Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70.136
Filter
Add more filters








Publication year range
1.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824241

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Subject(s)
Cell Differentiation , Dental Papilla , Light , Odontogenesis , Osteogenesis , RNA, Circular , Stem Cells , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Odontogenesis/genetics , Dental Papilla/cytology , Dental Papilla/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Cells, Cultured , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation/radiation effects , Blue Light
2.
J Transl Med ; 22(1): 526, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822352

ABSTRACT

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Subject(s)
Antigens, CD34 , Neutrophils , Humans , Neutrophils/metabolism , Neutrophils/cytology , Antigens, CD34/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Proteomics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Gene Editing , Cell Degranulation , Stem Cells/metabolism , Stem Cells/cytology , Cytokines/metabolism , Phenotype
3.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822901

ABSTRACT

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Subject(s)
Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
4.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829121

ABSTRACT

In the realm of regenerative medicine and therapeutic applications, stem cell research is rapidly gaining traction. Dental pulp stem cells (DPSCs), which are present in both deciduous and permanent teeth, have emerged as a vital stem cell source due to their accessibility, adaptability, and innate differentiation capabilities. DPSCs offer a readily available and abundant reservoir of mesenchymal stem cells, showcasing impressive versatility and potential, particularly for regenerative purposes. Despite their promise, the main hurdle lies in effectively isolating and characterizing DPSCs, given their representation as a minute fraction within dental pulp cells. Equally crucial is the proper preservation of this invaluable cellular resource. The two predominant methods for DPSC isolation are enzymatic digestion (ED) and outgrowth from tissue explants (OG), often referred to as spontaneous growth. This protocol concentrates primarily on the enzymatic digestion approach for DPSC isolation, intricately detailing the steps encompassing extraction, in-lab processing, and cell preservation. Beyond extraction and preservation, the protocol delves into the differentiation prowess of DPSCs. Specifically, it outlines the procedures employed to induce these stem cells to differentiate into adipocytes, osteoblasts, and chondrocytes, showcasing their multipotent attributes. Subsequent utilization of colorimetric staining techniques facilitates accurate visualization and confirmation of successful differentiation, thereby validating the caliber and functionality of the isolated DPSCs. This comprehensive protocol functions as a blueprint encompassing the entire spectrum of dental pulp stem cell extraction, cultivation, preservation, and characterization. It underscores the substantial potential harbored by DPSCs, propelling forward stem cell exploration and holding promise for future regenerative and therapeutic breakthroughs.


Subject(s)
Dental Pulp , Stem Cells , Tooth, Deciduous , Dental Pulp/cytology , Humans , Stem Cells/cytology , Tooth, Deciduous/cytology , Dentition, Permanent , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Separation/methods
5.
Sci Rep ; 14(1): 12750, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830952

ABSTRACT

The current practice of restoring the anatomical structure in the treatment of pelvic floor dysfunction includes implantation of synthetic sling, which carries potential complications. This study aimed to develop biological substitutes to improve tissue function using scaffolds as a support to the host cells, through formation of new tissue. Human amniotic fluid stem cells (hAFSCs) were seeded on synthetic mesh-scaffold of AlloDerm Regenerative Tissue Matrix (RTM), Poly-DL-lactico-glycolic acid (PLGA) mesh (VICRYL) and Polydioxanone (PDS) meshes. In vitro study evaluates the metabolic activity of hAFSCs seeded mesh-scaffolds. In vivo study involving Sprague-Dawley rats was performed by assigning into 7 groups of sham control with fascia operation, AlloDerm implant, PDS implant, PLGA implant, AlloDerm harvest with hAFSC (AlloDerm-SC), PDS harvest with hAFSC(PDS-SC) and PLGS harvest with hAFSC (PGLA-SC). In vitro study reveals cell viability and proliferation of hAFSC on mesh scaffolds varies between meshes, with AlloDerm growing the fastest. The biomechanical properties of tissue-mesh-complex tension strength declined over time, showing highest tension strength on week-1, deteriorated similar to control group on week-12. All hAFSC-seeded mesh provides higher tension strength, compared to without. This study shed the potential of synthetic mesh as a scaffold for hAFSC for the surgical treatment of pelvic floor dysfunction.


Subject(s)
Amniotic Fluid , Rats, Sprague-Dawley , Stem Cells , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Humans , Amniotic Fluid/cytology , Rats , Stem Cells/cytology , Female , Plastic Surgery Procedures/methods , Tissue Engineering/methods , Surgical Mesh , Cell Proliferation , Pelvic Floor/surgery , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
6.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835038

ABSTRACT

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Integrin alpha6 , Tumor Suppressor Protein p53 , Animals , Integrin alpha6/metabolism , Integrin alpha6/genetics , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation , Stem Cells/metabolism , Gene Deletion , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
7.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832825

ABSTRACT

Germ stem cells in Drosophila reside within a specialized stem cell niche, but the effects of stress on these stem cell populations have been elusive. In a new study, Roach and Lenhart show that repeated mating stress induces reversible changes in the germ stem cell niche. To know more about their work, we spoke to first author, Tiffany Roach, and corresponding author, Kari Lenhart, Principal Investigator at Drexel University in Philadelphia, USA.


Subject(s)
Germ Cells , Animals , History, 21st Century , Germ Cells/cytology , History, 20th Century , Stem Cell Niche/physiology , Drosophila , Humans , Developmental Biology/history , Stem Cells/cytology
8.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832826

ABSTRACT

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Subject(s)
Cytokinesis , Drosophila melanogaster , Ecdysone , Germ Cells , Testis , Animals , Male , Ecdysone/metabolism , Testis/metabolism , Female , Drosophila melanogaster/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Stem Cell Niche , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation , Signal Transduction , Drosophila Proteins/metabolism , Drosophila Proteins/genetics
9.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836669

ABSTRACT

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Subject(s)
Biocompatible Materials , Cell Differentiation , Cell Proliferation , Dental Pulp , Durapatite , Odontoblasts , Osteoblasts , Stem Cells , Tissue Scaffolds , Dental Pulp/cytology , Humans , Cell Differentiation/drug effects , Odontoblasts/cytology , Odontoblasts/drug effects , Odontoblasts/metabolism , Tissue Scaffolds/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Aniline Compounds/pharmacology , Aniline Compounds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Survival/drug effects , Cells, Cultured , Tissue Engineering/methods
10.
Arch Dermatol Res ; 316(6): 330, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837051

ABSTRACT

Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary cicatricial alopecia that cause a major impact on quality of life due to irreversible hair loss and symptoms as itching, burning and pain. They are characterized by permanent loss of hair follicle stem cells (HFSCs) by pathomechanisms still poorly understood, resulting in poor efficacy of currently available treatments. Caveolae are flask-shaped lipid rafts invaginated within the plasma membrane of multiple cell types. Although their role in the HF physiology and pathophysiology is relatively unknown, we have previously demonstrated that the primary structural component of caveolae (caveolin-1 or Cav1) is upregulated in FFA. Thus, we propose to investigate the expression and localization of caveolae-associated structural proteins (Cav1, Cav2, and Cavin-1) and HFSCs (identified by K15) in both LPP and FFA. We analyzed 4 patients with LPP biopsied in affected and non-affected (NA) scalp, 4 patients with FFA biopsied in affected scalp and 4 healthy controls. Affected scalp of LPP and FFA demonstrated increased levels of Cav1 and Cavin-1 compared with HC and LPP-NA. Moreover, Cav1, Cav2 and Cavin1 all exhibit high colocalization with K15 and their expression appears to be negatively correlated, supporting the hypothesis that these proteins are important players in LPP/FFA and may serve as therapeutic targets in future treatments.


Subject(s)
Alopecia , Caveolae , Caveolin 1 , Hair Follicle , Lichen Planus , Up-Regulation , Humans , Alopecia/pathology , Alopecia/metabolism , Hair Follicle/pathology , Hair Follicle/metabolism , Lichen Planus/metabolism , Lichen Planus/pathology , Middle Aged , Female , Caveolin 1/metabolism , Male , Caveolae/metabolism , Scalp/pathology , Adult , Keratin-15/metabolism , Aged , Biopsy , Fibrosis , Stem Cells/metabolism , Stem Cells/pathology , RNA-Binding Proteins/metabolism
12.
Stem Cell Res Ther ; 15(1): 137, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735979

ABSTRACT

Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.


Subject(s)
Adipose Tissue , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Secretome/metabolism , Animals , Stem Cell Transplantation/methods
13.
Vestn Oftalmol ; 140(2. Vyp. 2): 80-89, 2024.
Article in Russian | MEDLINE | ID: mdl-38739135

ABSTRACT

Limbal stem cell deficiency (LSCD) is one of the leading factors negatively affecting the success of keratoplasty, and its treatment remains an urgent problem in ophthalmology. With the development of regenerative medicine, one of the promising approaches is the transplantation of tissue-engineered constructs from cultured limbal stem cells (LSCs) in biopolymer carriers. PURPOSE: This study was conducted to develop an experimental model of LSCD and evaluate the effectiveness of transplantation of a tissue-engineered construct consisting of cultured cells containing a population of LSCs and a collagen carrier. MATERIAL AND METHODS: The study was performed on 12 rabbits and included several stages. At the first stage, the physiological effects of collagen matrix implantation into the limbal zone were studied. At the second stage, tissue-engineered constructs consisting of LSCs on a collagen matrix were formed and their effect on the regeneration processes in the experimental LSCD model was analyzed. The animals were divided into 2 groups: surgical treatment (transplantation of the tissue-engineered construct) was used in the experimental group, and conservative treatment was used in the control group. Slit-lamp biomicroscopy with photo-registration, fluorescein corneal staining, optical coherence tomography of the anterior segment of the eye, and impression cytology were used to assess the results. RESULTS: No side reactions were observed after implantation of the collagen matrix into the limbal zone. One month after surgical treatment of the LSCD model in the experimental group, complete epithelization with minor manifestations of epitheliopathy was observed. In the control group, erosion of the corneal epithelium was noted. The time of corneal epithelization in the experimental and control groups was 9.2±2.95 and 46.20±12.07 days, respectively (p=0.139). According to the data of impression cytology, in the experimental group there were no goblet cells in the central part of the cornea, which indicates the restoration of corneal type epithelial cells, in contrast to the control group. CONCLUSION: Transplantation of a tissue-engineered construct from cultured limbal cells on a collagen membrane should be considered as a promising method for the treatment of limbal stem cell deficiency.


Subject(s)
Corneal Diseases , Disease Models, Animal , Limbus Corneae , Stem Cell Transplantation , Stem Cells , Tissue Engineering , Rabbits , Animals , Tissue Engineering/methods , Limbus Corneae/cytology , Corneal Diseases/therapy , Corneal Diseases/surgery , Stem Cell Transplantation/methods , Cells, Cultured , Tomography, Optical Coherence/methods , Treatment Outcome , Limbal Stem Cell Deficiency
14.
Cell Biochem Funct ; 42(4): e4058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783647

ABSTRACT

We aimed to evaluate the materials based on 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane (Super-bond [SB]) and nano hydroxyapatite (naHAp) for the repair of perforation at pulp chamber floor (PPF) in vitro and in vivo models. SB and naHAp were mixed in the mass ratio of 10% or 30% to produce naHAp/SB. Human periodontal ligament stem cells (HPDLSCs) were cultured on resin discs of SB or naHAp/SB to analyze the effects of naHAp/SB on cell adhesion, proliferation, and cementoblastic differentiation. A rat PPF model was treated with SB or naHAp/SB to examine the effects of naHAp/SB on the healing of defected cementum and periodontal ligament (PDL) at the site of PPF. HPDLSCs were spindle-shaped and adhered to all resin discs. Changing the resin from SB to naHAp/SB did not significantly alter cell proliferation. Both 10% and 30% naHAp/SB were more effective than SB in promoting cementoblastic differentiation of HPDLSCs. In the rat PPF model, 30% naHAp/SB was more effective than SB in promoting the formation Sharpey's fiber-like structures with expression of the PDL-related marker and cementum-like structures with expression of cementum-related markers. In conclusion, 30% naHAp/SB can be the new restorative material for PPF because it exhibited the abilities of adhering to dentin and healing of defected periodontal tissue.


Subject(s)
Boron Compounds , Durapatite , Methacrylates , Periodontal Ligament , Animals , Rats , Humans , Durapatite/chemistry , Durapatite/pharmacology , Periodontal Ligament/drug effects , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Boron Compounds/pharmacology , Boron Compounds/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Cell Differentiation/drug effects , Wound Healing/drug effects , Male , Cell Proliferation/drug effects , Dental Pulp Cavity/metabolism , Dental Pulp Cavity/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured , Rats, Sprague-Dawley , Methylmethacrylates/chemistry , Methylmethacrylates/pharmacology , Cell Adhesion/drug effects
15.
Bone ; 184: 117113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703937

ABSTRACT

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a multi-functional, serine/threonine protein kinase with predominant roles in inflammation, systemic energy metabolism, and bone remodeling. We previously reported that global ablation of CaMKK2 or its systemic pharmacological inhibition led to bone mass accrual in mice by stimulating osteoblasts and inhibiting osteoclasts. However, a direct, cell-intrinsic role for the kinase in the osteoblast lineage has not been established. Here we report that conditional deletion of CaMKK2 from osteoprogenitors, using the Osterix 1 (Osx1) - GFP::Cre (tetracycline-off) mouse line, resulted in increased trabecular bone mass due to an acute stimulation of osteoblast function in male and female mice. The acute simulation of osteoblasts and bone formation following conditional ablation of osteoprogenitor-derived CaMKK2 was sustained only in female mice. Periosteal bone formation at the cortical bone was enhanced only in male conditional knockout mice without altering cortical bone mass or strength. Prolonged deletion of CaMKK2 in early osteoblasts was accompanied by a stimulation of osteoclasts in both sexes, indicating a coupling effect. Notably, alterations in trabecular and cortical bone mass were absent in the doxycycline-removed "Cre-only" Osx1-GFP::Cre mice. Thus, the increase in osteoblast function at the trabecular and cortical bone surfaces following the conditional deletion of CaMKK2 in osteoprogenitors is indicative of a direct but sex-divergent role for the kinase in osteoblasts.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Osteoblasts , Sp7 Transcription Factor , Animals , Osteoblasts/metabolism , Female , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Male , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Osteogenesis/physiology , Sex Characteristics , Mice , Mice, Knockout , Osteoclasts/metabolism , Stem Cells/metabolism , Gene Deletion
16.
J Dent Res ; 103(6): 652-661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38716736

ABSTRACT

The process of neovascularization during cell-based pulp regeneration is difficult to study. Here we developed a tube model that simulates root canal space and allows direct visualization of the vascularization process in vitro. Endothelial-like cells (ECs) derived from guiding human dental pulp stem cells (DPSCs) into expressing endothelial cell markers CD144, vWF, VEGFR1, and VEGFR2 were used. Human microvascular endothelial cells (hMVECs) were used as a positive control. DPSC-ECs formed tubules on Matrigel similar to hMVECs. Cells were mixed in fibrinogen/thrombin or mouse blood and seeded into wells of 96-well plates or injected into a tapered plastic tube (14 mm in length and 1 or 2 mm diameter of the apex opening) with the larger end sealed with MTA to simulate root canal space. Cells/gels in wells or tubes were incubated for various times in vitro and observed under the microscope for morphological changes. Samples were then fixed and processed for histological analysis to determine vessel formation. Vessel-like networks were observed in culture from 1 to 3 d after cell seeding. Cells/gels in 96-well plates were maintained up to 25 d. Histologically, both hMVECs and DPSC-ECs in 96-well plates or tubes showed intracellular vacuole formation. Some cells showed merged large vacuoles indicating the lumenization. Tubular structures were also observed resembling blood vessels. Cells appeared healthy throughout the tube except some samples (1 mm apical diameter) in the coronal third. Histological analysis also showed pulp-like soft tissue throughout the tube samples with vascular-like structures. hMVECs formed larger vascular lumen size than DPSC-ECs while the latter tended to have more lumen and tubular structure counts. We conclude that DPSC-ECs can form vascular structures and sustained in the 3-dimensional fibrin gel system in vitro. The tube model appears to be a proper and simple system simulating the root canal space for vascular formation and pulp regeneration studies.


Subject(s)
Dental Pulp , Drug Combinations , Endothelial Cells , Neovascularization, Physiologic , Proteoglycans , Regeneration , Stem Cells , Dental Pulp/cytology , Dental Pulp/blood supply , Dental Pulp/physiology , Neovascularization, Physiologic/physiology , Animals , Mice , Humans , Regeneration/physiology , Endothelial Cells/physiology , Stem Cells/physiology , Collagen , Cell Culture Techniques , Laminin , von Willebrand Factor/analysis , Vascular Endothelial Growth Factor Receptor-2 , Fibrinogen , Dental Pulp Cavity , Calcium Compounds , Aluminum Compounds , Root Canal Filling Materials , Microvessels/cytology , Cells, Cultured , Oxides , Silicates , CD146 Antigen
17.
Cell Biol Toxicol ; 40(1): 39, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789630

ABSTRACT

Hypertrophic scar (HS) is characterized by excessive collagen deposition and myofibroblasts activation. Endothelial-to-mesenchymal transition (EndoMT) and oxidative stress were pivotal in skin fibrosis process. Exosomes derived from adipose tissue-derived stem cells (ADSC-Exo) have the potential to attenuate EndoMT and inhibit fibrosis. The study revealed reactive oxygen species (ROS) levels were increased during EndoMT occurrence of dermal vasculature of HS. The morphology of endothelial cells exposure to H2O2, serving as an in vitro model of oxidative stress damage, transitioned from a cobblestone-like appearance to a spindle-like shape. Additionally, the levels of endothelial markers decreased in H2O2-treated endothelial cell, while the expression of fibrotic markers increased. Furthermore, H2O2 facilitated the accumulation of ROS, inhibited cell proliferation, retarded its migration and suppressed tube formation in endothelial cell. However, ADSC-Exo counteracted the biological effects induced by H2O2. Subsequently, miRNAs sequencing analysis revealed the significance of mir-486-3p in endothelial cell exposed to H2O2 and ADSC-Exo. Mir-486-3p overexpression enhanced the acceleration of EndoMT, its inhibitors represented the attenuation of EndoMT. Meanwhile, the target regulatory relationship was observed between mir-486-3p and Sirt6, whereby Sirt6 exerted its anti-EndoMT effect through Smad2/3 signaling pathway. Besides, our research had successfully demonstrated the impact of ADSC-Exo and mir-486-3p on animal models. These findings of our study collectively elucidated that ADSC-Exo effectively alleviated H2O2-induced ROS and EndoMT by inhibiting the mir-486-3p/Sirt6/Smad axis.


Subject(s)
Adipose Tissue , Exosomes , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , MicroRNAs , Oxidative Stress , Signal Transduction , Sirtuins , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Oxidative Stress/drug effects , Sirtuins/metabolism , Sirtuins/genetics , Signal Transduction/drug effects , Exosomes/metabolism , Exosomes/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Adipose Tissue/metabolism , Reactive Oxygen Species/metabolism , Smad Proteins/metabolism , Epithelial-Mesenchymal Transition/drug effects , Cell Proliferation/drug effects , Smad2 Protein/metabolism , Animals , Stem Cells/metabolism , Stem Cells/drug effects , Cell Movement/drug effects
18.
Nat Commun ; 15(1): 3873, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719882

ABSTRACT

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Subject(s)
Aging , MicroRNAs , Neuroglia , Transcription Factors , Humans , Neuroglia/metabolism , Neuroglia/cytology , Aging/genetics , Aging/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/cytology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Gene Regulatory Networks , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Gene Expression Profiling
19.
Cell Biochem Funct ; 42(4): e4064, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807466

ABSTRACT

Human dental pulp stem cells are a potentially useful resource for cell-based therapies and tissue repair in dental and medical applications. However, the primary culture of isolated dental pulp stem cells has notably been limited. A major requirement of an ideal human dental pulp stem cell culture system is the preservation of efficient proliferation and innate stemness over prolonged passaging, while also ensuring ease of handling through standard, user-friendly culture methods. In this study, we have engineered a novel human dental pulp stem cell line, distinguished by the constitutive expression of telomerase reverse transcriptase (TERT), and the conditional expression of the R24C mutant cyclin-dependent kinase 4 (CDK4R24C) and Cyclin D1. We have named this cell line Tet-off K4DT hDPSCs. Furthermore, we have conducted a comprehensive comparative analysis of their biological attributes in relation to a previously immortalized human dental pulp stem cells, hDPSC-K4DT, which were immortalized by the constitutive expression of CDK4R24C, Cyclin D1 and TERT. In Tet-off K4DT cells, the expression of the K4D genes can be precisely suppressed by the inclusion of doxycycline. Remarkably, Tet-off K4DT cells demonstrated an extended cellular lifespan, increased proliferative capacity, and enhanced osteogenic differentiation potential when compared to K4DT cells. Moreover, Tet-off K4DT cells had no observable genomic aberrations and also displayed a sustained expression of stem cell markers even at relatively advanced passages. Taken together, the establishment of this new cell line holds immense promise as powerful experimental tool for both fundamental and applied research involving dental pulp stem cells.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase 4 , Dental Pulp , Doxycycline , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/metabolism , Cell Proliferation/drug effects , Doxycycline/pharmacology , Stem Cells/metabolism , Stem Cells/cytology , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Telomerase/metabolism , Telomerase/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Cell Differentiation/drug effects , Cells, Cultured
20.
Aging (Albany NY) ; 16(9): 7535-7552, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728252

ABSTRACT

Adipose tissue regulates metabolic balance, but aging disrupts it, shifting fat from insulin-sensitive subcutaneous to insulin-resistant visceral depots, impacting overall metabolic health. Adipose-derived stem cells (ASCs) are crucial for tissue regeneration, but aging diminishes their stemness and regeneration potential. Our findings reveal that aging is associated with a decrease in subcutaneous adipose tissue mass and an increase in the visceral fat depots mass. Aging is associated with increase in adipose tissue fibrosis but no significant change in adipocyte size was observed with age. Long term caloric restriction failed to prevent fibrotic changes but resulted in significant decrease in adipocytes size. Aged subcutaneous ASCs displayed an increased production of ROS. Using mitochondrial membrane activity as an indicator of stem cell quiescence and senescence, we observed a significant decrease in quiescence ASCs with age exclusively in subcutaneous adipose depot. In addition, aged subcutaneous adipose tissue accumulated more senescent ASCs having defective autophagy activity. However, long-term caloric restriction leads to a reduction in mitochondrial activity in ASCs. Furthermore, caloric restriction prevents the accumulation of senescent cells and helps retain autophagy activity in aging ASCs. These results suggest that caloric restriction and caloric restriction mimetics hold promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using controlled interventions in animals and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established approach for enhancing the stemness of aged stem cells.


Subject(s)
Aging , Caloric Restriction , Cellular Senescence , Stem Cells , Subcutaneous Fat , Cellular Senescence/physiology , Animals , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism , Aging/physiology , Stem Cells/metabolism , Mice , Autophagy/physiology , Male , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Adipocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL