Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.397
Filter
1.
Int J Biol Macromol ; 270(Pt 1): 132218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750844

ABSTRACT

Botrytis cinerea and Penicillium expansum are phytopathogenic fungi that produce the deterioration of fruits. Thus, essential oil (EO) has emerged as a sustainable strategy to minimize the use of synthetic fungicides, but their volatility and scarce solubility restrict their application. This study proposes the EO of Oreganum vulgare and Thymus vulgaris-loaded solid lipid nanoparticles (SLN) based chitosan/PVA hydrogels to reduce the infestation of fungi phytopathogen. EO of O. vulgare and T. vulgaris-loaded SLN had a good homogeneity (0.21-0.35) and stability (-28.8 to -33.0 mV) with a mean size of 180.4-188.4 nm. The optimization of EO-loaded SLN showed that the encapsulation of 800 and 1200 µL L-1 of EO of O vulgare and T. vulgaris had the best particle size. EO-loaded SLN significantly reduced the mycelial growth and spore germination of both fungi pathogen. EO-loaded SLN into hydrogels showed appropriate physicochemical characteristics to apply under environmental conditions. Furthermore, rheological analyses evidenced that hydrogels had solid-like characteristics and elastic behavior. EO-loaded SLN-based hydrogels inhibited the spore germination in B. cinerea (80.9 %) and P. expansum (55.7 %). These results show that SLN and hydrogels are eco-friendly strategies for applying EO with antifungal activity.


Subject(s)
Botrytis , Chitosan , Hydrogels , Nanoparticles , Oils, Volatile , Penicillium , Chitosan/chemistry , Botrytis/drug effects , Botrytis/growth & development , Penicillium/drug effects , Penicillium/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Hydrogels/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Rheology , Particle Size , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Liposomes
2.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38802124

ABSTRACT

AIMS: Anthracnose caused by Colletotrichum species is one of the most devastating diseases of fruits and crops. We isolated and identified an antifungal compound from the mushroom Coprinus comatus and investigated its inhibitory potential against anthracnose disease-causing fungi with the goal of discovering natural products that can suppress anthracnose-caused plant disease. METHODS AND RESULTS: The culture filtrate of C. comatus was subjected to a bioassay-guided isolation of antifungal compounds. The active compound was identified as orsellinaldehyde (2,4-dihydroxy-6-methylbenzaldehyde) based on mass spectroscopy and nuclear magnetic resonance analyses. Orsellinaldehyde displayed broad-spectrum inhibitory activity against different plant pathogenic fungi. Among the tested Colletotrichum species, it exhibited the lowest IC50 values on conidial germination and germ tube elongation of Colletotrichum orbiculare. The compound also showed remarkable inhibitory activity against Colletotrichum gloeosporiodes. The staining of Colletotrichum conidia with fluorescein diacetate and propidium iodide demonstrated that the compound is fungicidal. The postharvest in-vivo detached fruit assay indicated that orsellinaldehyde suppressed anthracnose lesion symptoms on mango and cucumber fruits caused by C. gloeosporioides and C. orbiculare, respectively. CONCLUSIONS: Orsellinaldehyde was identified as a potent antifungal compound from the culture filtrate of C. comatus. The inhibitory and fungicidal activities of orsellinaldehyde against different Colletotrichum species indicate its potential as a fungicide for protecting various fruits against anthracnose disease-causing fungi.


Subject(s)
Colletotrichum , Coprinus , Plant Diseases , Colletotrichum/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Benzaldehydes/pharmacology , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Spores, Fungal/drug effects
3.
Braz J Microbiol ; 55(2): 1829-1839, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722522

ABSTRACT

This study aimed to evaluate the antifungal effect of SC319 sorghum phenolic extract (SPE) on the Aspergillus, Fusarium, Penicillium, Stenocarpella, Colletotrichum, and Macrophomina genera. SPE was extracted by 20% ethanol and used in four assays: (1) against Fusarium verticillioides in solid (PDA) and liquid (PD) potato dextrose media; (2) Minimum Inhibitory Concentration (MIC) assay with 16 fungi isolates; (3) Conidial Germination Rate (CGR) with 14 fungi isolates and (4) Growth Curve (GC) with 11 fungi isolates. There was no reduction in the mycelial growth (colony diameter and dry weight) and in the number of Fusarium verticillioides spores in assay 1 (PDA and PD). The colony's dry weight was almost six times higher in the presence than in the absence of SPE. All SPE samples presented MIC (assay 1) above the maximum concentration tested (5000 µg.mL-1) for the 16 isolates. Also, there was no inhibitory effect of SPE on conidia germination rate (CGR). Oppositely, in GC assay, the control had a higher CFU count than the samples with SPE in 24 h. This result suggests that SPE can delay the fungal growth in the first hours of incubation, which is an important finding that may help reduce the severity of fungal diseases in plants. However, further studies are needed to confirm these results, including sorghum genotypes with different profiles of phenolic compounds. Although the SC319 SPE was not effective as an antifungal agent, it may have potential as a growth promoter of beneficial fungi in the food and pharmaceutical industries.


Subject(s)
Antifungal Agents , Fungi , Microbial Sensitivity Tests , Phenols , Plant Extracts , Sorghum , Sorghum/microbiology , Antifungal Agents/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fungi/drug effects , Fungi/growth & development , Spores, Fungal/drug effects , Spores, Fungal/growth & development
4.
Curr Microbiol ; 81(7): 181, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762690

ABSTRACT

Pleurotus ostreatus is one of the most widely cultivated species in the world. It can be produced in many lignocellulosic substrates after carrying out a treatment to eliminate competing microorganisms. The most commonly used is pasteurization by steam or by immersion in hot water. The aim of this work is to evaluate if ozone can be employed as treatment for decontamination of the substrate used for the production of the edible mushroom P. ostreatus to control of green mold Trichoderma. Wheat straw was employed as a substrate. We used two different methodologies: bubbling ozone into a tank with water and the substrate, and injecting ozone into a closed tank with the substrate inside. Ten treatments were carried out including two treatments with inoculation by a spray of conidia of Trichoderma. The effect of ozone on the conidia was also evaluated. We found that the treatment of the substrate with ozone in immersed water resulted more effective (lower growth of Trichoderma) than injecting ozone into a closed tank. Anyway, we found that the contaminant fungi could grow on the substrate in both treatments with ozone. We observed that although ozone affected the conidia when it was bubbled into water, some of them still managed to survive and could germinate 72 h later. P. ostreatus could grow and produce fruiting bodies on a substrate that was previously treated with ozone and yields were not affected. Based on the results obtained, we conclude that ozone may not be an effective agent to control Trichoderma in highly contaminated substrates, at least in the experimental conditions that we used, for the production of P. ostreatus.


Subject(s)
Ozone , Pleurotus , Trichoderma , Triticum , Pleurotus/growth & development , Pleurotus/metabolism , Ozone/pharmacology , Trichoderma/metabolism , Trichoderma/growth & development , Triticum/microbiology , Spores, Fungal/drug effects , Spores, Fungal/growth & development
5.
Phytopathology ; 114(5): 1050-1056, 2024 May.
Article in English | MEDLINE | ID: mdl-38709298

ABSTRACT

Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.


Subject(s)
Disease Resistance , Indoleacetic Acids , Oryza , Plant Diseases , Indoleacetic Acids/metabolism , Oryza/microbiology , Oryza/growth & development , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/prevention & control , Disease Resistance/genetics , Disease Resistance/drug effects , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Ascomycota/drug effects , Ascomycota/physiology , Naphthaleneacetic Acids/pharmacology , Spores, Fungal/drug effects , Spores, Fungal/growth & development
6.
Biomolecules ; 14(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38785924

ABSTRACT

Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.


Subject(s)
Abscisic Acid , Ascomycota , Cytokinins , Abscisic Acid/metabolism , Cytokinins/metabolism , Ascomycota/metabolism , Ascomycota/pathogenicity , Ascomycota/genetics , Ascomycota/drug effects , Virulence , Gene Expression Regulation, Fungal/drug effects , Plant Diseases/microbiology , Transcription Factors/metabolism , Transcription Factors/genetics , Zeatin/metabolism , Zeatin/pharmacology , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Spores, Fungal/drug effects , Fungal Proteins/metabolism , Fungal Proteins/genetics
7.
J Agric Food Chem ; 72(19): 11185-11194, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687832

ABSTRACT

Aspergillus flavus contamination in agriculture and food industries poses threats to human health, leading to a requirement of a safe and effective method to control fungal contamination. Chitosan-based nitrogen-containing derivatives have attracted much attention due to their safety and enhanced antimicrobial applications. Herein, a new benzimidazole-grafted chitosan (BAC) was synthesized by linking the chitosan (CS) with a simple benzimidazole compound, 2-benzimidazolepropionic acid (BA). The characterization of BAC was confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy (1H and 13C NMR). Then, the efficiency of BAC against A. flavus ACCC 32656 was investigated in terms of spore germination, mycelial growth, and aflatoxin production. BAC showed a much better antifungal effect than CS and BA. The minimum inhibitory concentration (MIC) value was 1.25 mg/mL for BAC, while the highest solubility of CS (16.0 mg/mL) or BA (4.0 mg/mL) could not completely inhibit the growth of A. flavus. Furthermore, results showed that BAC inhibited spore germination and elongation by affecting ergosterol biosynthesis and the cell membrane integrity, leading to the permeabilization of the plasma membrane and leakage of intracellular content. The production of aflatoxin was also inhibited when treated with BAC. These findings indicate that benzimidazole-derived natural CS has the potential to be used as an ideal antifungal agent for food preservation.


Subject(s)
Aspergillus flavus , Benzimidazoles , Chitosan , Fungicides, Industrial , Microbial Sensitivity Tests , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Chitosan/pharmacology , Chitosan/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Aflatoxins , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development
8.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656548

ABSTRACT

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Benzaldehydes , Biofilms , Fusarium , Microbial Sensitivity Tests , Polyphenols , Tannins , Benzaldehydes/pharmacology , Fusarium/drug effects , Tannins/pharmacology , Antifungal Agents/pharmacology , Biofilms/drug effects , Aspergillus fumigatus/drug effects , Animals , Aspergillosis/microbiology , Aspergillosis/drug therapy , Virulence/drug effects , Larva/microbiology , Larva/drug effects , Fusariosis/drug therapy , Fusariosis/microbiology , Spores, Fungal/drug effects , Moths/microbiology , Moths/drug effects
9.
Sci Total Environ ; 929: 172701, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38657811

ABSTRACT

This study evaluated the effects of cadmium (Cd) exposure on the passive and active lethal efficiency of Beauveria bassiana (Bb) to Lymantria dispar larvae and analyzed the corresponding mechanism from mycelial vegetative growth, fungal and host nutrient competition, and fungal spore performance. The results showed that the passive lethal efficiency of Bb to Cd-exposed L. dispar larvae was significantly higher than that of larvae not exposed to Cd. After Bb infection, the fungal biomass in living larvae and the mycelium encapsulation index of dead larvae were significantly decreased under Cd exposure. Cd exposure damaged the mycelial structure, as well as inhibited the mycelial growth and sporulation quantity. A total of 15 and 39 differentially accumulated mycotoxin metabolites were identified in Bb mycelia treated with low Cd and high Cd, respectively, and the contents of these differentially accumulated mycotoxins in the low Cd and high Cd treatment groups were overall lower than those in the control group. Nutrient content and energy metabolism-related gene expression were significantly decreased in Cd-exposed larvae, both before and after Bb infection. Trehalose supplementation alleviated the nutritional deficiency of larvae under the combined treatment of Cd and Bb and decreased the larval susceptibility to Bb. Compared with untreated Bb, the lethal efficiency of low Cd-exposed Bb to larvae increased significantly, while high Cd-exposed Bb was significantly less lethal to larvae. Cd exposure promoted at low concentrations but inhibited the hydrophobicity and adhesion of spores at higher concentrations. Spore germination rate and stress resistance of Bb decreased significantly under the treatment of both Cd concentrations. Taken together, heavy metals can be regarded as an abiotic environmental factor that directly affects the lethal efficiency of Bb to insect pests.


Subject(s)
Beauveria , Cadmium , Larva , Moths , Beauveria/physiology , Animals , Cadmium/toxicity , Moths/physiology , Pest Control, Biological , Ecosystem , Forestry , Spores, Fungal/drug effects , Mycotoxins , Agriculture/methods , Flighted Spongy Moth Complex
10.
J Hazard Mater ; 471: 134385, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678711

ABSTRACT

Nitric oxide (NO) is a signaling molecule with diverse roles in various organisms. However, its role in the opportunistic pathogen Aspergillus flavus remains unclear. This study investigates the potential of NO, mediated by metabolites from A. oryzae (AO), as an antifungal strategy against A. flavus. We demonstrated that AO metabolites effectively suppressed A. flavus asexual development, a critical stage in its lifecycle. Transcriptomic analysis revealed that AO metabolites induced NO synthesis genes, leading to increased intracellular NO levels. Reducing intracellular NO content rescued A. flavus spores from germination inhibition caused by AO metabolites. Furthermore, exogenous NO treatment and dysfunction of flavohemoglobin Fhb1, a key NO detoxification enzyme, significantly impaired A. flavus asexual development. RNA-sequencing and metabolomic analyses revealed significant metabolic disruptions within tricarboxylic acid (TCA) cycle upon AO treatment. NO treatment significantly reduced mitochondrial membrane potential (Δψm) and ATP generation. Additionally, aberrant metabolic flux within the TCA cycle was observed upon NO treatment. Further analysis revealed that NO induced S-nitrosylation of five key TCA cycle enzymes. Genetic analysis demonstrated that the S-nitrosylated Aconitase Acon and one subunit of succinate dehydrogenase Sdh2 played crucial roles in A. flavus development by regulating ATP production. This study highlights the potential of NO as a novel antifungal strategy to control A. flavus by compromising its mitochondrial function and energy metabolism.


Subject(s)
Aspergillus flavus , Citric Acid Cycle , Mitochondria , Nitric Oxide , Citric Acid Cycle/drug effects , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Aspergillus flavus/drug effects , Nitric Oxide/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Antifungal Agents/pharmacology , Membrane Potential, Mitochondrial/drug effects , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Fungal Proteins/metabolism , Fungal Proteins/genetics
11.
Microbiol Res ; 284: 127732, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677265

ABSTRACT

The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.


Subject(s)
Carboxy-Lyases , Colletotrichum , Drug Resistance, Fungal , Fungal Proteins , Fungicides, Industrial , Plant Diseases , Colletotrichum/genetics , Colletotrichum/drug effects , Colletotrichum/pathogenicity , Colletotrichum/enzymology , Colletotrichum/growth & development , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Plant Diseases/microbiology , Spores, Fungal/growth & development , Spores, Fungal/drug effects , Spores, Fungal/genetics , Gene Expression Regulation, Fungal , MAP Kinase Signaling System
12.
Phytopathology ; 114(5): 1068-1074, 2024 May.
Article in English | MEDLINE | ID: mdl-38105240

ABSTRACT

Succinate dehydrogenase inhibitor (SDHI) fungicides are the most commonly and effectively used class of fungicides for controlling gray mold. Among them, only boscalid has been registered in China for controlling grape gray mold, whereas isofetamid and pydiflumetofen are two new SDHI fungicides that have demonstrated high efficacy against various fungal diseases. However, the sensitivity of Botrytis cinerea isolates from vineyards in China to these three fungicides is currently unknown. In this study, the sensitivity of 55 B. cinerea isolates from vineyards to boscalid, isofetamid, and pydiflumetofen was determined, with the effective concentrations for inhibiting 50% of spore germination (EC50) values ranging from 1.10 to 393, 0.0300 to 42.0, and 0.0990 to 25.5 µg ml-1, respectively. The resistance frequencies for boscalid, isofetamid, and pydiflumetofen were 60.0, 7.2, and 12.8%, respectively. Three mutations (H272R, H272Y, and P225F) were detected in the SdhB subunit, with H272R being the most prevalent (75.7%), followed by H272Y (16.2%) and P225F (8.1%). All three mutations are associated with resistance to boscalid, and of them, H272R mutants exhibited high resistance. Only P225F and H272Y mutants exhibited resistance to isofetamid and pydiflumetofen, respectively. A weakly positive cross-resistance relationship was observed between boscalid and pydiflumetofen (r = 0.38, P < 0.05). Additionally, the H272R mutants showed no significant fitness costs, whereas the remaining mutants exhibited reduced mycelial growth (P225F) and sporulation (H272Y and P225F). These results suggest that isofetamid and pydiflumetofen are effective fungicides against B. cinerea in vineyards, but appropriate rotation strategies must be implemented to reduce the selection of existing SDHI-resistant isolates.


Subject(s)
Biphenyl Compounds , Botrytis , Drug Resistance, Fungal , Fungicides, Industrial , Niacinamide , Plant Diseases , Vitis , Botrytis/drug effects , Botrytis/genetics , Fungicides, Industrial/pharmacology , China , Vitis/microbiology , Plant Diseases/microbiology , Biphenyl Compounds/pharmacology , Drug Resistance, Fungal/genetics , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/antagonists & inhibitors , Spores, Fungal/drug effects , Benzamides/pharmacology , Pyridines/pharmacology , Farms , Mutation , Norbornanes , Pyrazoles
13.
Microbiologyopen ; 11(1): e1257, 2022 02.
Article in English | MEDLINE | ID: mdl-35212482

ABSTRACT

Dermal fungal infections seem to have increased over recent years. There is further a shift from anthropophilic dermatophytes to a growing prevalence of zoophilic species and the emergence of resistant strains. New antifungals are needed to combat these fungi and their resting spores. This study aimed to investigate the sporicidal effects of sertaconazole nitrate using microplate laser nephelometry against the microconidia of Trichophyton, chlamydospores of Epidermophyton, blastospores of Candida, and conidia of the mold Scopulariopsis brevicaulis. The results obtained were compared with those from ciclopirox olamine and terbinafine. The sporicidal activity was further determined using infected three-dimensional full skin models to determine the antifungal effects in the presence of human cells. Sertaconazole nitrate inhibited the growth of dermatophytes, molds, and yeasts. Ciclopirox olamine also had good antifungal activity, although higher concentrations were needed compared to sertaconazole nitrate. Terbinafine was highly effective against most dermatophytes, but higher concentrations were required to kill the resistant strain Trichophyton indotineae. Sertaconazole nitrate, ciclopirox olamine, and terbinafine had no negative effects on full skin models. Sertaconazole nitrate reduced the growth of fungal and yeast spores over 72 h. Ciclopirox olamine and terbinafine also inhibited the growth of dermatophytes and molds but had significantly lower effects on the yeast. Sertaconazole nitrate might have advantages over the commonly used antifungals ciclopirox olamine and terbinafine in combating resting spores, which persist in the tissues, and thus in the therapy of recurring dermatomycoses.


Subject(s)
Antifungal Agents/pharmacology , Dermatomycoses/drug therapy , Spores, Fungal/drug effects , Antifungal Agents/therapeutic use , Candida albicans/drug effects , Candida parapsilosis/drug effects , Cell Survival , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Dermatomycoses/microbiology , Epidermophyton/drug effects , Fibroblasts , Humans , Imaging, Three-Dimensional , Imidazoles/pharmacology , Imidazoles/therapeutic use , Inhibitory Concentration 50 , Keratinocytes , Lasers , Microbial Sensitivity Tests , Nephelometry and Turbidimetry/methods , Scopulariopsis/drug effects , Terbinafine/pharmacology , Terbinafine/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use , Trichophyton/drug effects
14.
BMC Plant Biol ; 22(1): 17, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34986803

ABSTRACT

BACKGROUND: The elemental defense hypothesis states a new defensive strategy that hyperaccumulators defense against herbivores or pathogens attacks by accumulating heavy metals. Brassica juncea has an excellent ability of cadmium (Cd) accumulation. However, the elemental defense effect and its regulation mechanism in B. juncea remain unclear. RESULTS: In this study, we profiled the elemental defense effect and the molecular regulatory mechanism in Cd-accumulated B. juncea after Alternaria brassicicola infection. B. juncea treated with 180 mg Kg- 1 DW CdCl2 2.5H2O exhibited obvious elemental defense effect after 72 h of infection with A. brassicicola. The expression of some defense-related genes including BjNPR1, BjPR12, BjPR2, and stress-related miRNAs (miR156, miR397, miR398a, miR398b/c, miR408, miR395a, miR395b, miR396a, and miR396b) were remarkably elevated during elemental defense in B. juncea. CONCLUSIONS: The results indicate that Cd-accumulated B. juncea may defend against pathogens by coordinating salicylic acid (SA) and jasmonic acid (JA) mediated systemic acquired resistance (SAR) and elemental defense in a synergistic joint effect. Furthermore, the expression of miRNAs related to heavy metal stress response and disease resistance may regulate the balance between pathogen defense and heavy metal stress-responsive in B. juncea. The findings provide experimental evidence for the elemental defense hypothesis in plants from the perspectives of phytohormones, defense-related genes, and miRNAs.


Subject(s)
Alternaria/physiology , Cadmium/pharmacology , Mustard Plant/immunology , Plant Diseases/immunology , Alternaria/drug effects , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , MicroRNAs/metabolism , Molecular Sequence Annotation , Mustard Plant/drug effects , Mustard Plant/genetics , Mustard Plant/microbiology , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Leaves , RNA, Plant/metabolism , Salicylic Acid/metabolism , Spores, Fungal/drug effects
15.
ACS Appl Mater Interfaces ; 13(37): 43975-43983, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34514773

ABSTRACT

As emerging chemical-free and eco-friendly technologies, nonthermal (gas discharge) plasma and (liquid phase) plasma-activated water (PAW) offer exceptional microbial disinfection solutions for biological, medical, environmental, and agricultural applications. Herein, we present electrohydraulic streamer discharge plasma (ESDP), which combines streamer discharge plasma (SDP) and PAW generated at a gas-liquid interface, to sterilize Chinese kale (Brassica oleracea var. alboglabra) seeds contaminated with Alternaria brassicicola (A. brassicicola). The results showed that the ESDP treatment of A. brassicicola-inoculated seeds provides a ∼75% reduction of A. brassicicola (incident percentage) compared with nontreated seeds. Likewise, the healthy seedling percentage of the plasma-treated seeds was significantly improved to ∼70%, while that of the nontreated seeds remained at ∼15%. A microscopic examination was performed, and it confirmed that ESDP can damage the A. brassicicola spores attached to Chinese kale seeds and lead to severe morphological abnormalities after treatment. Also, an electric field simulation was performed, and it indicated that the strongly localized electric field at the liquid-gas interface on the seed surface boundary had initiated local breakdown of the gas at the air-liquid interface, resulting in exceptional physical-chemical reactions for antimicrobial efficacy beyond typical plasma treatments. Moreover, the optical emission spectra and physicochemical properties (pH, conductivity, and oxidation-reduction potential) showed that inactivation is mainly associated with the reactive oxygen-nitrogen species in the liquid and gas phases. We believe that this work is of great interest when using electrical discharge plasma on liquid interfaces in food, agricultural, and medical industries.


Subject(s)
Alternaria/drug effects , Disinfectants/toxicity , Disinfection/methods , Plasma Gases/toxicity , Brassica/microbiology , Cell Survival/drug effects , Seeds/microbiology , Spores, Fungal/drug effects
16.
World J Microbiol Biotechnol ; 37(9): 159, 2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34420104

ABSTRACT

Botrytis cinerea, the causal agent of gray mold is one of the major devastating fungal pathogens that occurs in strawberry cultivation and leads to massive losses. Due to the rapid emergence of resistant strains in recent years, an ecofriendly disease management strategy needs to be developed to control this aggressive pathogen. Bacillus velezensis CE 100 exhibited strong antagonistic activity with 53.05% against B. cinerea by dual culture method. In the present study, 50% of culture filtrate supplemented into PDA medium absolutely inhibited mycelial growth of B. cinerea whereas the highest concentration (960 mg/L) of different crude extracts including ethyl acetate, chloroform, and n-butanol crude extracts of B. velezensis CE 100, strongly inhibited mycelial growth of B. cinerea with the highest inhibition of 79.26%, 70.21% and 69.59% respectively, resulting in severe damage to hyphal structures with bulging and swellings. Hence, the antifungal compound responsible was progressively separated from ethyl acetate crude extract using medium pressure liquid chromatography. The purified compound was identified as methyl hippurate by nuclear magnetic resonance and mass spectrometry. The inhibitory effect of methyl hippurate on both spore germination and mycelial growth of B. cinerea was revealed by its dose-dependent pattern. The spore germination rate was completely restricted at a concentration of 3 mg/mL of methyl hippurate whereas no mycelial growth was observed in agar medium supplemented with 4 mg/mL and 6 mg/mL of methyl hippurate by poisoned food method. Microscopic imaging revealed that the morphologies of spores were severely altered by long-time exposure to methyl hippurate at concentrations of 1 mg/mL, 2 mg/mL and 3 mg/mL and hyphae of B. cinerea were severely deformed by exposure to methyl hippurate at concentrations of 2 mg/mL, 4 mg/mL and 6 mg/mL. No significant inhibition on tomato seed germination was observed in treatments with methyl hippurate (2 mg/mL) for both 6 h and 12 h soaking period as compared to the controls. Based on these results, B. velezensis CE 100 could be considered a potential agent for development of environmentally friendly disease control strategies as a consequence of the synergetic interactions of diverse crude metabolites and methyl hippurate.


Subject(s)
Bacillus/chemistry , Botrytis/drug effects , Fungicides, Industrial/pharmacology , Hippurates/pharmacology , Bacillus/metabolism , Botrytis/growth & development , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Fungicides, Industrial/metabolism , Hippurates/chemistry , Hippurates/isolation & purification , Hippurates/metabolism , Hyphae/drug effects , Hyphae/growth & development , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Spores, Fungal/drug effects , Spores, Fungal/growth & development
17.
mSphere ; 6(4): e0053921, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34406854

ABSTRACT

Treatment of invasive mold infections is limited by the lack of adequate drug options that are effective against these fatal infections. High-throughput screening of molds using traditional antifungal assays of growth is problematic and has greatly limited our ability to identify new mold-active agents. Here, we present a high-throughput screening platform for use with Aspergillus fumigatus, the most common causative agent of invasive mold infections, for the discovery of novel mold-active antifungals. This assay detects cell lysis through the release of the cytosolic enzyme adenylate kinase and, thus, is not dependent on changes in biomass or metabolism to detect antifungal activity. The ability to specifically detect cell lysis is a unique aspect of this assay that allows identification of molecules that disrupt fungal cell integrity, such as cell wall-active molecules. We also found that germinating A. fumigatus conidia release low levels of adenylate kinase and that a reduction in this background allowed us to identify molecules that inhibit conidial germination, expanding the potential for discovery of novel antifungal compounds. Here, we describe the validation of this assay and proof-of-concept pilot screens that identified a novel antifungal compound, PIK-75, that disrupts cell wall integrity. This screening assay provides a novel platform for high-throughput screens with A. fumigatus for the identification of anti-mold drugs. IMPORTANCE Fungal infections caused by molds have the highest mortality rates of human fungal infections. These devastating infections are hard to treat and available antifungal drugs are often not effective. Therefore, the identification of new antifungal drugs with mold activity is critical. Drug screening with molds is challenging and there are limited assays available to identify new antifungal compounds directly with these organisms. Here, we present an assay suitable for use for high-throughput screening with a common mold pathogen. This assay has exciting future potential for the identification of new drugs to treat these fatal infections.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , High-Throughput Screening Assays/methods , Adenylate Kinase/antagonists & inhibitors , Aspergillosis/drug therapy , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/growth & development , Cell Wall/drug effects , Drug Evaluation, Preclinical/methods , Humans , Proof of Concept Study , Small Molecule Libraries/pharmacology , Spores, Fungal/drug effects , Spores, Fungal/enzymology
18.
Food Microbiol ; 100: 103850, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34416954

ABSTRACT

This study aimed at assessing the impact of the physiological state of fungal spores on inactivation by sodium hypochlorite, 0.1% and 0.2% active chlorine, and 3% hydrogen peroxide. In this context, two physiological states were compared for 4 fungal species (5 strains). The first physiological state corresponded to fungal spores produced at 0.99 aw and harvested using an aqueous solution (laboratory conditions), while the second one corresponded to fungal spores produced under a moderate water stress (0.95 aw) and dry-harvested (mechanical harvesting without use of any water, mimicking food plant conditions). Aspergillus flavus "food plant" conidia were more resistant to all tested fungicide molecules than the "laboratory" ones. The same phenomenon was observed for Penicillium commune UBOCC-A-116003 conidia treated with hydrogen peroxide. However, this isolate did not exhibit any inactivation difference between "laboratory" and "food plant" conidia treated with sodium hypochlorite. Similarly, the physiological state of Cladosporium cladosporioides conidia did not impact the efficacy of the tested biocides. P. commune UBOCC-A-112059 "food plant" and "laboratory" conidia were more resistant to hydrogen peroxide and sodium hypochlorite, respectively. As for Mucor circinelloides, "laboratory" spores were more resistant to all disinfectant than the "food plant" ones. Noteworthy, regardless of the physiological state, all M. circinelloides and C. cladosporioides conidia were inactivated for 5 min treatment at 0.2% active chlorine and for 2.5 min treatment at 0.1% active chlorine, while the conidia of all the other species remained viable for these treatments. The obtained data indicate that the efficacy of disinfectant molecules depends not only on the encountered fungal species and its intraspecific diversity but also on the spore physiological state.


Subject(s)
Chlorine/pharmacology , Disinfectants/pharmacology , Disinfection/methods , Fungi/growth & development , Hydrogen Peroxide/pharmacology , Spores, Fungal/drug effects , Fungi/drug effects , Spores, Fungal/growth & development
19.
J Basic Microbiol ; 61(9): 808-813, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34309880

ABSTRACT

Granular microsclerotial formulations of entomopathogenic fungi deserve attention because of their post-application, in situ production of new conidia that enhance and prolong mycoinsecticidal efficacy against a target pest insect. Because high ambient moisture is a crucial condition to induce fungal development and conidiogenesis on granules, we tested the impacts of the additions of three humectants-glycerin, propylene glycol, and polyethylene glycol 400-on water absorption by pellets incorporating microsclerotia of Metarhizium humberi IP 46 with microcrystalline cellulose or vermiculite carriers, and on the production of infective conidia of IP 46 microsclerotia in ambient humidities suboptimal for routine conidiogenesis. Glycerin facilitated greater and faster absorption of water than the other humectants. Microcrystalline cellulose absorbed low quantities of water without any added humectant whereas vermiculite did not. IP 46 did not grow or sporulate on pellets prepared with or without glycerin at 86% relative humidity (RH) or on control pellets without glycerin at 91% RH; conidial production on pellets prepared with vermiculite or microcrystalline cellulose and 10% glycerin reached 1.1 × 105 conidia/mg and 1 × 105 conidia/mg, respectively, after 20 days of exposure at 91% RH. Hence, these results strongly support glycerin as a suitable humectant for granular microsclerotial formulations of this fungus.


Subject(s)
Hygroscopic Agents/pharmacology , Metarhizium/drug effects , Metarhizium/physiology , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Glycerol/pharmacology , Hygroscopic Agents/classification , Pest Control, Biological , Propylene Glycol/pharmacology , Water/metabolism
20.
mBio ; 12(4): e0167221, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34311572

ABSTRACT

There is a critical need for new antifungal drugs; however, the lack of available fungus-specific targets is a major hurdle in the development of antifungal therapeutics. Spore germination is a differentiation process absent in humans that could harbor uncharacterized fungus-specific targets. To capitalize on this possibility, we developed novel phenotypic assays to identify and characterize inhibitors of spore germination of the human fungal pathogen Cryptococcus. Using these assays, we carried out a high-throughput screen of ∼75,000 drug-like small molecules and identified and characterized 191 novel inhibitors of spore germination, many of which also inhibited yeast replication and demonstrated low cytotoxicity against mammalian cells. Using an automated, microscopy-based, quantitative germination assay (QGA), we discovered that germinating spore populations can exhibit unique phenotypes in response to chemical inhibitors. Through the characterization of these spore population dynamics in the presence of the newly identified inhibitors, we classified 6 distinct phenotypes based on differences in germination synchronicity, germination rates, and overall population behavior. Similar chemical phenotypes were induced by inhibitors that targeted the same cellular function or had shared substructures. Leveraging these features, we used QGAs to identify outliers among compounds that fell into similar structural groups and thus refined relevant structural moieties, facilitating target identification. This approach led to the identification of complex II of the electron transport chain as the putative target of a promising structural cluster of germination inhibitory compounds. These inhibitors showed high potency against Cryptococcus spore germination while maintaining low cytotoxicity against mammalian cells, making them prime candidates for development into novel antifungal therapeutics. IMPORTANCE Fungal pathogens cause 1.5 million deaths annually, and there is a critical need for new antifungal drugs. However, humans and fungi are very similar on a molecular level, and so many drugs that kill fungi also damage human cells, leading to extreme side effects, including death. The lack of fungus-specific targets is a major hurdle in the development of antifungal therapeutics. Spore germination is a process absent in humans that could harbor fungus-specific targets. To capitalize on this possibility, we developed new assays to identify and characterize inhibitors of spore germination of the human fungal pathogen Cryptococcus. Using these assays, we identified and characterized 191 novel inhibitors of spore germination. These inhibitors showed high potency against Cryptococcus spore germination while maintaining low cytotoxicity against mammalian cells, making them prime candidates for development into novel antifungal therapeutics.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Cryptococcosis/drug therapy , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/pathogenicity , Drug Discovery , High-Throughput Screening Assays , Humans , Phenotype , Spores, Fungal/classification , Spores, Fungal/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL