significantly in the D + AT + HD, D + AT + MD, D + AT + oil, D + HD, and D + MD groups with the highest reduction being observed in body weight and BMI in the D + AT + HD group. The D + AT + HD group exhibited the lowest levels of insulin, glucose, and HOMA-IR while the D + C group exhibited the highest levels among the diabetic groups. The D + AT + HD and D + AT + MD groups had lower levels of ALT and AST enzymes compared to the other groups with no significant difference between D + AT + HD and D + AT + MD. D + AT + HD (p = 0.001), D + AT + MD (p = 0.001), D + HD (p = 0.023), D + MD (p = 0.029), and D + AT + oil (p = 0.011) upregulated LXRα compared to D + C. Among these groups, D + AT + HD exhibited a more profound upregulation of LXRα than D + AT + MD, D + AT + oil, D + HD, and D + MD (p = 0.005; p = 0.002, p = 0.001, and p = 0.001, respectively). Similarly, D + AT + HD showed a more notable upregulation of PGC-1α compared to D + AT + oil, D + HD, and D + MD (p = 0.002; p = 0.001, and p = 0.001, respectively). Pearson correlation tests showed significant and negative correlations between serum 25-hydroxyvitamin levels and both visceral fat (r = - 0.365; p = 0.005) and HOMA-IR (r = - 0.118; p = 0.009); while positive and significant correlations between the liver-to-bodyweight ratio with both ALT and AST enzymes and also between QUICKI levels with LXRα (r = 0.578; p = 0.001) and PGC-1α (r = 0.628; p = 0.001). Combined administration of aerobic training and vitamin D supplementation potentially improves liver enzymes in type-2 diabetic rats that were simultaneous with upregulating the levels of PGC-1α and LXRα proteins in hepatocytes. These improvements were more significant when combining exercise with high-dose vitamin D supplementation. This study highlights the potential of this combination therapy as a new diabetes treatment strategy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Male , Rats , Animals , Liver X Receptors/genetics , Diabetes Mellitus, Experimental/therapy , Sesame Oil , Rats, Wistar , Vitamin D/pharmacology , Vitamins , Insulin , Liver , Body Weight , Glucose , Diabetes Mellitus, Type 2/drug therapy
19.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Article in English | MEDLINE | ID: mdl-38552695

ABSTRACT

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Subject(s)
Benzo(a)pyrene , Charcoal , Lignin , Sesame Oil , Sesamum , Charcoal/chemistry , Lignin/chemistry , Benzo(a)pyrene/chemistry , Adsorption , Sesame Oil/chemistry , Sesamum/chemistry , Zinc Compounds/chemistry , Chlorides/chemistry
20.
Food Chem ; 444: 138527, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38309080

ABSTRACT

Traditional pressing is of low efficiency (< 80 %). A highly efficient sesame oil extraction technique was discovered via micro-hydration of sesame paste (φ = ∼ 75 %) and then agitation with a yield of âˆ¼ 95 %. However, the extraction mechanism is still unknown. To uncover this, microscopic imaging was used, and it found that agitation progressively increased the droplet size of micro-hydrated paste (φ = 74.5 %) from an initial size of < 4 µm. As agitated for 20 min, almost 85 % (v/v) of oil was over 20 µm, which was linearly and positively correlated (R2 > 0.96) with oil yield. Increase in droplet size was due to droplet compression, film rupture, and droplet coalescence. The coalescence frequency based on agitation time followed an exponent curve (R2 > 0.97). This coalescence might be related to the decreased water relaxation time and increased paste viscosity. This study, for the first time, found the oil droplet coalescence in hydrated sesame paste (φ = 74.5 %) during agitation, thereby successfully extracting oil at room temperature. The findings of this work can be a starting point for research on micro-hydration extraction for oil-containing materials from a packing density of oil droplets point view.


Subject(s)
Sesamum , Sesame Oil , Chemical Phenomena , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL