Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.820
Filter
1.
Int Immunopharmacol ; 138: 112570, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38971105

ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , Neoplasms/drug therapy , TNF-Related Apoptosis-Inducing Ligand/therapeutic use , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Drug Resistance, Neoplasm/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Combined Modality Therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Clinical Trials as Topic
2.
Commun Biol ; 7(1): 674, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824207

ABSTRACT

Studying cellular mechanoresponses during cancer metastasis is limited by sample variation or complex protocols that current techniques require. Metastasis is governed by mechanotransduction, whereby cells translate external stimuli, such as circulatory fluid shear stress (FSS), into biochemical cues. We present high-throughput, semi-automated methods to expose cells to FSS using the VIAFLO96 multichannel pipetting device custom-fitted with 22 G needles, increasing the maximum FSS 94-fold from the unmodified tips. Specifically, we develop protocols to semi-automatically stain live samples and to fix, permeabilize, and intracellularly process cells for flow cytometry analysis. Our first model system confirmed that the pro-apoptotic effects of TRAIL therapeutics in prostate cancer cells can be enhanced via FSS-induced Piezo1 activation. Our second system implements this multiplex methodology to show that FSS exposure (290 dyn cm-2) increases activation of murine bone marrow-derived dendritic cells. These methodologies greatly improve the mechanobiology workflow, offering a high-throughput, multiplex approach.


Subject(s)
Mechanotransduction, Cellular , Prostatic Neoplasms , Animals , Humans , Mice , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Male , Dendritic Cells/immunology , Cell Line, Tumor , High-Throughput Screening Assays/methods , Stress, Mechanical , TNF-Related Apoptosis-Inducing Ligand/metabolism , Flow Cytometry/methods , Ion Channels
3.
Int Immunopharmacol ; 136: 112405, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850792

ABSTRACT

This report drives insights for the investigation of the underlying mechanisms of antitumor effects of Teucrium ramosissimum (TrS) essential oil (EO) that elicits colon tumor protection via activation of cell death machinery. A study of the aerial part phytocomplex was performed by FTIR spectra and GC/MS. In vivo colon carcinogenesis induced by LPS was carried out using mouse model. HCT-116 cells were coincubated with TrS EO and TRAIL-resistant cancer cells, and then cell lysates were assessed using Western blotting technique for death and decoy receptor expression. TrS essential oil potentiates TRAIL-mediated apoptosis cell death of HCT-116 as detected by PARP cleavage and caspase activation. Further data suggest that TrS up-regulates DR 5/4 expression, and down-regulates DcRs expression. Additionally, TrS potentiates apoptosis in TRAIL-resistant tumor cells through induction of MAPK signalling components, including ERK, p38 kinase, JNK, and activation of CHOP, and SP1, involved in DR5 expression. Moreover, Teucrium EO phytoconstituents mediate HCT-116 cells apoptosis by evoking cell cycle arrest at the G1 and G2/M phase through diminishing the expression of cyclin D1 acting as a potent multitargeted factors of inhibition of JAK/STAT oncogenic signaling pathway. These results demonstrate that TRAIL-induced apoptosis enhancing effect of TrS mediated through proto-oncogene expression in HCT-116. TrS administered intragastrically is able to prevent tumor of colon by stopping carcinogenesis process and impede tumor cell growth in in vivo analysis promoted by LPS. On the whole, our results revealed that TrS is an effective antitcancer agent through the induction of transcription factor and kinases, either are needed to trigger Apo2L receptors.


Subject(s)
Apoptosis , Colorectal Neoplasms , Oils, Volatile , TNF-Related Apoptosis-Inducing Ligand , Teucrium , Humans , Animals , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , HCT116 Cells , TNF-Related Apoptosis-Inducing Ligand/metabolism , Colorectal Neoplasms/drug therapy , Mice , Apoptosis/drug effects , Teucrium/chemistry , Proto-Oncogene Mas , Mice, Inbred BALB C , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Male , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Lipopolysaccharides
4.
Mol Cells ; 47(6): 100075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823606

ABSTRACT

Excessive blood vessel wall thickening, known as intimal hyperplasia, can result from injury or inflammation and increase the risk of vascular diseases. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays key roles in tumor surveillance, autoimmune diseases, and apoptosis; however, its role in vascular stenosis remains controversial. Treatment with recombinant isoleucine zipper hexamerization domain soluble TRAIL (ILz(6):TRAIL) significantly inhibited the progression of neointimal hyperplasia (NH) induced by anastomosis of the carotid artery and jugular vein dose dependently, and adenovirus expressing secretable ILz(6):TRAIL also inhibited NH induced by balloon injury in the femoral artery of rats. This study demonstrated the preventive and partial regressive effects of ILz(6):TRAIL on anastomosis of the carotid artery and jugular vein- or balloon-induced NH.


Subject(s)
Hyperplasia , Neointima , Rats, Sprague-Dawley , TNF-Related Apoptosis-Inducing Ligand , Animals , Neointima/pathology , Neointima/prevention & control , Rats , Male , TNF-Related Apoptosis-Inducing Ligand/metabolism , Carotid Arteries/pathology , Carotid Arteries/surgery , Jugular Veins/pathology , Femoral Artery/injuries , Femoral Artery/pathology , Femoral Artery/surgery
5.
J Biochem Mol Toxicol ; 38(7): e23757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38937960

ABSTRACT

Anticancer strategies using natural products or derivatives are promising alternatives for cancer treatment. Here, we showed that licochalcone D (LCD), a natural flavonoid extracted from Glycyrrhiza uralensis Fisch, suppressed the growth of breast cancer cells, and was less toxic to MCF-10A normal breast cells. LCD-induced DNA damage, cell cycle arrest, and apoptosis in breast cancer cells. Furthermore, LCD potentiated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. Mechanistically, LCD was revealed to reduce survival protein expression and to upregulate death receptor 5 (DR5) expressions. Silencing DR5 blocked the ability of LCD to sensitize cells to TRAIL-mediated apoptosis. LCD increased CCAAT/enhancer-binding protein homologous protein (CHOP) expression in breast cancer cells. Knockdown of CHOP attenuated DR5 upregulation and apoptosis triggered by cotreatment with LCD and TRAIL. Furthermore, LCD suppressed the phosphorylation of extracellular signal-regulated kinase and promoted the phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with JNK inhibitor SP600125 or p38 MAPK inhibitor SB203580 abolished the upregulation of DR5 and CHOP, and also attenuated LCD plus TRAIL-induced cleavage of poly(ADP-ribose) polymerase. Overall, our results show that LCD exerts cytotoxic effects on breast cancer cells and arguments TRAIL-mediated apoptosis by inhibiting survival protein expression and upregulating DR5 in a JNK/p38 MAPK-CHOP-dependent manner.


Subject(s)
Apoptosis , Breast Neoplasms , Chalcones , Receptors, TNF-Related Apoptosis-Inducing Ligand , TNF-Related Apoptosis-Inducing Ligand , Transcription Factor CHOP , Up-Regulation , Humans , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Chalcones/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Apoptosis/drug effects , Female , Up-Regulation/drug effects , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , MCF-7 Cells , MAP Kinase Signaling System/drug effects
6.
Pathol Oncol Res ; 30: 1611586, 2024.
Article in English | MEDLINE | ID: mdl-38689823

ABSTRACT

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Subject(s)
Liposomes , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms , Tumor-Associated Macrophages , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays , Apoptosis , Disease Models, Animal , TNF-Related Apoptosis-Inducing Ligand/metabolism , E-Selectin/metabolism , Tumor Microenvironment/immunology
7.
Mol Biol Rep ; 51(1): 671, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787503

ABSTRACT

BACKGROUND: TRAIL protein on binding to its cognate death receptors (DR) can induce apoptosis specifically in breast tumor cells sparing normal cells. However, TRAIL also binds to decoy receptors (DCR) thereby inhibiting the apoptotic pathways thus causing TRAIL resistance. Also, one of the barriers due to which TRAIL-based therapy could not become FDA-approved might be because of resistance to therapy. Therefore, in the current study we wanted to explore the role of transcription factors in TRAIL resistance with respect to breast cancer. METHODS: Microarray data from TRAIL-sensitive (TS) and TRAIL-resistant (TR) MDA-MB-231 cells were reanalyzed followed by validation of the candidate genes using quantitative PCR (qPCR), immunoblotting and immunofluorescence technique. Overexpression of the candidate gene was performed in MDA-MB-231 and MCF7 cells followed by cell viability assay and immunoblotting for cleaved caspase-3. Additionally, immunoblotting for DCR2 was carried out. TCGA breast cancer patient survival was used for Kaplan-Meier (KM) plot. RESULTS: Validation of the candidate gene i.e. ELF3 using qPCR and immunoblotting revealed it to be downregulated in TR cells compared to TS cells. ELF3 overexpression in MDA-MB-231 and MCF7 cells caused reversal of TRAIL resistance as observed using cell viability assay and cleaved caspase-3 immunoblotting. ELF3 overexpression also resulted in DCR2 downregulation in the MDA-MB-231 and MCF7 cells. Furthermore, KM analysis found high ELF3 and low DCR2 expression to show better patient survival in the presence of TRAIL. CONCLUSION: Our study shows ELF3 to be an important factor that can influence TRAIL-mediated apoptosis in breast cancer. Also, ELF3 and DCR2 expression status should be taken into consideration while designing strategies for successful TRAIL-based therapy.


Subject(s)
Apoptosis , Breast Neoplasms , DNA-Binding Proteins , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , TNF-Related Apoptosis-Inducing Ligand , Transcription Factors , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Apoptosis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Drug Resistance, Neoplasm/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , MCF-7 Cells , Tumor Necrosis Factor Decoy Receptors/genetics , Tumor Necrosis Factor Decoy Receptors/metabolism , Cell Survival/genetics , Cell Survival/drug effects , Receptors, Tumor Necrosis Factor, Member 10c/genetics , Receptors, Tumor Necrosis Factor, Member 10c/metabolism , Proto-Oncogene Proteins c-ets
8.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727288

ABSTRACT

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Subject(s)
Endoplasmic Reticulum Stress , Glioblastoma , Integrin alpha3 , Integrin beta1 , TNF-Related Apoptosis-Inducing Ligand , Humans , Apoptosis/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Integrin alpha3/metabolism , Integrin alpha3/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology
9.
Exp Mol Med ; 56(4): 1013-1026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38684915

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glutamine , Jumonji Domain-Containing Histone Demethylases , Pancreatic Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Glutamine/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Drug Resistance, Neoplasm/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Ketoglutaric Acids/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Aspartate Aminotransferase, Cytoplasmic/metabolism , Aspartate Aminotransferase, Cytoplasmic/genetics , Animals , Promoter Regions, Genetic
10.
Biochemistry (Mosc) ; 89(3): 431-440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648763

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture. In this study, we investigated mechanisms of this phenomenon using Western blot analysis, caspase 3 enzymatic activity analysis, quantitative reverse transcription-PCR, and flow cytometry. The results showed that the increased resistance to the TRAIL-induced cell death of AML THP-1 cells during their pro-inflammatory activation is associated with the decrease in the surface expression of the proapoptotic receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, as well as with the increased content of members of the IAPs family - Livin and cIAP2. The results of this article open up new insights into the role of inflammation in formation of the resistance of AML cells to the action of mediators of antitumor immunity, in particular TRAIL.


Subject(s)
Apoptosis , Leukemia, Myeloid, Acute , Receptors, TNF-Related Apoptosis-Inducing Ligand , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/drug therapy , Apoptosis/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , THP-1 Cells , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Caspase 3/metabolism
11.
Biomed Pharmacother ; 174: 116470, 2024 May.
Article in English | MEDLINE | ID: mdl-38565061

ABSTRACT

ERCC2 plays a pivotal role in DNA damage repair, however, its specific function in cancer remains elusive. In this study, we made a significant breakthrough by discovering a substantial upregulation of ERCC2 expression in glioblastoma (GBM) tumor tissue. Moreover, elevated levels of ERCC2 expression were closely associated with poor prognosis. Further investigation into the effects of ERCC2 on GBM revealed that suppressing its expression significantly inhibited malignant growth and migration of GBM cells, while overexpression of ERCC2 promoted tumor cell growth. Through mechanistic studies, we elucidated that inhibiting ERCC2 led to cell cycle arrest in the G0/G1 phase by blocking the CDK2/CDK4/CDK6/Cyclin D1/Cyclin D3 pathway. Notably, we also discovered a direct link between ERCC2 and CDK4, a critical protein in cell cycle regulation. Additionally, we explored the potential of TRAIL, a low-toxicity death ligand cytokine with anticancer properties. Despite the typical resistance of GBM cells to TRAIL, tumor cells undergoing cell cycle arrest exhibited significantly enhanced sensitivity to TRAIL. Therefore, we devised a combination strategy, employing TRAIL with the nanoparticle DMC-siERCC2, which effectively suppressed the GBM cell proliferation and induced apoptosis. In summary, our study suggests that targeting ERCC2 holds promise as a therapeutic approach to GBM treatment.


Subject(s)
Cell Cycle Checkpoints , Cell Proliferation , Glioblastoma , Nanoparticles , TNF-Related Apoptosis-Inducing Ligand , Xeroderma Pigmentosum Group D Protein , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects , Nanoparticles/chemistry , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Cell Proliferation/drug effects , Xeroderma Pigmentosum Group D Protein/metabolism , Xeroderma Pigmentosum Group D Protein/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Animals , Apoptosis/drug effects , Mice, Nude , Male
12.
Biomed Pharmacother ; 174: 116603, 2024 May.
Article in English | MEDLINE | ID: mdl-38636395

ABSTRACT

Novel strategies in intratumoral injection and emerging immunotherapies have heralded a new era of precise cancer treatments. The affinity of SARS-CoV-2 to ACE2 receptors, a feature which facilitates virulent human infection, is leveraged in this research. Colon cancer cells, with their high ACE2 expression, provide a potentially strategic target for using this SARS-CoV-2 feature. While the highly expression of ACE2 is observed in several cancer types, the idea of using the viral spike protein for targeting colon cancer cells offers a novel approach in cancer treatment. Intratumoral delivery of nucleic acid-based drugs is a promising alternative to overcoming the limitations of existing therapies. The increasing importance of nucleic acids in this realm, and the use of Lipid Nanoparticles (LNPs) for local delivery of nucleic acid therapeutics, are important breakthroughs. LNPs protect nucleic acid drugs from degradation and enhance cellular uptake, making them a rapidly evolving nano delivery system with high precision and adaptability. Our study leveraged a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) combined with a receptor-binding domain from the SARS-CoV-2 spike protein, encapsulated in LNPs, to target colon cancer cells. Our results indicated that the TRAIL fusion-mRNA induced apoptosis in vitro and in vivo. Collectively, our findings highlight LNP-encapsulated TRAIL fusion-mRNA as a potential colon cancer therapy.


Subject(s)
Apoptosis , Colonic Neoplasms , Liposomes , Nanoparticles , RNA, Messenger , TNF-Related Apoptosis-Inducing Ligand , Humans , Apoptosis/drug effects , Colonic Neoplasms/therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Animals , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Mice , Cell Line, Tumor , SARS-CoV-2 , Mice, Nude , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics
13.
Biol Chem ; 405(6): 395-406, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38452398

ABSTRACT

Checkpoint kinase 1 (Chk1) plays an important role in regulation of the cell cycle, DNA damage response and cell death, and represents an attractive target in anticancer therapy. Small-molecule inhibitors of Chk1 have been intensively investigated either as single agents or in combination with various chemotherapeutic drugs and they can enhance the chemosensitivity of numerous tumor types. Here we newly demonstrate that pharmacological inhibition of Chk1 using potent and selective inhibitor SCH900776, currently profiled in phase II clinical trials, significantly enhances cytotoxic effects of the combination of platinum-based drugs (cisplatin or LA-12) and TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in human prostate cancer cells. The specific role of Chk1 in the drug combination-induced cytotoxicity was confirmed by siRNA-mediated silencing of this kinase. Using RNAi-based methods we also showed the importance of Bak-dependent mitochondrial apoptotic pathway in the combined anticancer action of SCH900776, cisplatin and TRAIL. The triple drug combination-induced cytotoxicity was partially enhanced by siRNA-mediated Mcl-1 silencing. Our findings suggest that targeting Chk1 may be used as an efficient strategy for sensitization of prostate cancer cells to killing action of platinum-based chemotherapeutic drugs and TRAIL.


Subject(s)
Antineoplastic Agents , Checkpoint Kinase 1 , Cisplatin , Prostatic Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Protein Kinase Inhibitors/pharmacology , Organoplatinum Compounds/pharmacology , Drug Screening Assays, Antitumor , Cell Line, Tumor , Dose-Response Relationship, Drug , Apoptosis/drug effects , Cell Proliferation/drug effects
14.
Cells ; 13(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38534365

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.


Subject(s)
Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Apoptosis/physiology , Signal Transduction , Neoplasms/metabolism
15.
Nanoscale ; 16(13): 6603-6617, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38470366

ABSTRACT

The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvß3 and αvß5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvß5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.


Subject(s)
Bacteriophages , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Apoptosis , Bacteriophages/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Ligands , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Genetic Therapy/methods
16.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Article in English | MEDLINE | ID: mdl-38500680

ABSTRACT

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Subject(s)
Colonic Neoplasms , Liposomes , Nanoparticles , Tumor Microenvironment , Animals , Mice , Ligands , Apoptosis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Tumor Necrosis Factor-alpha , TNF-Related Apoptosis-Inducing Ligand/metabolism
17.
Biochem Pharmacol ; 221: 116041, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316367

ABSTRACT

The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.


Subject(s)
Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/therapeutic use , TNF-Related Apoptosis-Inducing Ligand/metabolism , Necroptosis , Neoplasms/pathology , Apoptosis , Apoptosis Regulatory Proteins
18.
Molecules ; 29(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398629

ABSTRACT

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Subject(s)
Adenocarcinoma of Lung , Strophanthidin , Humans , Strophanthidin/pharmacology , Caspase 3/pharmacology , Cell Line, Tumor , Apoptosis , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Adenocarcinoma of Lung/drug therapy , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Microenvironment , Nuclear Proteins
19.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368955

ABSTRACT

Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies. This review provides detailed insights into the complex signalling of TRAIL-induced pathways and the activities of the proteasome. It explores their core mechanisms of action, pharmaceutical druggability, and describes how their interplay can be strategically leveraged to enhance cell death responses in cancer cells. Offering this comprehensive and timely overview will allow to navigate the complexity of the processes governing cell death mechanisms in TRAIL- and proteasome inhibitor-based treatment conditions.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Cell Death , Neoplasms/drug therapy , Proteasome Inhibitors/pharmacology , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL