Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.404
Filter
1.
Genes Cells ; 29(8): 667-680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39105351

ABSTRACT

In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.


Subject(s)
Autophagy , Gene Expression Regulation, Fungal , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Sulfur , Transcription Factors , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Sulfur/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic
2.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954064

ABSTRACT

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Subject(s)
Hydrogen , Metagenome , Methane , Soil Microbiology , Sulfur , Methane/metabolism , Hydrogen/metabolism , Italy , Sulfur/metabolism , Archaea/genetics , Archaea/classification , Archaea/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Islands , Phylogeny
3.
Bioresour Technol ; 406: 131069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971388

ABSTRACT

The feasibility of inducing simultaneous nitrification and denitrification (SND) by S0 for low carbon to nitrogen (C/N) ratio wastewater remediation was investigated. Compared with S0 and/or organics absent systems (-3.4 %∼5.0 %), the higher nitrogen removal performance (18.2 %∼59.8 %) was achieved with C/N ratios and S0 dosages increasing when S0 and organics added simultaneously. The synergistic effect of S0 and organics stimulated extracellular polymeric substances secretion and weakened intermolecular binding force of S0, facilitating S0 bio-utilization and reducing the external organics requirement. It also promoted microbial metabolism (0.16 âˆ¼ 0.24 µg O2/(g VSS·h)) and ammonia assimilation (5.9 %∼20.5 %), thereby enhancing the capture of organics and providing more electron donors for SND. Furthermore, aerobic denitrifiers (15.91 %∼27.45 %) and aerobic denitrifying (napA and nirS) and ammonia assimilating genes were accumulated by this synergistic effect. This study revealed the mechanism of SND induced by coordination of S0 and organics and provided an innovative strategy for triggering efficient and stable SND.


Subject(s)
Carbon , Denitrification , Nitrification , Nitrogen , Sulfur , Wastewater , Wastewater/chemistry , Nitrogen/metabolism , Sulfur/metabolism , Ammonia/metabolism , Water Purification/methods , Organic Chemicals
4.
Environ Sci Technol ; 58(29): 12989-12999, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38982970

ABSTRACT

The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an R2 value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an R2 value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.


Subject(s)
Carbon , Machine Learning , Nitrogen , Phosphorus , Sulfur , Wastewater , Phosphorus/metabolism , Nitrogen/metabolism , Sulfur/metabolism , Wastewater/chemistry , Carbon/metabolism , Biotransformation , Ecosystem , Waste Disposal, Fluid/methods , Denitrification
5.
Proc Biol Sci ; 291(2027): 20240206, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043235

ABSTRACT

Sulfur (S) is an essential bioelement with vital roles in serving regulatory and catalytic functions and tightly coupled with N and P in plants. However, globally stoichiometric patterns of leaf S and its relationships to leaf N and P are less well studied. We compiled 31 939 records of leaf-based data for 2600 plant species across 6652 sites worldwide. All plant species were divided into different phylogenetic taxa and growth forms. Standard major axis analysis was employed to fit the bivariate element relationships. A phylogenetic linear mixed-effect model and a multiple-regression model were used to partition the variations of bioelements into phylogeny and environments, and then to estimate the importance of environmental variables. Global geometric mean leaf S, N and P concentrations were 1.44, 15.70 and 1.27 mg g-1, respectively, with significant differences among plant groups. Leaf S-N-P positively correlated with each other, ignoring plant groups. The scaling exponents of LN-LS, LP-LS and LN-LP were 0.64, 0.76 and 0.79, respectively, for all species, but differed among plant groups. Both phylogeny and environments regulated the bioelements. The variability, rather than mean temperature, controlled the bioelements. Phylogeny explained more for the concentrations of all the three bioelements than environments, of which S was the one most affected by phylogenetic taxa.


Subject(s)
Nitrogen , Phosphorus , Phylogeny , Plant Leaves , Sulfur , Phosphorus/metabolism , Sulfur/metabolism , Nitrogen/metabolism , Plants , Environment
6.
Amino Acids ; 56(1): 47, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060524

ABSTRACT

sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.


Subject(s)
Leukemia , Humans , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/genetics , Sulfur/metabolism , Animals , Amino Acids/metabolism , Amino Acids, Sulfur/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
7.
Biomolecules ; 14(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062461

ABSTRACT

Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.


Subject(s)
Cysteine , Hydrogen Sulfide , Leukemia , Sulfur , Sulfurtransferases , Humans , Hydrogen Sulfide/metabolism , Leukemia/metabolism , Leukemia/pathology , Cysteine/metabolism , Sulfur/metabolism , Sulfurtransferases/metabolism , Animals
8.
J Environ Manage ; 366: 121877, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018860

ABSTRACT

Sulfur-driven autotrophic denitrification (S0dAD) was employed to remove residual nitrogen from the biological effluent of landfill leachate after partial nitrification and denitrification pretreatment. The performance of S0dAD were assessed with various NOx--N (NO2--N and NO3--N) loadings over a 185-day operational period. The results demonstrated that a notable NOx--N removal efficiency of 97.8 ± 2.0% was achieved under nitrogen removal rates of 0.12 ± 0.02 kg N/(m3· d), leading to total nitrogen concentrations of 8.6 ± 3.8 mg/L in the effluent. Batch experiments revealed competitive utilization of nitrogenous electron acceptors, with NO2--N demonstrating 2-4 times higher denitrification rates than NO3--N under coexistence conditions. Genus-level microbial community identified that Thiobacillus and Sulfurovum was highly enriched with as key denitrifying bacteria in the S0dAD system. These findings provide insights for advanced nitrogen removal coupling S0dAD with partial nitrification and denitrification process for landfill leachate treatment.


Subject(s)
Denitrification , Nitrification , Nitrogen , Sulfur , Water Pollutants, Chemical , Nitrogen/metabolism , Sulfur/metabolism , Water Pollutants, Chemical/metabolism , Autotrophic Processes
9.
Methods Mol Biol ; 2839: 261-289, 2024.
Article in English | MEDLINE | ID: mdl-39008260

ABSTRACT

Iron-sulfur (Fe-S) clusters are essential redox-active metallocofactors participating in electron transfer, radical chemistry, primary metabolism, and gene regulation. Successful trafficking and incorporation of Fe-S clusters into target proteins are critical to proper cellular function. While biophysical studies of isolated Fe-S proteins provide insight into the structure and function of these inorganic cofactors, few strategies currently exist to directly interrogate Fe-S cluster binding within a cellular environment. Here, we describe a chemoproteomic platform to report on Fe-S cluster incorporation and occupancy directly within a native proteome, enabling the characterization of Fe-S biogenesis pathways and the identification of undiscovered Fe-S proteins.


Subject(s)
Iron-Sulfur Proteins , Proteomics , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Proteomics/methods , Protein Binding , Proteome , Iron/metabolism , Sulfur/metabolism , Oxidation-Reduction
10.
Curr Opin Biotechnol ; 88: 103164, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964081

ABSTRACT

The sulfur cycle is a complex biogeochemical cycle characterized by the high variability in the oxidation states of sulfur. While sulfur is essential for life processes, certain sulfur compounds, such as hydrogen sulfide, are toxic to all life forms. Micro-organisms facilitate the sulfur cycle, playing a prominent role even in extreme environments, such as soda lakes, acid mine drainage sites, hot springs, and other harsh habitats. The activity of these micro-organisms presents unique opportunities for mitigating sulfur-based pollution and enhancing the recovery of sulfur and metals. This review highlights the application of sulfur-oxidizing and -reducing micro-organisms in environmental biotechnology through three illustrative examples. Additionally, it discusses the challenges, recent trends, and prospects associated with these applications.


Subject(s)
Biotechnology , Sulfur , Biotechnology/methods , Sulfur/metabolism , Oxidation-Reduction , Bacteria/metabolism , Biodegradation, Environmental
11.
Dalton Trans ; 53(30): 12773-12782, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39023184

ABSTRACT

In mitochondria, the detoxification of molar excess H2S as polysulfide proceeded via an oxidation process promoted by Cu/Zn containing superoxide dismutase (SOD1) enzyme, which has been very recently reported as the alternative enzyme for cytosolic H2S oxidation. Herein, we present Ni(II) complexes bearing the terminal SH group as a synthetic functional analogue for the sulfide oxidase function of SOD1. Synthesis, crystal structure and complete spectroscopic characterization of two sets of complexes, [NiLOMe/tBu(PPh3)] (2OMe/tBu) and tetraethyl salt of [NiLOMe/tBu(SH)]-1 (3OMe/tBu), were described (LOMe = (E)-2-methoxy-6-(((2-sulfidophenyl)imino)methyl)phenolate and LtBu = (E)-2,4-di-tert-butyl-6-(((2-sulfidophenyl)imino)methyl)phenolate). Under anaerobic conditions, 3OMe/tBu responded to a catalytic sulfur atom transfer (SAT) reaction with PPh3 to produce SPPh3. The SAT reaction was analyzed using detailed studies of 1H and 31P NMR spectra. Finally, the SAT reactivity pattern was compared with the same in the native enzyme of SOD1.


Subject(s)
Coordination Complexes , Nickel , Sulfur , Nickel/chemistry , Nickel/metabolism , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coordination Complexes/chemical synthesis , Sulfur/chemistry , Sulfur/metabolism , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/metabolism , Models, Molecular , Catalysis , Anaerobiosis , Superoxide Dismutase/metabolism , Superoxide Dismutase/chemistry , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism
12.
J Environ Manage ; 363: 121336, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850915

ABSTRACT

Sulfur-siderite autotrophic denitrification (SSAD) has been proved to solve the key problem of low nitrogen removal efficiency caused by the shortage of carbon source in constructed wetlands (CWs). In this study, five vertical flow constructed wetlands (VFCWs) were constructed with different Fe/S ratios (0/0, 0/1, 1/1, 2/1 and 1/2) to optimizing SSAD process, labeled S.0, S.1, S.2, S.3 and S.4. The results showed that the best NO3--N and TN removal rates were achieved with a Fe/S ratio of 2:1 (S.3), which were 96.26 ± 1.40% and 93.63 ± 3.12%, respectively. The abundance of denitrification genes (nirS, nirK and nosZ) in S.3 was significantly increased. Illumina high-throughput sequencing analysis indicated that the abundance and diversity of microorganisms involved in the "Sulfur-Iron-Nitrogen" cycle were enriched in S.3. The current study provided that the "Sulfur-Iron-Nitrogen" cycle in CWs was optimized by adjusting Fe/S ratio, and more types of denitrifying bacteria could be enriched, thereby enhancing nitrogen removal.


Subject(s)
Denitrification , Iron , Nitrogen , Sulfur , Wetlands , Nitrogen/metabolism , Sulfur/metabolism , Iron/metabolism
13.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833476

ABSTRACT

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Subject(s)
Lipidomics , Nitrogen , Phosphorus , Sulfur , Phosphorus/metabolism , Sulfur/metabolism , Nitrogen/metabolism , Adaptation, Physiological , Sulfates/metabolism , Bacteria, Anaerobic/metabolism , Anaerobiosis
14.
Water Environ Res ; 96(6): e11056, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825347

ABSTRACT

Nitrate poses a potential threat to aquatic ecosystems. This study focuses on the sulfur autotrophic denitrification mechanism in the process of water culture wastewater treatment, which has been successfully applied to the degradation of nitrogen in water culture farm effluents. However, the coexistence of organic acids in the treatment process is a common environmental challenge, significantly affecting the activity of denitrifying bacteria. This paper aims to explore the effects of adding benzoic acid and lactic acid on denitrification performance, organic acid removal rate, and microbial population abundance in sulfur autotrophic denitrification systems under optimal operating conditions, sulfur deficiency, and high hydraulic load. In experiments with 50 mg·L-1 of benzoic acid or lactic acid alone, the results show that benzoic acid and lactic acid have a stimulating effect on denitrification activity, with the stimulating effect significantly greater than the inhibitory effect. Under optimal operating conditions, the average denitrification rate of the system remained above 99%; under S/N = 1.5 conditions, the average denitrification rate increased from 88.34% to 91.93% and 85.91%; under HRT = 6 h conditions, the average denitrification rate increased from 75.25% to 97.79% and 96.58%. In addition, the addition of organic acids led to a decrease in microbial population abundance. At the phylum level, Proteobacteria has always been the dominant bacterial genus, and its relative abundance significantly increased after the addition of benzoic acid, from 40.2% to 61.5% and 62.4%. At the genus level, Thiobacillus, Sulfurimonas, Chryseobacterium, and Thermomonas maintained high population abundances under different conditions. PRACTITIONER POINTS: Employing autotrophic denitrification process for treating high-nitrate wastewater. Utilizing organic acids as external carbon sources. Denitrifying bacteria demonstrate high utilization efficiency towards organic acids. Organic acids promote denitrification more than they inhibit it. The promotion is manifested in the enhancement of activity and microbial abundance.


Subject(s)
Autotrophic Processes , Benzoic Acid , Denitrification , Lactic Acid , Sulfur , Benzoic Acid/metabolism , Sulfur/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Bacteria/classification , Microbiota/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods
15.
Gut Microbes ; 16(1): 2370634, 2024.
Article in English | MEDLINE | ID: mdl-38935546

ABSTRACT

Diet is a key player in gut-liver axis. However, the effect of different dietary patterns on gut microbiota and liver functions remains unclear. Here, we used rodent standard chow and purified diet to mimic two common human dietary patterns: grain and plant-based diet and refined-food-based diet, respectively and explored their impacts on gut microbiota and liver. Gut microbiota experienced a great shift with notable increase in Desulfovibrio, gut bile acid (BA) levels elevated significantly, and liver inflammation was observed in mice fed with the purified diet. Liver inflammation and elevated gut BA levels also occurred in mice fed with the chow diet after receiving Desulfovibrio desulfuricans ATCC 29,577 (DSV). Restriction of sulfur-containing amino acids (SAAs) prevented liver injury mainly through higher hepatic antioxidant and detoxifying ability and reversed the elevated BA levels due to excess Desulfovibrio. Ex vivo fermentation of human fecal microbiota with primary BAs demonstrated that DSV enhanced production of secondary BAs. Higher concentration of both primary and secondary BAs were found in the gut of germ-free mice after receiving DSV. In conclusion, Restriction of SAAs in diet may become an effective dietary intervention to prevent liver injury associated with excess Desulfovibrio in the gut.


Subject(s)
Desulfovibrio , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Liver/metabolism , Humans , Desulfovibrio/metabolism , Male , Bile Acids and Salts/metabolism , Amino Acids/metabolism , Diet , Feces/microbiology , Feces/chemistry , Sulfur/metabolism , Amino Acids, Sulfur/metabolism
16.
BMC Plant Biol ; 24(1): 607, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926889

ABSTRACT

BACKGROUND: Salinity is a major abiotic stress, and the use of saline water in the agricultural sector will incur greater demand under the current and future climate changing scenarios. The objective of this study was to develop a dual-functional nanofertilizer capable of releasing a micronutrient that nourishes plant growth while enhancing salt stress resilience in faba bean (Vicia faba L.). RESULTS: Moringa oleifera leaf extract was used to synthesize sulfur nanoparticles (SNPs), which were applied as a foliar spray at different concentrations (0, 25, 50, and 100 mg/l) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. The SNPs were characterized and found to be spherical in shape with an average size of 10.98 ± 2.91 nm. The results showed that salt stress had detrimental effects on the growth and photosynthetic performance (Fv/Fm) of faba bean compared with control, while foliar spraying with SNPs improved these parameters under salinity stress. SNPs application also increased the levels of osmolytes (soluble sugars, amino acids, proline, and glycine betaine) and nonenzymatic antioxidants, while reducing the levels of oxidative stress biomarkers (MDA and H2O2). Moreover, SNPs treatment under salinity stress stimulated the activity of antioxidant enzymes (ascorbate peroxidase (APX), and peroxidase (POD), polyphenol oxidase (PPO)) and upregulated the expression of stress-responsive genes: chlorophyll a-b binding protein of LHCII type 1-like (Lhcb1), ribulose bisphosphate carboxylase large chain-like (RbcL), cell wall invertase I (CWINV1), ornithine aminotransferase (OAT), and ethylene-responsive transcription factor 1 (ERF1), with the greatest upregulation observed at 50 mg/l SNPs. CONCLUSION: Overall, foliar application of sulfur nanofertilizers in agriculture could improve productivity while minimizing the deleterious effects of salt stress on plants. Therefore, this study provides a strong foundation for future research focused on evaluating the replacement of conventional sulfur-containing fertilizers with their nanoforms to reduce the harmful effects of salinity stress and enhance the productivity of faba beans.


Subject(s)
Fertilizers , Nanoparticles , Salt Stress , Sulfur , Vicia faba , Vicia faba/physiology , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/genetics , Sulfur/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Photosynthesis/drug effects
17.
Biodegradation ; 35(5): 565-582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844743

ABSTRACT

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).


Subject(s)
Autotrophic Processes , Bioreactors , Denitrification , Oxidation-Reduction , Bioreactors/microbiology , Sulfur/metabolism , Sewage/microbiology , Nitrates/metabolism , Anaerobiosis , Bacteria/metabolism , Nitrites/metabolism , Ammonium Compounds/metabolism , Waste Disposal, Fluid/methods
18.
Bioresour Technol ; 406: 131010, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901750

ABSTRACT

The fate of sulfur (S) was controlled by a complex interaction of abiotic and microbial reactions in constructed wetlands (CWs). Although zero-valent iron (ZVI) was generally considered to promote nitrogen (N) and S cycle by providing electrons, but its binding effect on sulfate (SO42--S) removal with the rhizosphere oscillating redox conditions had not been determined. This study found that the presence of plants increased SO42-_S removal in Con-CW, while decreased it by 3.93 % in ZVI-CW accompanied by the decrease of S content in the rhizosphere substrates. The enrichment of S oxidation genes (soxA/Y and yedZ), organic S decomposition genes (aslA) and plants radial oxygen loss (ROL) accelerated the transformation of solid-phase S to SO42--S, resulting in ZVI-CW turn from S sink to S source. Overall, the source-sink transformation provided a theoretical guidance for comprehending S cycling in CWs.


Subject(s)
Iron , Rhizosphere , Sulfates , Sulfur , Wetlands , Sulfates/metabolism , Sulfur/metabolism , Iron/metabolism , Plants/metabolism , Biodegradation, Environmental , Oxidation-Reduction
19.
mSystems ; 9(7): e0051324, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38904399

ABSTRACT

Mixotrophy is an important trophic strategy for bacterial survival in the ocean. However, the global relevance and identity of the major mixotrophic taxa remain largely elusive. Here, we combined phylogenetic, metagenomic, and metatranscriptomic analyses to characterize ubiquitous Arcobacteraceae based on our deep-sea in situ incubations and the global data. The phylogenomic tree of Arcobacteraceae is divided into three large clades, among which members of clades A and B are almost all from terrestrial environments, while those of clade C are widely distributed in various marine habitats in addition to some terrestrial origins. All clades harbor genes putatively involved in chitin degradation, sulfide oxidation, hydrogen oxidation, thiosulfate oxidation, denitrification, dissimilatory nitrate reduction to ammonium, microaerophilic respiration, and metal (iron/manganese) reduction. Additionally, in clade C, more unique pathways were retrieved, including thiosulfate disproportionation, ethanol fermentation, methane oxidation, fatty acid oxidation, cobalamin synthesis, and dissimilatory reductions of sulfate, perchlorate, and arsenate. Within this clade, two mixotrophic Candidatus genera represented by UBA6211 and CAIJNA01 harbor genes putatively involved in the reverse tricarboxylic acid pathway for carbon fixation. Moreover, the metatranscriptomic data in deep-sea in situ incubations indicated that the latter genus is a mixotroph that conducts carbon fixation by coupling sulfur oxidation and denitrification and metabolizing organic matter. Furthermore, global metatranscriptomic data confirmed the ubiquitous distribution and global relevance of Arcobacteraceae in the expression of those corresponding genes across all oceanic regions and depths. Overall, these results highlight the contribution of previously unrecognized Arcobacteraceae to carbon, nitrogen, and sulfur cycling in global oceans.IMPORTANCEMarine microorganisms exert a profound influence on global carbon cycling and ecological relationships. Mixotrophy, characterized by the simultaneous utilization of both autotrophic and heterotrophic nutrition, has a significant impact on the global carbon cycling. This report characterizes a group of uncultivated bacteria Arcobacteraceae that thrived on the "hot time" of bulky particulate organic matter and exhibited mixotrophic strategy during the in situ organic mineralization. Compared with clades A and B, more unique metabolic pathways were retrieved in clade C, including the reverse tricarboxylic acid pathway for carbon fixation, thiosulfate disproportionation, methane oxidation, and fatty acid oxidation. Global metatranscriptomic data from the Tara Oceans expeditions confirmed the ubiquitous distribution and extensive transcriptional activity of Arcobacteraceae with the expression of genes putatively involved in carbon fixation, methane oxidation, multiple sulfur compound oxidation, and denitrification across all oceanic regions and depths.


Subject(s)
Carbon , Nitrogen , Oceans and Seas , Sulfur , Sulfur/metabolism , Carbon/metabolism , Nitrogen/metabolism , Phylogeny , Seawater/microbiology
20.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892213

ABSTRACT

The family Beggiatoaceae is currently represented by 25 genera in the Genome Taxonomy Database, of which only 6 have a definite taxonomic status. Two metagenome-assembled genomes (MAGs), WS_Bin1 and WS_Bin3, were assembled from metagenomes of the sulfur mats coating laminaria remnants in the White Sea. Using the obtained MAGs, we first applied phylogenetic analysis based on whole-genome sequences to address the systematics of Beggiatoaceae, which clarify the taxonomy of this family. According to the average nucleotide identity (ANI) and average amino acid identity (AAI) values, MAG WS_Bin3 was assigned to a new genus and a new species in the family Beggiatoaceae, namely, 'Candidatus Albibeggiatoa psychrophila' gen. nov., sp. nov., thus providing the revised taxonomic status of the candidate genus 'BB20'. Analysis of 16S rRNA gene homology allowed us to identify MAG WS_Bin1 as the only currently described species of the genus 'Candidatus Parabeggiatoa', namely, 'Candidatus Parabeggiatoa communis', and consequently assign the candidate genus 'UBA10656', including four new species, to the genus 'Ca. Parabeggiatoa'. Using comparative whole-genome analysis of the members of the genera 'Candidatus Albibeggiatoa' and 'Ca. Parabeggiatoa', we expanded information on the central pathways of carbon, sulfur and nitrogen metabolism in the family Beggiatoaceae.


Subject(s)
Phylogeny , Sulfur , Sulfur/metabolism , Metagenome , RNA, Ribosomal, 16S/genetics , Genome, Bacterial , Seawater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL