Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Int J Mol Sci ; 25(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39337587

ABSTRACT

Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Sp7 Transcription Factor , Animals , Humans , Bone Development/genetics , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Osteoblasts/metabolism , Osteoblasts/cytology , Osteogenesis/genetics , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics
2.
Cell Signal ; 121: 111300, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004327

ABSTRACT

BACKGROUND: Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS: We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS: The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS: This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.


Subject(s)
Osteogenesis, Distraction , Osteogenesis , Skull , rho-Associated Kinases , rhoA GTP-Binding Protein , Animals , rhoA GTP-Binding Protein/metabolism , rho-Associated Kinases/metabolism , Mice , Skull/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation , Signal Transduction , Mechanotransduction, Cellular , Cranial Sutures/metabolism , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Adaptor Proteins, Signal Transducing
3.
Biomolecules ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062525

ABSTRACT

Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To identify proteins interacting with GV1001, biotin-conjugated GV1001 was constructed and confirmed by mass spectrometry. Proteomic analyses were performed to determine GV1001's interaction with osteogenic proteins. GV1001 was highly associated with peptidyl-prolyl isomerase A and co-immunoprecipitation assays revealed that GV1001 bound to peptidyl-prolyl cis-trans isomerase 1 (Pin1). GV1001 significantly increased alkaline phosphatase (ALP) activity, bone nodule formation, and the expression of osteogenic gene markers. GV1001-induced osteogenic activity was enhanced by Pin1 overexpression and abolished by Pin1 knockdown. GV1001 increased the protein stability and transcriptional activity of Runx2 and Osterix. Importantly, GV1001 administration enhanced bone mass density in the OVX mouse model, as verified by µCT analysis. GV1001 demonstrated protective effects against bone loss in OVX mice by upregulating osteogenic differentiation via the Pin1-mediated protein stabilization of Runx2 and Osterix. GV1001 could be a potential candidate with anabolic effects for the prevention and treatment of osteoporosis.


Subject(s)
Cell-Penetrating Peptides , Core Binding Factor Alpha 1 Subunit , NIMA-Interacting Peptidylprolyl Isomerase , Osteogenesis , Sp7 Transcription Factor , Animals , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Osteogenesis/drug effects , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Mice , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Humans , Female , Protein Stability/drug effects , Cell Differentiation/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology
4.
Shanghai Kou Qiang Yi Xue ; 33(2): 135-140, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-39005088

ABSTRACT

PURPOSE: To investigate the effect of TNF-α on osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED), and to analyze the changes of ERK1/2-Runx2 signaling pathway in the regulation process. METHODS: SHED cells were isolated and cultured from normal deciduous permanent teeth of healthy children aged 6-8 years old, and the third passage of SHED cells were taken and divided into control group (osteogenic inducer culture), observation group (osteogenic inducer and TNF-α co-culture) and agonist group (osteogenic inducer, TNF-α and ERK pathway agonist co-culture). The osteogenic differentiation was determined by alizarin red staining. The protein expression levels of Osterix, OPN, ERK1/2, pERK1/2 and Runx2 in SHED cells were determined by Western blot. The expressions of Osterix, OPN, ERK1/2, pERK1/2 and Runx2 mRNA were detected by qRT-PCR. Statistical analysis was performed with SPSS 26.0 software package. RESULTS: Comparison of osteogenic differentiation ability of the three groups of cells showed that red-brown mineralized nodules were observed in the three groups of cells. Compared among the three groups, the control group had the most mineralized nodules, followed by the activation group, and the observation group had the least mineralized nodules. Compared with the control group, the expression levels of Osterix and OPN protein and mRNA in the observation group and the agonist group were significantly decreased, while the expression levels of Osterix and OPN protein and mRNA in the agonist group were significantly higher than those in the observation group. There was no significant difference in the expression levels of ERK1/2 protein and mRNA among the three groups, while the expression levels of pERK1/2 and Runx2 protein and mRNA in the observation group and the agonist group were significantly higher than those in the control group, and the expression levels of pERK1/2 and Runx2 protein and mRNA in the agonist group were significantly higher than those in the observation group. CONCLUSIONS: TNF-α can inhibit osteogenic differentiation of SHED cells, which may be related to the inhibition of ERK1/2-Runx2 signaling pathway.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 1 Subunit , MAP Kinase Signaling System , Osteogenesis , Tooth, Deciduous , Tumor Necrosis Factor-alpha , Humans , Cell Differentiation/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Osteogenesis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Child , MAP Kinase Signaling System/drug effects , Tooth, Deciduous/cytology , Tooth, Deciduous/metabolism , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Signal Transduction/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Cells, Cultured
5.
Stem Cell Res Ther ; 15(1): 168, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886849

ABSTRACT

BACKGROUND: Mechanical stimulation (MS) significantly increases the release of adenine and uracil nucleotides from bone marrow-derived mesenchymal stem cells (BM-MSCs) undergoing osteogenic differentiation. Released nucleotides acting via ionotropic P2X7 and metabotropic P2Y6 purinoceptors sensitive to ATP and UDP, respectively, control the osteogenic commitment of BM-MSCs and, thus, bone growth and remodelling. Yet, this mechanism is impaired in post-menopausal (Pm)-derived BM-MSCs, mostly because NTPDase3 overexpression decreases the extracellular accumulation of nucleotides below the levels required to activate plasma membrane-bound P2 purinoceptors. This prompted us to investigate whether in vitro MS of BM-MSCs from Pm women could rehabilitate their osteogenic commitment and whether xenotransplantation of MS purinome-primed Pm cells promote repair of critical bone defects in an in vivo animal model. METHODS: BM-MSCs were harvested from the neck of femora of Pm women (70 ± 3 years old) undergoing total hip replacement. The cells grew, for 35 days, in an osteogenic-inducing medium either submitted (SS) or not (CTR) to MS (90 r.p.m. for 30 min) twice a week. Increases in alkaline phosphatase activity and in the amount of osteogenic transcription factors, osterix and osteopontin, denoted osteogenic cells differentiation, while bone nodules formation was ascertain by the alizarin red-staining assay. The luciferin-luciferase bioluminescence assay was used to quantify extracellular ATP. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC. The density of P2Y6 and P2X7 purinoceptors in the cells was assessed by immunofluorescence confocal microscopy. MS-stimulated BM-MSCs from Pm women were xenotransplanted into critical bone defects drilled in the great trochanter of femora of one-year female Wistar rats; bone repair was assessed by histological analysis 10 days after xenotransplantation. RESULTS: MS-stimulated Pm BM-MSCs in culture (i) release 1.6-fold higher ATP amounts, (ii) overexpress P2X7 and P2Y6 purinoceptors, (iii) exhibit higher alkaline phosphatase activity and overexpress the osteogenic transcription factors, osterix and osteopontin, and (iv) form larger bone nodules, than CTR cells. Selective blockage of P2X7 and P2Y6 purinoceptors with A438079 (3 µM) and MRS 2578 (0.1 µM), respectively, prevented the osteogenic commitment of cultured Pm BM-MSCs. Xenotransplanted MS purinome-primed Pm BM-MSCs accelerated the repair of critical bone defects in the in vivo rat model. CONCLUSIONS: Data suggest that in vitro MS restores the purinergic cell-to-cell communication fostering the osteogenic differentiation and osteointegration of BM-MSCs from Pm women, a strategy that may be used in bone regeneration and repair tactics.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Postmenopause , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Osteogenesis/drug effects , Animals , Aged , Rats , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Cells, Cultured , Transcription Factors/metabolism , Transcription Factors/genetics , Rats, Wistar
6.
Bone ; 184: 117113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703937

ABSTRACT

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a multi-functional, serine/threonine protein kinase with predominant roles in inflammation, systemic energy metabolism, and bone remodeling. We previously reported that global ablation of CaMKK2 or its systemic pharmacological inhibition led to bone mass accrual in mice by stimulating osteoblasts and inhibiting osteoclasts. However, a direct, cell-intrinsic role for the kinase in the osteoblast lineage has not been established. Here we report that conditional deletion of CaMKK2 from osteoprogenitors, using the Osterix 1 (Osx1) - GFP::Cre (tetracycline-off) mouse line, resulted in increased trabecular bone mass due to an acute stimulation of osteoblast function in male and female mice. The acute simulation of osteoblasts and bone formation following conditional ablation of osteoprogenitor-derived CaMKK2 was sustained only in female mice. Periosteal bone formation at the cortical bone was enhanced only in male conditional knockout mice without altering cortical bone mass or strength. Prolonged deletion of CaMKK2 in early osteoblasts was accompanied by a stimulation of osteoclasts in both sexes, indicating a coupling effect. Notably, alterations in trabecular and cortical bone mass were absent in the doxycycline-removed "Cre-only" Osx1-GFP::Cre mice. Thus, the increase in osteoblast function at the trabecular and cortical bone surfaces following the conditional deletion of CaMKK2 in osteoprogenitors is indicative of a direct but sex-divergent role for the kinase in osteoblasts.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Osteoblasts , Sp7 Transcription Factor , Animals , Osteoblasts/metabolism , Female , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Male , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Osteogenesis/physiology , Sex Characteristics , Mice , Mice, Knockout , Osteoclasts/metabolism , Stem Cells/metabolism , Gene Deletion
7.
J Orthop Res ; 42(9): 2007-2016, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38602438

ABSTRACT

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a crucial connective component between the nuclear envelope and the cytoskeleton involving various cellular processes including nuclear positioning, nuclear architecture, and mechanotransduction. How LINC complexes regulate bone formation in vivo, however, is not well understood. To start bridging this gap, here we created a LINC disruption murine model using transgenic mice expressing Cre recombinase enzyme under the control of the Osterix (Osx-Cre) which is primarily active in pre-osteoblasts and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Tg(CAG-LacZ/EGFP-KASH2) mice contain a lox-STOP-lox flanked LacZ gene which is deleted upon cre recombination allowing for the overexpression of an EGFP-KASH2 fusion protein. This overexpressed protein disrupts endogenous Nesprin-Sun binding leading to disruption of LINC complexes. Thus, crossing these two lines results in an  Osx- driven  LINC  disruption (ODLD) specific to pre-osteoblasts. In this study, we investigated how this LINC disruption affects exercise-induced bone accrual. ODLD cells had decreased osteogenic and adipogenic potential in vitro compared to non-disrupted controls and sedentary ODLD mice showed decreased bone quality at 8 weeks. Upon access to a voluntary running wheel, ODLD animals showed increased running time and distance; however, our 6-week exercise intervention did not significantly affect bone microarchitecture and bone mechanical properties.


Subject(s)
Mice, Transgenic , Osteogenesis , Sp7 Transcription Factor , Animals , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Mice , Osteoblasts/metabolism , Male , Cytoskeleton/metabolism , Female
8.
Oral Dis ; 30(6): 3951-3961, 2024 09.
Article in English | MEDLINE | ID: mdl-38297969

ABSTRACT

OBJECTIVES: To explore the effect of protein arginine methyltransferase 5 (PRMT5) on tooth extraction sockets healing, we established an extraction sockets model in osteoblast-conditional Prmt5 knockout mice. The results provided clues for promoting extraction sockets healing in clinical settings. MATERIALS AND METHODS: Maxillary first molars were extracted from 6 to 8-week-old mice to establish an extraction fossa model. Microcomputed tomography (Micro-CT), histology, and immunostaining assays were performed on samples harvested at 3-, 7-, and 14-day post-extraction. Prmt5-silenced cell lines  were employed to explore the regulatory mechanisms underlying the osteigenic differentiation. RESULTS: PRMT5 expression was higher in the early stage of socket healing. Micro-CT analysis showed that the percentage of new bone in the extraction sockets was lower in OC-Cre; Prmt5fl/fl mice than in the control group, consistent with Masson staining. We found that, Prmt5 deficiency delayed the osteogenesis during extraction socket healing, which might be achieved through the decrease of H4R3me2s in the Sp7 promoter region. CONCLUSION: PRMT5 in osteoblasts may promote the differentiation of osteoblasts by regulating the Sp7 promoter H4R3me2s and participate in the healing of tooth extraction sockets.


Subject(s)
Cell Differentiation , Mice, Knockout , Osteoblasts , Osteogenesis , Protein-Arginine N-Methyltransferases , Tooth Extraction , Tooth Socket , Wound Healing , X-Ray Microtomography , Animals , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Mice , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Promoter Regions, Genetic , Molar
9.
Oral Dis ; 30(7): 4558-4572, 2024 10.
Article in English | MEDLINE | ID: mdl-38287672

ABSTRACT

Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation as the essential functional component of primary cilia. The effects of IFT80 on early bone healing of extraction sockets have not been well studied. To investigate whether deletion of Ift80 in alveolar bone-derived mesenchymal stem cells (aBMSCs) affected socket bone healing, we generated a mouse model of specific knockout of Ift80 in Prx1 mesenchymal lineage cells (Prx1Cre;IFT80f/f). Our results demonstrated that deletion of IFT80 in Prx1 lineage cells decreased the trabecular bone volume, ALP-positive osteoblastic activity, TRAP-positive osteoclastic activity, and OSX-/COL I-/OCN-positive areas in tooth extraction sockets of Prx1Cre; IFT80f/f mice compared with IFT80f/f littermates. Furthermore, aBMSCs from Prx1Cre; IFT80f/f mice showed significantly decreased osteogenic markers and downregulated migration and proliferation capacity. Importantly, the overexpression of TAZ recovered significantly the expressions of osteogenic markers and migration capacity of aBMSCs. Lastly, the local administration of lentivirus for TAZ enhanced the expression of RUNX2 and OSX and promoted early bone healing of extraction sockets from Prx1Cre; IFT80f/f mice. Thus, IFT80 promotes osteogenesis and early bone healing of tooth sockets through the activation of TAZ/RUNX2 pathway.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Mesenchymal Stem Cells , Osteogenesis , Tooth Socket , Animals , Mice , Core Binding Factor Alpha 1 Subunit/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Tooth Extraction , Mice, Knockout , Cell Proliferation , Wound Healing/genetics , Cell Movement , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Trans-Activators/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Alveolar Process/metabolism , Acyltransferases
10.
J Oral Sci ; 66(1): 15-19, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38008425

ABSTRACT

PURPOSE: After tooth extraction, preservation of the alveolar ridge by socket grafting attenuates bone resorption. Runt-related transcription factor 2 (RUNX2) and SP7/Osterix (OSX) are transcription factors playing an important role in osteoblast differentiation. The purpose of this study was to evaluate the effects of carbonate apatite (CO3Ap) on osteoblast-related gene and protein expression after socket grafting. METHODS: Alveolar bone and new bone after CO3Ap grafting were collected at the time of implant placement. Levels of mRNA for RUNX2, SP7/OSX, bone morphogenetic protein 2 (BMP2), BMP7 and platelet derived growth factor B were determined by real-time PCR. Immunostaining was performed using antibodies against RUNX2, SP7/OSX, vimentin and cytokeratin. To evaluate bone resorption rates, cone-beam CT (CBCT) imaging was performed after socket grafting and before implant placement. RESULTS: CBCT imaging showed that the average degree of bone resorption at the CO3Ap graft site was 7.15 ± 3.79%. At the graft sites, levels of SP7/OSX and BMP2 mRNA were significantly increased. Replacement of CO3Ap with osteoid was evident histologically, and in the osteoid osteoblast-like cells were stained for SP7/OSX and vimentin. CONCLUSION: These results show that gene expression of both SP7/OSX and BMP2 can be induced by CO3Ap, suggesting that increased expression of SP7/OSX and vimentin may be involved in the BMP pathway.


Subject(s)
Apatites , Bone Morphogenetic Protein 2 , Bone Resorption , Humans , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Vimentin/genetics , Vimentin/metabolism , Vimentin/pharmacology , Cell Differentiation , Osteoblasts/metabolism , Alveolar Process/surgery , RNA, Messenger/metabolism , Bone Resorption/metabolism , Gene Expression , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/pharmacology
11.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894935

ABSTRACT

Deubiquitinases (DUBs) are essential for bone remodeling by regulating the differentiation of osteoblast and osteoclast. USP17 encodes for a deubiquitinating enzyme, specifically known as ubiquitin-specific protease 17, which plays a critical role in regulating protein stability and cellular signaling pathways. However, the role of USP17 during osteoblast differentiation has not been elusive. In this study, we initially investigated whether USP17 could regulate the differentiation of osteoblasts. Moreover, USP17 overexpression experiments were conducted to assess the impact on osteoblast differentiation induced by bone morphogenetic protein 4 (BMP4). The positive effect was confirmed through alkaline phosphatase (ALP) expression and activity studies since ALP is a representative marker of osteoblast differentiation. To confirm this effect, Usp17 knockdown was performed, and its impact on BMP4-induced osteoblast differentiation was examined. As expected, knockdown of Usp17 led to the suppression of both ALP expression and activity. Mechanistically, it was observed that USP17 interacted with Osterix (Osx), which is a key transcription factor involved in osteoblast differentiation. Furthermore, overexpression of USP17 led to an increase in Osx protein levels. Thus, to investigate whether this effect was due to the intrinsic function of USP17 in deubiquitination, protein stabilization experiments and ubiquitination analysis were conducted. An increase in Osx protein levels was attributed to an enhancement in protein stabilization via USP17-mediated deubiquitination. In conclusion, USP17 participates in the deubiquitination of Osx, contributing to its protein stabilization, and ultimately promoting the differentiation of osteoblasts.


Subject(s)
Osteoblasts , Osteogenesis , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Osteogenesis/genetics , Osteoblasts/metabolism , Cell Differentiation/genetics , Protein Stability , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism
12.
Cell Tissue Res ; 393(2): 265-279, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37247031

ABSTRACT

Osteoblast differentiation is regulated by various transcription factors, signaling molecules, and posttranslational modifiers. The histone acetyltransferase Mof (Kat8) is involved in distinct physiological processes. However, the exact role of Mof in osteoblast differentiation and growth remains unknown. Herein, we demonstrated that Mof expression with histone H4K16 acetylation increased during osteoblast differentiation. Inhibition of Mof by siRNA knockdown or small molecule inhibitor, MG149 which is a potent histone acetyltransferase inhibitor, reduced the expression level and transactivation potential of osteogenic key markers, Runx2 and Osterix, thus inhibiting osteoblast differentiation. Besides, Mof overexpression also enhanced the protein levels of Runx2 and Osterix. Mof could directly bind the promoter region of Runx2/Osterix to potentiate their mRNA levels, possibly through Mof-mediated H4K16ac to facilitate the activation of transcriptional programs. Importantly, Mof physically interacts with Runx2/Osterix for the stimulation of osteoblast differentiation. Yet, Mof knockdown showed indistinguishable effect on cell proliferation or apoptosis in MSCs and preosteoblast cells. Taken together, our results uncover Mof functioning as a novel regulator of osteoblast differentiation via the promotional effects on Runx2/Osterix and rationalize Mof as a potential therapeutic target, like possible application of inhibitor MG149 for the treatment of osteosarcoma or developing specific Mof activator to ameliorate osteoporosis.


Subject(s)
Osteogenesis , Transcription Factors , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Histone Acetyltransferases/metabolism , Osteoblasts , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Mice
13.
Mol Ther ; 30(10): 3226-3240, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35642253

ABSTRACT

Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/pharmacology , Animals , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cells, Cultured , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Mesenchymal Stem Cells/metabolism , Osseointegration/genetics , Osteogenesis/genetics , RNA, Circular/genetics , Rats , Sp7 Transcription Factor/metabolism , Titanium/chemistry , Titanium/metabolism , Titanium/pharmacology
14.
Calcif Tissue Int ; 111(5): 519-534, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35731246

ABSTRACT

Indian hedgehog (Ihh) is an indispensable paracrine factor for proper tissue patterning, skeletogenesis, and cellular proliferation. Recent genetic studies have revealed critical roles of chondrocyte-derived Ihh in regulating chondrocyte proliferation, hypertrophy and cartilage ossification. However, the functions of Sp7-expressing cell-derived Ihh in osteoblast differentiation and bone formation remain unclear. Sp7 is an essential transcription factor for osteoblast differentiation. In the current study, we generated Sp7-iCre; Ihhfl/fl mice, in which the Ihh gene was specifically deleted in Sp7-expressing cells to investigate the roles of Ihh. Ihh ablation in Sp7-expressing cells resulted in a dwarfism phenotype with severe skeletal dysplasia and lethality at birth, but with normal joint segmentation. Sp7-iCre; Ihhfl/fl mice had fewer osteoblasts, almost no cortical and trabecular bones, smaller skulls, and wider cranial sutures. Additionally, the levels of osteogenesis- and angiogenesis-related genes, and of major bone matrix protein genes were significantly reduced. These results demonstrated that Ihh regulates bone formation in Sp7-expressing cells. Ihh deficiency in primary osteoblasts cultured in vitro inhibited their proliferation, differentiation, and mineralization ability, and reduced the expression of osteogenesis-related genes. Moreover, the deletion of Ihh also attenuated the Bmp2/Smad/Runx2 pathway in E18.5 tibial and primary osteoblasts. The activity of primary osteoblasts in mutant mice was rescued after treatment with rhBMP2. In summary, our data revealed that Ihh in Sp7-expressing cells plays an indispensable role in osteoblast differentiation, mineralization, and embryonic osteogenesis, further implicated that its pro-osteogenic role may be mediated through the canonical Bmp2/Smad/Runx2 pathway.


Subject(s)
Dwarfism , Osteogenesis , Animals , Cell Differentiation , Cell Proliferation , Core Binding Factor Alpha 1 Subunit/metabolism , Dwarfism/genetics , Dwarfism/metabolism , Hedgehog Proteins/metabolism , Mice , Osteoblasts/metabolism , Osteogenesis/physiology , Phenotype , Sp7 Transcription Factor/metabolism , Transcription Factors/genetics
15.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457117

ABSTRACT

Yin Yang 2 (YY2) is a paralog of YY1, a well-known multifunctional transcription factor containing a C-terminal zinc finger domain. Although the role of YY1 in various biological processes, such as the cell cycle, cell differentiation and tissue development, is well established, the function of YY2 has not been fully determined. In this study, we investigated the functional role of YY2 during osteoblast differentiation. YY2 overexpression and knockdown increased and decreased osteoblast differentiation, respectively, in BMP4-induced C2C12 cells. Mechanistically, YY2 overexpression increased the mRNA and protein levels of Osterix (Osx), whereas YY2 knockdown had the opposite effect. To investigate whether YY2 regulates Osx transcription, the effect of YY2 overexpression and knockdown on Osx promoter activity was evaluated. YY2 overexpression significantly increased Osx promoter activity in a dose-dependent manner, whereas YY2 knockdown had the opposite effect. Furthermore, vectors containing deletion and point mutations were constructed to specify the regulation site. Both the Y1 and Y2 sites were responsible for YY2-mediated Osx promoter activation. These results indicate that YY2 is a positive regulator of osteoblast differentiation that functions by upregulating the promoter activity of Osx, a representative osteogenic transcription factor in C2C12 cells.


Subject(s)
Osteogenesis , Yin-Yang , Cell Differentiation/genetics , Osteoblasts/metabolism , Osteogenesis/genetics , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328592

ABSTRACT

The relationship of lacunocanalicular network structure and mechanoresponse has not been well studied. The lacunocanalicular structures differed in the compression and tension sides, in the regions, and in genders in wild-type femoral cortical bone. The overexpression of Sp7 in osteoblasts resulted in thin and porous cortical bone with increased osteoclasts and apoptotic osteocytes, and the number of canaliculi was half of that in the wild-type mice, leading to a markedly impaired lacunocanalicular network. To investigate the response to unloading, we performed tail suspension. Unloading reduced trabecular and cortical bone in the Sp7 transgenic mice due to reduced bone formation. Sost-positive osteocytes increased by unloading on the compression side, but not on the tension side of cortical bone in the wild-type femurs. However, these differential responses were lost in the Sp7 transgenic femurs. Serum Sost increased in the Sp7 transgenic mice, but not in the wild-type mice. Unloading reduced the Col1a1 and Bglap/Bglap2 expression in the Sp7 transgenic mice but not the wild-type mice. Thus, Sp7 transgenic mice with the impaired lacunocanalicular network induced Sost expression by unloading but lost the differential regulation in the compression and tension sides, and the mice failed to restore bone formation during unloading, implicating the relationship of lacunocanalicular network structure and the regulation of bone formation in mechanoresponse.


Subject(s)
Bone Resorption , Osteocytes , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone Density , Bone Resorption/metabolism , Bone and Bones/metabolism , Female , Male , Mice , Mice, Transgenic , Osteoblasts/metabolism , Osteocytes/metabolism , Sp7 Transcription Factor/metabolism
17.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35129199

ABSTRACT

Skeletal elements frequently associate with vasculature and somatosensory nerves, which regulate bone development and homeostasis. However, the deep, internal location of bones in many vertebrates has limited in vivo exploration of the neurovascular-bone relationship. Here, we use the zebrafish caudal fin, an optically accessible organ formed of repeating bony ray skeletal units, to determine the cellular relationship between nerves, bones and endothelium. In adult zebrafish, we establish the presence of somatosensory axons running through the inside of the bony fin rays, juxtaposed with osteoblasts on the inner hemiray surface. During development we show that the caudal fin progresses through sequential stages of endothelial plexus formation, bony ray addition, ray innervation and endothelial remodeling. Surprisingly, the initial stages of fin morphogenesis proceed normally in animals lacking either fin endothelium or somatosensory nerves. Instead, we find that sp7+ osteoblasts are required for endothelial remodeling and somatosensory axon innervation in the developing fin. Overall, this study demonstrates that the proximal neurovascular-bone relationship in the adult caudal fin is established during fin organogenesis and suggests that ray-associated osteoblasts pattern axons and endothelium.


Subject(s)
Animal Fins/physiology , Axons/metabolism , Endothelium/metabolism , Organogenesis/physiology , Zebrafish/growth & development , Animal Fins/growth & development , Animals , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/metabolism , Endothelium/cytology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Larva/growth & development , Larva/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Sp7 Transcription Factor/metabolism , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
18.
Nat Commun ; 13(1): 700, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121733

ABSTRACT

SP7/Osterix is a transcription factor critical for osteoblast maturation and bone formation. Homozygous loss-of-function mutations in SP7 cause osteogenesis imperfecta type XII, but neomorphic (gain-of-new-function) mutations of SP7 have not been reported in humans. Here we describe a de novo dominant neomorphic missense variant (c.926 C > G:p.S309W) in SP7 in a patient with craniosynostosis, cranial hyperostosis, and long bone fragility. Histomorphometry shows increased osteoblasts but decreased bone mineralization. Mice with the corresponding variant also show a complex skeletal phenotype distinct from that of Sp7-null mice. The mutation alters the binding specificity of SP7 from AT-rich motifs to a GC-consensus sequence (typical of other SP family members) and produces an aberrant gene expression profile, including increased expression of Col1a1 and endogenous Sp7, but decreased expression of genes involved in matrix mineralization. Our study identifies a pathogenic mechanism in which a mutation in a transcription factor shifts DNA binding specificity and provides important in vivo evidence that the affinity of SP7 for AT-rich motifs, unique among SP proteins, is critical for normal osteoblast differentiation.


Subject(s)
Bone Diseases/genetics , Bone and Bones/metabolism , Gene Expression Regulation , Mutation , Sp7 Transcription Factor/genetics , Animals , Bone Diseases/metabolism , Cell Differentiation/genetics , Cell Line , Cells, Cultured , Child , HEK293 Cells , Humans , In Situ Hybridization , Male , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Sp7 Transcription Factor/metabolism , X-Ray Microtomography
19.
Biochem Biophys Res Commun ; 587: 9-15, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34861472

ABSTRACT

OBJECTIVE: The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS: Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS: Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS: REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.


Subject(s)
Biological Clocks/genetics , Calcification, Physiologic/genetics , Dental Cementum/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation/drug effects , Cell Line, Transformed , Cell Proliferation/drug effects , Cementogenesis/drug effects , Cementogenesis/genetics , Dental Cementum/cytology , Dental Cementum/drug effects , Female , Gene Expression Regulation , Humans , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Pyrrolidines/pharmacology , Signal Transduction , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Thiophenes/pharmacology
20.
Anal Cell Pathol (Amst) ; 2021: 7890674, 2021.
Article in English | MEDLINE | ID: mdl-34868829

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are dysregulated in periodontitis development and involved in osteogenesis. The current study was aimed at investigating the function of lncRNA ANRIL in periodontal ligament cells (PDLCs) and potential molecular mechanisms. METHODS: Firstly, the level of ANRIL was tested by qPCR. Then, PDLCs were treated with a mineralizing solution to induce osteogenic differentiation. ALP activity was measured, and protein levels of BMP2, Osterix, and OCN were measured by Western blot. A target of ANRIL was verified using dual-luciferase reporter assay. miR-7 level was measured by qPCR, and the signals of the NF-κB pathway were tested by Western blot. RESULTS: ANRIL expression was downregulated in PDL tissues. Next, ALP activity and protein levels of BMP2, Osterix, and OCN were increased to show that PDLCs were differentiated. ANRIL level was increased in differential PDLCs, in which knockdown inhibited osteogenic differentiation. Then, miR-7 was found as a target of ANRIL. The miR-7 level was upregulated in PDL tissues and reduced in differential PDLCs. Inhibition of miR-7 suppressed ALP activity and BMP2, Osterix, and OCN expression. Moreover, inhibition of miR-7 reversed the effects on the osteogenic differentiation induced by knockdown of ANRIL. Besides, the levels of p-P65 and p-IκBα were elevated by ANRIL downregulation and were rescued by suppressing miR-7. CONCLUSIONS: Knockdown of ANRIL inhibited osteogenic differentiation via sponging miR-7 through the NF-κB pathway, suggesting that ANRIL might be a therapeutic target for periodontitis.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation , MicroRNAs/genetics , NF-kappa B/metabolism , Osteogenesis/genetics , Periodontal Ligament/metabolism , RNA, Long Noncoding/genetics , Blotting, Western , Bone Morphogenetic Protein 2/metabolism , Cells, Cultured , Down-Regulation , HEK293 Cells , Humans , MicroRNAs/metabolism , Periodontal Ligament/cytology , RNA Interference , RNA, Long Noncoding/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Sp7 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL