Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.675
Filter
1.
Microb Pathog ; 192: 106724, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834135

ABSTRACT

Staphylococcus haemolyticus is a cause of bovine mastitis, leading to inflammation in the mammary gland. This bacterial infection adversely affects animal health, reducing milk quality and yield. Its emergence has been widely reported, representing a significant economic loss for dairy farms. Interestingly, S. haemolyticus exhibits higher levels of antimicrobial resistance than other coagulase-negative Staphylococci. In this study, we synthesized silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Solanum lasiocarpum root extract and evaluated their antibacterial and antibiofilm activities against S. haemolyticus. The formation of the Ag/AgCl-NPs was confirmed using UV-visible spectroscopy, which revealed maximum absorption at 419 nm. X-ray diffraction (XRD) analysis demonstrated the crystalline nature of the Ag/AgCl-NPs, exhibiting a face-centered cubic lattice. Fourier transform infrared (FT-IR) spectroscopy elucidated the functional groups potentially involved in the Ag/AgCl-NPs synthesis. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the Ag/AgCl-NPs was 10 nm. Antimicrobial activity results indicated that the minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) of the Ag/AgCl-NPs treatment were 7.82-15.63 µg/mL towards S. haemolyticus. Morphological changes in bacterial cells treated with the Ag/AgCl-NPs were observed under scanning electron microscopy (SEM). The Ag/AgCl-NPs reduced both the biomass of biofilm formation and preformed biofilm by approximately 20.24-94.66 % and 13.67-88.48 %. Bacterial viability within biofilm formation and preformed biofilm was reduced by approximately 21.56-77.54 % and 18.9-71.48 %, respectively. This study provides evidence of the potential of the synthesized Ag/AgCl-NPs as an antibacterial and antibiofilm agent against S. haemolyticus.


Subject(s)
Anti-Bacterial Agents , Biofilms , Mastitis, Bovine , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Extracts , Plant Roots , Silver Compounds , Silver , Solanum , Staphylococcus haemolyticus , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/pharmacology , Silver/chemistry , Biofilms/drug effects , Silver Compounds/pharmacology , Silver Compounds/chemistry , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Plant Roots/chemistry , Metal Nanoparticles/chemistry , Staphylococcus haemolyticus/drug effects , Female , Solanum/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Microscopy, Electron, Transmission
2.
Sci Data ; 11(1): 577, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834611

ABSTRACT

Solanum pimpinellifolium, the closest wild relative of the domesticated tomato, has high potential for use in breeding programs aimed at developing multi-pathogen resistance and quality improvement. We generated a chromosome-level genome assembly of S. pimpinellifolium LA1589, with a size of 833 Mb and a contig N50 of 31 Mb. We anchored 98.80% of the contigs into 12 pseudo-chromosomes, and identified 74.47% of the sequences as repetitive sequences. The genome evaluation revealed BUSCO and LAI score of 98.3% and 14.49, respectively, indicating high quality of this assembly. A total of 41,449 protein-coding genes were predicted in the genome, of which 89.17% were functionally annotated. This high-quality genome assembly serves as a valuable resource for accelerating the biological discovery and molecular breeding of this important horticultural crop.


Subject(s)
Chromosomes, Plant , Genome, Plant , Solanum , Solanum/genetics , Molecular Sequence Annotation
3.
J Biotechnol ; 391: 81-91, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38825191

ABSTRACT

Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, ß-hydroxy ß-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.


Subject(s)
Biosynthetic Pathways , Solanum , Solanum/genetics , Solanum/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant/drug effects , Alkaloids/metabolism , Alkaloids/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Solanaceous Alkaloids/metabolism
4.
Pak J Pharm Sci ; 37(2(Special)): 463-473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822551

ABSTRACT

Solanum lyratum Thunb., a traditional Chinese herbal medicine, has a promising background. However, the anti-inflammatory effects of its component steroid alkaloid have not been explored. In this study, animal and cell experiments were performed to investigate the anti-inflammatory effects and mechanism of action of Solanum lyratum Thunb steroid alkaloid (SLTSA), in order to provide evidence for its potential utilization. SLTSA effectively inhibited ear swelling and acute abdominal inflammation of mice. We observed concentration-dependent inhibition of pro-inflammatory cytokines by SLTSA, as confirmed by the ELISA and RT-qPCR results. Flow cytometry, immunofluorescence and RT-qPCR analyses revealed that SLTSA suppressed TLR4 expression. Western blot results indicated that SLTSA inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway. Our study demonstrated that SLTSA possesses anti-inflammatory properties.


Subject(s)
Alkaloids , Anti-Inflammatory Agents , Signal Transduction , Solanum , Animals , Solanum/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Mice , Alkaloids/pharmacology , Alkaloids/isolation & purification , Signal Transduction/drug effects , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , RAW 264.7 Cells , Myeloid Differentiation Factor 88/metabolism , Male
5.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892245

ABSTRACT

Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Salt Tolerance , Solanum , Salt Tolerance/genetics , Solanum/genetics , Solanum/metabolism , Phenotype , Polymorphism, Single Nucleotide , Plant Breeding , Genetic Linkage , Genes, Plant
6.
Planta ; 260(1): 15, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829528

ABSTRACT

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Subject(s)
Flowers , Odorants , Pollen , Pollination , Solanum , Solanum/physiology , Solanum/chemistry , Pollination/physiology , Flowers/physiology , Flowers/chemistry , Pollen/physiology , Pollen/chemistry , Odorants/analysis , Animals , Bees/physiology
7.
New Phytol ; 243(2): 765-780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798267

ABSTRACT

Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.


Subject(s)
Biological Evolution , Cell Nucleus , Color , Fruit , Phylogeny , Pigmentation , Solanum , Solanum/genetics , Fruit/genetics , Pigmentation/genetics , Cell Nucleus/genetics , Genes, Plant
8.
Phytochemistry ; 224: 114163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815883

ABSTRACT

Stereochemical investigations on the twigs and leaves of Solanum erianthum afforded five pairs of lignanamide enantiomers and a previously undescribed phenolic amide (3). Particularly, two pairs of previously undescribed lignanamide racemates (1a/1b-2a/2b) represent the first case of natural products that feature an unreported 5/5-fused N/O-biheterocyclic core. Their structures, including the absolute configurations, were determined unambiguously by using spectroscopic analyses and electronic circular dichroism calculations. A speculative biogenetic pathway for 1-3 was proposed. Interestingly, these lignanamides exhibited enantioselective antiplasmodial activities against drug-sensitive Plasmodium falciparum 3D7 strain and chloroquine-resistant Plasmodium falciparum Dd2 strain, pointing out that chirality plays an important role in drug development.


Subject(s)
Antimalarials , Plant Leaves , Plasmodium falciparum , Solanum , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/isolation & purification , Plant Leaves/chemistry , Solanum/chemistry , Stereoisomerism , Molecular Structure , Lignans/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Structure-Activity Relationship , Parasitic Sensitivity Tests
9.
Sci Data ; 11(1): 454, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704417

ABSTRACT

Potato is an important crop in the genus Solanum section Petota. Potatoes are susceptible to multiple abiotic and biotic stresses and have undergone constant improvement through breeding programs worldwide. Introgression of wild relatives from section Petota with potato is used as a strategy to enhance the diversity of potato germplasm. The current dataset contributes a phased genome assembly for diploid S. okadae, and short read sequences and de novo assemblies for the genomes of 16 additional wild diploid species in section Petota that were noted for stress resistance and were of interest to potato breeders. Genome sequence data for three additional genomes representing polyploid hybrids with cultivated potato, and an additional genome from non-tuberizing S. etuberosum, which is outside of section Petota, were also included. High quality short reads assemblies were achieved with genome sizes ranging from 575 to 795 Mbp and annotations were performed utilizing transcriptome sequence data. Genomes were compared for presence/absence of genes and phylogenetic analyses were carried out using plastome and nuclear sequences.


Subject(s)
Genome, Plant , Phylogeny , Solanum , Solanum/genetics , Solanum tuberosum/genetics , Hybridization, Genetic
10.
Toxicon ; 244: 107774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797266

ABSTRACT

Solanum glaucophyllum is a toxic plant with calcinogenic effect that causes enzootic calcinosis (EC) characterized by soft tissue metastatic mineralization mainly in cattle and rarely sheep, buffaloes, pigs, horses, and goats. We describe an outbreak of EC in a herd of 64 goats due to S. glaucophyllum consumption. Thirty-four goats were affected exhibiting hirsutism, stiffening, kyphosis and emaciation. Twelve goats died. Grossly, tissue mineralization was observed in the aorta and carotid arteries, lungs, and heart. Lesions were characterized by multiple rough white plaques, and hardened tissues with loss of elasticity. Microscopically, multisystemic mineralization was observed in aorta and carotid arteries, heart, lung, abomasum, intestine, spleen, lymph nodes, kidney, spleen, and meninges, characterized by extensive granular basophilic deposits of tunica media and/or intima of blood vessels; confirmed as calcium salt deposits with Von Kossa stain. We conclude that ingestion of S. glaucophyllum can cause EC in goats. Though EC is rare in goats under some conditions such as heavy drought and abundant S. glaucophyllum exposure disease can develop.


Subject(s)
Goat Diseases , Goats , Solanum , Animals , Goat Diseases/chemically induced , Plant Poisoning/veterinary , Calcinosis/veterinary , Calcinosis/chemically induced , Plants, Toxic
11.
BMC Plant Biol ; 24(1): 375, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714928

ABSTRACT

BACKGROUND: Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. RESULTS: The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. CONCLUSIONS: The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms.


Subject(s)
Disease Resistance , Genetic Variation , Plant Diseases , Potyvirus , Solanum tuberosum , Solanum , Potyvirus/physiology , Disease Resistance/genetics , Plant Diseases/virology , Plant Diseases/genetics , Solanum/genetics , Solanum/virology , Solanum tuberosum/genetics , Solanum tuberosum/virology , Genes, Plant , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism
12.
BMC Plant Biol ; 24(1): 361, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702620

ABSTRACT

BACKGROUND: Solanum muricatum is an emerging horticultural fruit crop with rich nutritional and antioxidant properties. Although the chromosome-scale genome of this species has been sequenced, its mitochondrial genome sequence has not been reported to date. RESULTS: PacBio HiFi sequencing was used to assemble the circular mitogenome of S. muricatum, which was 433,466 bp in length. In total, 38 protein-coding, 19 tRNA, and 3 rRNA genes were annotated. The reticulate mitochondrial conformations with multiple junctions were verified by polymerase chain reaction, and codon usage, sequence repeats, and gene migration from chloroplast to mitochondrial genome were determined. A collinearity analysis of eight Solanum mitogenomes revealed high structural variability. Overall, 585 RNA editing sites in protein coding genes were identified based on RNA-seq data. Among them, mttB was the most frequently edited (52 times), followed by ccmB (46 times). A phylogenetic analysis based on the S. muricatum mitogenome and those of 39 other taxa (including 25 Solanaceae species) revealed the evolutionary and taxonomic status of S. muricatum. CONCLUSIONS: We provide the first report of the assembled and annotated S. muricatum mitogenome. This information will help to lay the groundwork for future research on the evolutionary biology of Solanaceae species. Furthermore, the results will assist the development of molecular breeding strategies for S. muricatum based on the most beneficial agronomic traits of this species.


Subject(s)
Genome, Mitochondrial , Phylogeny , RNA Editing , Solanum , Solanum/genetics , Genome, Plant
13.
An Acad Bras Cienc ; 96(2): e20220830, 2024.
Article in English | MEDLINE | ID: mdl-38747783

ABSTRACT

Frugivore bats are important seed dispersers in forests and their abundance are associated with the presence of zoochoric plants. In this context, the aim of our study was to investigate the association of the frugivore bat S. lilium with the diaspores of the zoochoric plant S. mauritianum, a common arboreal species present in forest fragments of southern Brazil. We also investigated the diet of the species based on seed content present in feces of individuals. Bats were mist-netted from November 2017 to April 2018 in a fragment of Atlantic Forest. The proportion of immature and mature diaspores of S. mauritianum was estimated in the same area where bats were sampled, and feces were sampled from captured individuals. In total, 61 individuals of S. lilium were captured, and 795 seeds were sampled from their feces. The abundance of S. lilium was significantly associated with the proportion of immature diaspores of S. mauritianum. We identified seeds of two botanical families: Solanaceae (89%) and Moraceae (11%) in the fecal samples. Our findings support the view that S. lilium is a legitimate disperser of S. mauritianum, and that its ecological function is probably a result of co-adaptation.


Subject(s)
Chiroptera , Feces , Forests , Animals , Brazil , Chiroptera/classification , Feces/chemistry , Solanum/classification , Seed Dispersal , Population Density , Seeds
14.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38608140

ABSTRACT

Potato and its wild relatives are distributed mainly in the Mexican highlands and central Andes of South America. The South American A-genome species, including cultivated potatoes, are reproductively isolated from Mexican diploid species. Whole-genome sequencing has disclosed genome structure and similarity, mostly in cultivated potatoes and their closely related species. In this study, we generated a chromosome-scale assembly of the genome of a Mexican diploid species, Solanum bulbocastanum Dun., using PacBio long-read sequencing, optical mapping, and Hi-C scaffolding technologies. The final sequence assembly consisted of 737.9 Mb, among which 647.0 Mb were anchored to the 12 chromosomes. Compared with chromosome-scale assemblies of S. lycopersicum (tomato), S. etuberosum (non-tuber-bearing species with E-genome), S. verrucosum, S. chacoense, S. multidissectum, and S. phureja (all four are A-genome species), the S. bulbocastnum genome was the shortest. It contained fewer transposable elements (56.2%) than A-genome species. A cluster analysis was performed based on pairwise ratios of syntenic regions among the seven chromosome-scale assemblies, showing that the A-genome species were first clustered as a distinct group. Then, this group was clustered with S. bulbocastanum. Sequence similarity in 1,624 single-copy orthologous gene groups among 36 Solanum species and clones separated S. bulbocastanum as a specific group, including other Mexican diploid species, from the A-genome species. Therefore, the S. bulbocastanum genome differs in genome structure and gene sequences from the A-genome species. These findings provide important insights into understanding and utilizing the genetic diversity of S. bulbocastanum and the other Mexican diploid species in potato breeding.


Subject(s)
Diploidy , Genome, Plant , Solanum , Solanum/genetics , Solanum tuberosum/genetics , Chromosomes, Plant/genetics , Molecular Sequence Annotation , Genomics/methods , Chromosome Mapping , Phylogeny , Mexico
15.
Plant J ; 119(1): 595-603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576107

ABSTRACT

Wild species are an invaluable source of new traits for crop improvement. Over the years, the tomato community bred cultivated lines that carry introgressions from different species of the tomato tribe to facilitate trait discovery and mapping. The next phase in such projects is to find the genes that drive the identified phenotypes. This can be achieved by genotyping a few thousand individuals resulting in fine mapping that can potentially identify the causative gene. To couple trait discovery and fine mapping, we are presenting large, recombination-rich, Backcross Inbred Line (BIL) populations involving an unexplored accession of the wild, green-fruited species Solanum pennellii (LA5240; the 'Lost' Accession) with two modern tomato inbreds: LEA, determinate, and TOP, indeterminate. The LEA and TOP BILs are in BC2F6-8 generation and include 1400 and 500 lines, respectively. The BILs were genotyped with 5000 SPET markers, showing that in the euchromatic regions there was one recombinant every 17-18 Kb while in the heterochromatin a recombinant every 600-700 Kb (TOP and LEA respectively). To gain perspective on the topography of recombination we compared five independent members of the Self-pruning gene family with their respective neighboring genes; based on PCR markers, in all cases we found recombinants. Further mapping analysis of two known morphological mutations that segregated in the BILs (self-pruning and hairless) showed that the maximal delimited intervals were 73 Kb and 210 Kb, respectively, and included the known causative genes. The 'Lost'_BILs provide a solid framework to study traits derived from a drought-tolerant wild tomato.


Subject(s)
Chromosome Mapping , Solanum lycopersicum , Solanum , Solanum/genetics , Solanum lycopersicum/genetics , Phenotype , Quantitative Trait Loci/genetics , Genotype , Crosses, Genetic , Chromosomes, Plant/genetics , Inbreeding
16.
Sci Rep ; 14(1): 8133, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38584186

ABSTRACT

In weeds, disturbance has been found to affect life history traits and mediate trophic interactions. In urban landscapes, mowing is an important disturbance, and we previously showed that continuous mowing leads to enhanced fitness and defense traits in Solanum elaeagnifolium, Silverleaf Nightshade (SLN). However, most studies have been focused on foliar defenses, ignoring floral defenses. In this study we examined whether continuous mowing affected floral defenses in SLN using mowed and unmowed populations in South Texas, their native range. We found flowers of mowed SLN plants larger but lighter than unmowed plants. Additionally, flowers on plants that were mowed frequently were both heavier and larger. Mowed plants had higher spine density and consequently unmowed flowers had higher herbivore damage. Additionally, early instar Manduca sexta fed on mowed flower-based artificial diets showed no difference in mass than the control and unmowed; however, later instars caterpillars on unmowed diets gained significantly more mass than the mowed treatment and control. Mowed plants had higher spine density which may shed light on why unmowed flowers experienced higher herbivore damage. We found caterpillars fed on high mowing frequency diets were heavier than those on low mowing frequency diets. Collectively, we show that mowing compromises floral traits and enhances plant defenses against herbivores and should be accounted for in management.


Subject(s)
Manduca , Solanum , Animals , Plant Weeds , Flowers , Herbivory
17.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612570

ABSTRACT

Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.


Subject(s)
Gammaproteobacteria , Solanum tuberosum , Solanum , Hypoxia , Oxygen , Agriculture
18.
Phytochemistry ; 222: 114091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615926

ABSTRACT

A total of 14 previously undescribed steroidal saponins named capsicsaponins A-N were isolated from the leaves of Solanum capsicoides, encompassing various types, including cholesterol derivatives and pseudospirostanol saponins. The structures of all compounds were determined through comprehensive analysis of spectroscopic data (1D NMR and 2D NMR), along with physicochemical analysis methods (acid hydrolysis, OR, and UV). Moreover, in the H2O2-induced pheochromocytoma cell line model, compounds 1-14 were screened for their neuroprotective effects on cells. The bioassay results demonstrated compounds 8-14 were able to revive cell viability compared to the positive control edaravone. The damage neuroprotection of the most active compound was further explored.


Subject(s)
Cell Survival , Neuroprotective Agents , Plant Leaves , Saponins , Solanum , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Solanum/chemistry , Plant Leaves/chemistry , Cell Survival/drug effects , Animals , Molecular Structure , PC12 Cells , Rats , Steroids/pharmacology , Steroids/chemistry , Steroids/isolation & purification , Hydrogen Peroxide/pharmacology , Structure-Activity Relationship , Dose-Response Relationship, Drug
19.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622441

ABSTRACT

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Subject(s)
Solanum tuberosum , Solanum , Tylenchoidea , Animals , Solanum tuberosum/genetics , Solanum/genetics , Plant Diseases/genetics , Plant Breeding
20.
BMC Genomics ; 25(1): 412, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671394

ABSTRACT

BACKGROUND: Solanum aculeatissimum and Solanum torvum belong to the Solanum species, and they are essential plants known for their high resistance to diseases and adverse conditions. They are frequently used as rootstocks for grafting and are often crossbred with other Solanum species to leverage their resistance traits. However, the phylogenetic relationship between S. aculeatissimum and S. torvum within the Solanum genus remains unclear. Therefore, this paper aims to sequence the complete chloroplast genomes of S. aculeatissimum and S. torvum and analyze them in comparison with 29 other previously published chloroplast genomes of Solanum species. RESULTS: We observed that the chloroplast genomes of S. aculeatissimum and S. torvum possess typical tetrameric structures, consisting of one Large Single Copy (LSC) region, two reverse-symmetric Inverted Repeats (IRs), and one Small Single Copy (SSC) region. The total length of these chloroplast genomes ranged from 154,942 to 156,004 bp, with minimal variation. The highest GC content was found in the IR region, while the lowest was in the SSC region. Regarding gene content, the total number of chloroplast genes and CDS genes remained relatively consistent, ranging from 128 to 134 and 83 to 91, respectively. Nevertheless, there was notable variability in the number of tRNA genes and rRNAs. Relative synonymous codon usage (RSCU) analysis revealed that both S. aculeatissimum and S. torvum preferred codons that utilized A and U bases. Analysis of the IR boundary regions indicated that contraction and expansion primarily occurred at the junction between SSC and IR regions. Nucleotide polymorphism analysis and structural variation analysis demonstrated that chloroplast variation in Solanum species mainly occurred in the LSC and SSC regions. Repeat sequence analysis revealed that A/T was the most frequent base pair in simple repeat sequences (SSR), while Palindromic and Forward repeats were more common in long sequence repeats (LSR), with Reverse and Complement repeats being less frequent. Phylogenetic analysis indicated that S. aculeatissimum and S. torvum belonged to the same meristem and were more closely related to Cultivated Eggplant. CONCLUSION: These findings enhance our comprehension of chloroplast genomes within the Solanum genus, offering valuable insights for plant classification, evolutionary studies, and potential molecular markers for species identification.


Subject(s)
Base Composition , Genome, Chloroplast , Phylogeny , Solanum , Solanum/genetics , Solanum/classification , Codon Usage , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL