Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.234
Filter
1.
J Exp Biol ; 227(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39022893

ABSTRACT

Social status directly affects the health of humans and other animals. Low status individuals receive more antagonistic encounters, have fewer supportive relationships and have worse health outcomes. However, the physiological and cellular processes that mediate the relationship between the social environment and health are incompletely known. Epigenetic regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine pathway that activates in response to stressors, may be one process that is sensitive to the social environment. Here, we experimentally manipulated plumage, a key social signal in female tree swallows (Tachycineta bicolor) and quantified methylation of four genes in the HPA axis before and after treatment. We found that dulling the white breast plumage affected methylation in one gene, CRHR1; however, the effect depended on the original brightness of the bird. Methylation in this gene was correlated with baseline corticosterone levels, suggesting that DNA methylation of CRHR1 helps regulate glucocorticoid production in this species. Methylation in two other genes, FKBP5 and GR, changed over the course of the experiment, independent of treatment. These results show that methylation of these genes is labile into adulthood and suggest that epigenetic regulation of the HPA axis could help birds respond to current environmental conditions.


Subject(s)
DNA Methylation , Feathers , Hypothalamo-Hypophyseal System , Receptors, Corticotropin-Releasing Hormone , Swallows , Animals , Female , Feathers/physiology , Swallows/genetics , Swallows/physiology , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Corticosterone/blood , Corticosterone/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Epigenesis, Genetic , Stress, Physiological/genetics , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism
2.
Stem Cell Res Ther ; 15(1): 209, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020442

ABSTRACT

BACKGROUND: Facial infiltrating lipomatosis is characterized by excessive growth of adipose tissue. Its etiology is associated with somatic phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) variants, but the specific mechanisms are not yet fully understood. METHODS: We collected facial adipose tissue from both FIL patients and non-FIL individuals, isolated the stromal vascular fraction (SVF) and performed single-cell transcriptome sequencing on these samples. RESULTS: We mapped out the cellular landscape within the SVF, with a specific focus on a deeper analysis of fibro-adipogenic precursor cells (FAPs). Our analysis revealed that FAPs from FIL patients (FIL-FAPs) significantly overexpressed FK506 binding protein 51 (FKBP5) compared to FAPs from individuals without FIL. Further experiments indicated that FKBP5 is regulated by the PI3K-AKT signaling pathway. The overactivation of this pathway led to an increase in FKBP5 expression. In vitro experiments demonstrated that FKBP5 promoted adipogenic differentiation of FAPs, a process that could be hindered by FKBP5 knockdown or inhibition. Additionally, in vivo assessments confirmed FKBP5's role in adipogenesis. CONCLUSIONS: These insights into the pathogenesis of FIL underscore FKBP5 as a promising target for developing non-surgical interventions to manage the excessive adipose tissue growth in FIL.


Subject(s)
Adipose Tissue , Single-Cell Analysis , Tacrolimus Binding Proteins , Humans , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Adipose Tissue/metabolism , Single-Cell Analysis/methods , Lipomatosis/metabolism , Lipomatosis/pathology , Lipomatosis/genetics , Face , Female , Adipogenesis , Male , Animals , Mice , Signal Transduction , Middle Aged , Cell Differentiation , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics
3.
Genes (Basel) ; 15(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062681

ABSTRACT

The FK506 Binding Protein (FKBP), ubiquitously present across diverse species, is characterized by its evolutionarily conserved FK506 binding domain (FKBd). In plants, evidence suggests that this gene family plays integral roles in regulating growth, development, and responses to environmental stresses. Notably, research on the identification and functionality of FKBP genes in rice remains limited. Therefore, this study utilized bioinformatic tools to identify 30 FKBP-encoding genes in rice. It provides a detailed analysis of their chromosomal locations, evolutionary relationships with the Arabidopsis thaliana FKBP family, and gene structures. Further analysis of the promoter elements of these rice FKBP genes revealed a high presence of stress-responsive elements. Quantitative PCR assays under drought and heat stress conditions demonstrated that genes OsFKBP15-2, OsFKBP15-3, OsFKBP16-3, OsFKBP18, and OsFKBP42b are inducible by these adverse conditions. These findings suggest a significant role for the rice FKBP gene family in stress adaptation. This research establishes a critical foundation for deeper explorations of the functional roles of the OsFKBP genes in rice.


Subject(s)
Computational Biology , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Tacrolimus Binding Proteins , Oryza/genetics , Oryza/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Computational Biology/methods , Stress, Physiological/genetics , Genome, Plant , Multigene Family , Phylogeny , Evolution, Molecular , Promoter Regions, Genetic
4.
Int Immunopharmacol ; 138: 112659, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38996665

ABSTRACT

Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune dysregulation and hepatocyte damage. FKBP38, a member of the immunophilin family, has been implicated in immune regulation and the modulation of intracellular signaling pathways; however, its role in AIH pathogenesis remains poorly understood. In this study, we aimed to investigate the effects of hepatic FKBP38 deletion on AIH using a hepatic FKBP38 knockout (LKO) mouse model created via cre-loxP technology. We compared the survival rates, incidence, and severity of AIH in LKO mice with those in control mice. Our findings revealed that hepatic FKBP38 deletion resulted in an unfavorable prognosis in LKO mice with AIH. Specifically, LKO mice exhibited heightened liver inflammation and extensive hepatocyte damage compared to control mice, with a significant decrease in anti-apoptotic proteins and a marked increase in pro-apoptotic proteins. Additionally, transcriptional and translational levels of pro-inflammatory cytokines and chemokines were significantly increased in LKO mice compared to control mice. Immunoblot analysis showed that MCP-1 expression was significantly elevated in LKO mice. Furthermore, the phosphorylation of p38 was increased in LKO mice with AIH, indicating that FKBP38 deletion promotes liver injury in AIH by upregulating p38 phosphorylation and increasing MCP-1 expression. Immune cell profiling demonstrated elevated populations of T, NK, and B cells, suggesting a dysregulated immune response in LKO mice with AIH. Overall, our findings suggest that FKBP38 disruption exacerbates AIH severity by augmenting the immune response by activating the MCP-1/p38 signaling pathway.


Subject(s)
Chemokine CCL2 , Hepatitis, Autoimmune , Tacrolimus Binding Proteins , p38 Mitogen-Activated Protein Kinases , Animals , Male , Mice , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Concanavalin A , Disease Models, Animal , Hepatitis, Autoimmune/immunology , Liver/pathology , Liver/immunology , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000204

ABSTRACT

Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.


Subject(s)
Fear , Hippocampus , Tacrolimus Binding Proteins , Animals , Male , Fear/physiology , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Hippocampus/metabolism , Rats , Corticosterone/metabolism , Corticosterone/blood , Rats, Sprague-Dawley , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Receptors, Glucocorticoid/metabolism , Extinction, Psychological/physiology
6.
Life Sci ; 351: 122867, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38914303

ABSTRACT

AIMS: FKBP5 encodes FKBP51, which has been implicated in stress-related psychiatric disorders, and its expression is often increased under chronic stress, contributing to mental dysfunctions. However, the precise role of FKBP51 in brain inflammation remains unclear. This study aimed to investigate the role of FKBP51 in microglia-mediated inflammatory responses in the central nervous system. MAIN METHODS: We employed a peripheral lipopolysaccharide (LPS) administration model to compare microglial activation and cytokine gene expression between Fkbp5 knockout (Fkbp5-KO) and wild-type (WT) male mice. Additionally, we used both BV2 and primary microglia in vitro to examine how Fkbp5 deletion influenced inflammation-related pathways and microglial functions. KEY FINDINGS: This study revealed that systemic LPS-induced microglial activation was significantly attenuated in Fkbp5-KO mice compared with WT mice. In Fkbp5-KO mice following the LPS challenge, there was a notable decrease in the expression of pro-inflammatory genes, coupled with an increase in the anti-inflammatory gene Arg1. Furthermore, Fkbp5 knockdown in BV2 microglial cells led to reduced expression of LPS-induced inflammatory markers, and targeted inhibition of NF-κB activation, while Akt signaling remained unaffected. Similar results were observed in Fkbp5-KO primary microglia, which exhibited not only decreased microglial activation but also a significant reduction in phagocytic activity in response to LPS stimulation. SIGNIFICANCE: This study highlights the critical role of FKBP51 in LPS-induced microglial activation and neuroinflammation. It shows that reducing FKBP51 levels attenuates inflammation through NF-κB signaling in microglia. This suggests that FKBP51 is a potential target for alleviating neuroinflammation-induced stress responses.


Subject(s)
Lipopolysaccharides , Microglia , NF-kappa B , Neuroinflammatory Diseases , Signal Transduction , Tacrolimus Binding Proteins , Animals , Male , Mice , Cytokines/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Neuroinflammatory Diseases/metabolism , NF-kappa B/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics
7.
Chemistry ; 30(45): e202401405, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38837733

ABSTRACT

Access to small, rigid, and sp3-rich molecules is a major limitation in the drug discovery for challenging protein targets. FK506-binding proteins hold high potential as drug targets or enablers of molecular glues but are fastidious in the chemotypes accepted as ligands. We here report an enantioselective synthesis of a highly rigidified pipecolate-mimicking tricyclic scaffold that precisely positions functional groups for interacting with FKBPs. This was enabled by a 14-step gram-scale synthesis featuring anodic oxidation, stereospecific vinylation, and N-acyl iminium cyclization. Structure-based optimization resulted in the discovery of FKBP inhibitors with picomolar biochemical and subnanomolar cellular activity that represent the most potent FKBP ligands known to date.


Subject(s)
Tacrolimus Binding Proteins , Ligands , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Humans , Stereoisomerism , Drug Design , Cyclization , Structure-Activity Relationship , Oxidation-Reduction , Protein Binding
8.
Medicine (Baltimore) ; 103(26): e38606, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941396

ABSTRACT

BACKGROUND: Ferroptosis was reported to possess the therapeutic potentials in various human cancers. In the present study, we explored the expression, clinical significance and the molecular mechanism of FK506 binding protein 3 (FKBP3) in the progression of lung adenocarcinoma (LUAD). MATERIAL AND METHOD: Cox regression was performed to obtain the prognosis related to differentially expressed genes (DEGs) in LUAD datasets from TCGA. We also downloaded the ferroptosis-related gene datasets from GeneCards. Venn diagram was performed to find the intersecting genes and FKBP3 was selected as the targeted gene by analyzing the diagnostic and prognostic values of Top10 intersecting genes. Moreover, univariate and multivariate analyses were performed to evaluate the association between clinicopathological factors and survival rates. GO/KEGG and GSEA analysis was performed to explore the function of FKBP3 in LUAD progression. Protein-protein interaction (PPI) network was performed via STRING database and the top10 hub genes were selected. Finally, the relationship between FKBP3 and immune infiltration was explored by ssGSEA analysis. RESULTS: Firstly, 184 genes associated with the prognosis of LUAD and ferroptosis were obtained. FKBP3 was found to be significantly associated with a poor overall survival rate of LUAD patients. Immunohistochemical staining results showed that FKBP3 was highly located in cytoplasm and membrane of cells in LUAD tissues. PPI network analysis results showed that HDAC1, YY1, HDAC2, MTOR, PSMA3, PIN1, NCL, C14orf166, PIN4, and LARP6 were the top10 hub genes. Furthermore, spearman analysis results showed that the expression of FKBP3 was positively correlated with the abundance of Th2 cells and T helper cells. CONCLUSION: High level of FKBP3 was associated with poor prognostic outcomes of LUAD patients, which also inhibited immune infiltration in LUAD tissues. Additionally, FKBP3 was involved in regulating the ferroptosis process in LUAD patients. Thus, FKBP3 possessed the tumor promotion role might be involving in regulating ferroptosis and immune infiltration in LUAD progression.


Subject(s)
Adenocarcinoma of Lung , Disease Progression , Ferroptosis , Lung Neoplasms , Aged , Female , Humans , Male , Middle Aged , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Prognosis , Protein Interaction Maps/genetics , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
9.
Nat Commun ; 15(1): 4546, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806494

ABSTRACT

Asthma has striking disparities across ancestral groups, but the molecular underpinning of these differences is poorly understood and minimally studied. A goal of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to understand multi-omic signatures of asthma focusing on populations of African ancestry. RNASeq and DNA methylation data are generated from nasal epithelium including cases (current asthma, N = 253) and controls (never-asthma, N = 283) from 7 different geographic sites to identify differentially expressed genes (DEGs) and gene networks. We identify 389 DEGs; the top DEG, FN1, was downregulated in cases (q = 3.26 × 10-9) and encodes fibronectin which plays a role in wound healing. The top three gene expression modules implicate networks related to immune response (CEACAM5; p = 9.62 × 10-16 and CPA3; p = 2.39 × 10-14) and wound healing (FN1; p = 7.63 × 10-9). Multi-omic analysis identifies FKBP5, a co-chaperone of glucocorticoid receptor signaling known to be involved in drug response in asthma, where the association between nasal epithelium gene expression is likely regulated by methylation and is associated with increased use of inhaled corticosteroids. This work reveals molecular dysregulation on three axes - increased Th2 inflammation, decreased capacity for wound healing, and impaired drug response - that may play a critical role in asthma within the African Diaspora.


Subject(s)
Asthma , Black People , DNA Methylation , Nasal Mucosa , Tacrolimus Binding Proteins , Humans , Asthma/genetics , Asthma/metabolism , Nasal Mucosa/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Female , Male , Black People/genetics , Adult , Gene Regulatory Networks , Fibronectins/metabolism , Fibronectins/genetics , Case-Control Studies , Gene Expression Regulation , Middle Aged , Multiomics
10.
Biochem Biophys Res Commun ; 722: 150157, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38805789

ABSTRACT

Age-associated adipose tissue (AT) dysfunction is multifactorial and often leads to detrimental health consequences. AT is highly vascularized and endothelial cells (ECs) has been recently identified as a key regulator in the homeostasis of AT. However, the alteration of cell composition in AT during aging and the communication between endothelial cells and adipocytes remain poorly understood. In this study, we take advantage of single nucleus RNA sequencing analysis, and discovered a group of FKBP5+ ECs specifically resident in aged AT. Of interest, FKBP5+ ECs exhibited the potential for endothelial-to-mesenchymal transition (EndoMT) and exhibited a critical role in regulating adipocytes. Furthermore, lineage tracing experiments demonstrated that ECs in aged AT tend to express FKBP5 and undergo EndoMT with progressive loss of endothelial marker. This study may provide a basis for a new mechanism of microvascular ECs-induced AT dysfunction during aging.


Subject(s)
Adipose Tissue , Aging , Endothelial Cells , Animals , Male , Mice , Adipocytes/metabolism , Adipocytes/cytology , Adipose Tissue/metabolism , Adipose Tissue/cytology , Aging/metabolism , Aging/genetics , Cell Nucleus/metabolism , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Mice, Inbred C57BL , Single-Cell Analysis/methods , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Transcriptome
11.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786025

ABSTRACT

Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.


Subject(s)
Diabetes Mellitus, Type 2 , Mental Disorders , Neoplasms , Tacrolimus Binding Proteins , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , Animals
12.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38803221

ABSTRACT

FK506-binding protein 52 (FKBP52) is a member of the FKBP family of proline isomerases. FKBP52 is up-regulated in various cancers and functions as a positive regulator of steroid hormone receptors. Depletion of FKBP52 is known to inhibit cell proliferation; however, the detailed mechanism remains poorly understood. In this study, we found that FKBP52 depletion decreased MDM2 transcription, leading to stabilization of p53, and suppressed cell proliferation. We identified NFATc1 and NFATc3 as transcription factors that regulate MDM2 We also found that FKBP52 associated with NFATc3 and facilitated its nuclear translocation. In addition, calcineurin, a well-known Ca2+ phosphatase essential for activation of NFAT, plays a role in MDM2 transcription. Supporting this notion, MDM2 expression was found to be regulated by intracellular Ca2+ Taken together, these findings reveal a new role of FKBP52 in promoting cell proliferation via the NFAT-MDM2-p53 axis, and indicate that inhibition of FKBP52 could be a new therapeutic tool to activate p53 and inhibit cell proliferation.


Subject(s)
Cell Proliferation , NFATC Transcription Factors , Proto-Oncogene Proteins c-mdm2 , Tacrolimus Binding Proteins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Cell Proliferation/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Cell Line, Tumor , Calcium/metabolism , Calcineurin/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction
13.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731411

ABSTRACT

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Subject(s)
Fullerenes , Molecular Dynamics Simulation , Muramidase , Protein Binding , Fullerenes/chemistry , Muramidase/chemistry , Muramidase/metabolism , Binding Sites , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/metabolism , Proteins/chemistry , Proteins/metabolism , HIV Protease
14.
FEBS J ; 291(14): 3128-3146, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38602236

ABSTRACT

Colorectal cancer (CRC) is a common and deadly tumor. FK506-binding protein 5 (FKBP5) is associated with some cancers, but the role of FKBP5 in CRC is not clear. The present study aimed to reveal the relationship between FKBP5 and CRC and to uncover the roles of FK506 in CRC. In total, 96 CRC patients were recruited. Survival analysis was conducted using the Kaplan-Meier method and COX regression analyses. Bioinformatics analyses were performed to explore the functions of FKBP5. The mechanisms of FKBP5 and the roles of FK506 in CRC progression were clarified by immunohistochemistry, MTS, scratch assay, transwell and flow cytometric analyses via in vitro and in vivo experiments. FKBP5 was overexpressed in 77 cancer tissues compared to that in matched normal tissues, and the overall survival rate of these patients was relatively shorter. Bioinformatics analyses showed that FKBP5 regulates proliferation, invasion, migration, epithelial-mesenchymal transition and nuclear factor-kappa B (NF-κB) signaling. The upregulation or downregulation of FKBP5 dramatically increases or decreases the proliferation, invasion and migration abilities of CRC cells. The expression of NF-κB, inhibitor B kinase α, matrix metalloproteinase-2 and metalloproteinase-9 positively correlated with FKBP5. FK506 inhibits the progression of CRC via the FKBP5/NF-κB signaling pathway. Our study identified a regulatory role for FKBP5 in CRC progression. Therefore, targeting FKBP5 may provide a novel treatment approach for CRC. FK506 can inhibit the progression of CRC by restraining the FKBP5/NF-κB signaling pathway and is expected to become a new drug for the treatment of CRC.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , NF-kappa B , Signal Transduction , Tacrolimus Binding Proteins , Tacrolimus , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Tacrolimus/pharmacology , Signal Transduction/drug effects , Male , Female , Cell Proliferation/drug effects , Cell Movement/drug effects , Animals , Mice , Gene Expression Regulation, Neoplastic/drug effects , Disease Progression , Middle Aged , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Mice, Nude , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
15.
Cancer Res Commun ; 4(5): 1296-1306, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38651817

ABSTRACT

The primary treatment for glioblastoma (GBM) is removing the tumor mass as defined by MRI. However, MRI has limited diagnostic and predictive value. Tumor-associated macrophages (TAM) are abundant in GBM tumor microenvironment (TME) and are found in peripheral blood (PB). FKBP51 expression, with its canonical and spliced isoforms, is constitutive in immune cells and aberrant in GBM. Spliced FKBP51s supports M2 polarization. To find an immunologic signature that combined with MRI could advance in diagnosis, we immunophenotyped the macrophages of TME and PB from 37 patients with GBM using FKBP51s and classical M1-M2 markers. We also determined the tumor levels of FKBP51s, PD-L1, and HLA-DR. Tumors expressing FKBP51s showed an increase in various M2 phenotypes and regulatory T cells in PB, indicating immunosuppression. Tumors expressing FKBP51s also activated STAT3 and were associated with reduced survival. Correlative studies with MRI and tumor/macrophages cocultures allowed to interpret TAMs. Tumor volume correlated with M1 infiltration of TME. Cocultures with spheroids produced M1 polarization, suggesting that M1 macrophages may infiltrate alongside cancer stem cells. Cocultures of adherent cells developed the M2 phenotype CD163/FKBP51s expressing pSTAT6, a transcription factor enabling migration and invasion. In patients with recurrences, increased counts of CD163/FKBP51s monocyte/macrophages in PB correlated with callosal infiltration and were accompanied by a concomitant decrease in TME-infiltrating M1 macrophages. PB PD-L1/FKBP51s connoted necrotic tumors. In conclusion, FKBP51s identifies a GBM subtype that significantly impairs the immune system. Moreover, FKBP51s marks PB macrophages associated with MRI features of glioma malignancy that can aid in patient monitoring. SIGNIFICANCE: Our research suggests that by combining imaging with analysis of monocyte/macrophage subsets in patients with GBM, we can enhance our understanding of the disease and assist in its treatment. We discovered a similarity in the macrophage composition between the TME and PB, and through association with imaging, we could interpret macrophages. In addition, we identified a predictive biomarker that drew more attention to immune suppression of patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Protein Isoforms , Tacrolimus Binding Proteins , Tumor Microenvironment , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/diagnostic imaging , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Prognosis , Female , Tumor Microenvironment/immunology , Male , Protein Isoforms/genetics , Protein Isoforms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Middle Aged , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Magnetic Resonance Imaging , Adult
16.
Sci Rep ; 14(1): 7888, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570626

ABSTRACT

Given the limitation of current routine approaches for pancreatic cancer screening and detection, the mortality rate of pancreatic cancer cases is still critical. The development of blood-based molecular biomarkers for pancreatic cancer screening and early detection which provide less-invasive, high-sensitivity, and cost-effective, is urgently needed. The goal of this study is to identify and validate the potential molecular biomarkers in white blood cells (WBCs) of pancreatic cancer patients. Gene expression profiles of pancreatic cancer patients from NCBI GEO database were analyzed by CU-DREAM. Then, mRNA expression levels of three candidate genes were determined by quantitative RT-PCR in WBCs of pancreatic cancer patients (N = 27) and healthy controls (N = 51). ROC analysis was performed to assess the performance of each candidate gene. A total of 29 upregulated genes were identified and three selected genes were performed gene expression analysis. Our results revealed high mRNA expression levels in WBCs of pancreatic cancer patients in all selected genes, including FKBP1A (p < 0.0001), PLD1 (p < 0.0001), and PSMA4 (p = 0.0002). Among candidate genes, FKBP1A mRNA expression level was remarkably increased in the pancreatic cancer samples and also in the early stage (p < 0.0001). Moreover, FKBP1A showed the greatest performance to discriminate patients with pancreatic cancer from healthy individuals than other genes with the 88.9% sensitivity, 84.3% specificity, and 90.1% accuracy. Our findings demonstrated that the alteration of FKBP1A gene in WBCs serves as a novel valuable biomarker for patients with pancreatic cancer. Detection of FKBP1A mRNA expression level in circulating WBCs, providing high-sensitive, less-invasive, and cost-effective, is simple and feasible for routine clinical setting that can be applied for pancreatic cancer screening and early detection.


Subject(s)
Early Detection of Cancer , Pancreatic Neoplasms , Humans , Early Detection of Cancer/methods , Biomarkers/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , RNA, Messenger/metabolism , Leukocytes/metabolism , Biomarkers, Tumor/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
17.
Eur J Med Chem ; 270: 116356, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38579621

ABSTRACT

The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.


Subject(s)
HSP90 Heat-Shock Proteins , Tacrolimus Binding Proteins , Humans , Protein Binding , Tacrolimus Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones , Transcription Factors/metabolism
18.
Stress ; 27(1): 2312467, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38557197

ABSTRACT

Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.


Subject(s)
Receptors, Glucocorticoid , Stress, Psychological , Tacrolimus Binding Proteins , Animals , Female , Male , Rats , Corticosterone/metabolism , Hippocampus/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Stress, Psychological/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
19.
Bioorg Med Chem Lett ; 104: 129728, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582133

ABSTRACT

Antascomicin B is a natural product that similarly to the macrolides FK506 and Rapamycin binds to the FK506-binding protein 12 (FKBP12). FK506 and Rapamycin act as molecular glues by inducing ternary complexes between FKBPs and additional target proteins. Whether Antascomicin B can induce ternary complexes is unknown. Here we show that Antascomicin B binds tightly to larger human FKBP homologs. The cocrystal structure of FKBP51 in complex with Antascomicin B revealed that large parts of Antascomicin B are solvent-exposed and available to engage additional proteins. Cellular studies demonstrated that Antascomicin B enhances the interaction between human FKBP51 and human Akt. Our studies show that molecules with molecular glue-like properties are more prominent in nature than previously thought. We predict the existence of additional 'orphan' molecular glues that evolved to induce ternary protein complexes but where the relevant ternary complex partners are unknown.


Subject(s)
Proto-Oncogene Proteins c-akt , Tacrolimus Binding Proteins , Tacrolimus , Humans , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , Tacrolimus/pharmacology , Tacrolimus/analogs & derivatives , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism
20.
Mol Psychiatry ; 29(5): 1510-1520, 2024 May.
Article in English | MEDLINE | ID: mdl-38317011

ABSTRACT

Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.


Subject(s)
Brain , DNA Methylation , Epigenesis, Genetic , Prefrontal Cortex , Tacrolimus Binding Proteins , Animals , Humans , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , DNA Methylation/genetics , Mice , Brain/metabolism , Prefrontal Cortex/metabolism , Male , Female , Epigenesis, Genetic/genetics , Dexamethasone/pharmacology , Polymorphism, Single Nucleotide/genetics , Regulatory Sequences, Nucleic Acid/genetics , Adult , Mice, Transgenic , Middle Aged , Hippocampus/metabolism , Glucocorticoids/pharmacology , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL