Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
J Agric Food Chem ; 72(31): 17431-17443, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39021257

ABSTRACT

The fungus Talaromyces hainanensis, isolated from the mangrove soil, was characterized as a novel species by morphology observation and phylogenetic analyses. Four new γ-lactam alkaloids talaroilactams A-D (1-4) and two reported compounds harzianic acid (5) and isoharzianic acid (6) were identified from the fungus T. hainanensis WHUF0341, assisted by OSMAC along with molecular networking approaches. Their structures were determined through ECD calculations and spectroscopic analyses. Moreover, the biosynthetic route of 1-4 was also proposed. Compound 1 displayed potent cytotoxicity against HepG2 cell lines, with an IC50 value of 10.75 ± 1.11 µM. In addition, network pharmacology was employed to dissect the probable mechanisms contributing to the antihepatocellular carcinoma effects of compound 1, revealing that cytotoxicity was mainly associated with proteolysis, negative regulation of autophagy, inflammatory response, and the renin-angiotensin system. These results not only expanded the chemical space of natural products from the mangrove associated fungi but also afforded promising lead compounds for developing the antihepatocellular carcinoma agents.


Subject(s)
Alkaloids , Antineoplastic Agents , Lactams , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Humans , Alkaloids/pharmacology , Alkaloids/chemistry , Hep G2 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Lactams/chemistry , Lactams/pharmacology , Phylogeny , Molecular Structure , Wetlands , Rhizophoraceae/microbiology , Rhizophoraceae/chemistry
2.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030474

ABSTRACT

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Subject(s)
Antifungal Agents , Candida auris , Chitinases , Microbial Sensitivity Tests , Nanoparticles , Chitinases/pharmacology , Chitinases/metabolism , Chitinases/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanoparticles/chemistry , Candida auris/drug effects , Candida auris/genetics , Enzymes, Immobilized/chemistry , Talaromyces/drug effects , Talaromyces/chemistry , Talaromyces/enzymology , Drug Resistance, Multiple, Fungal , Hydrolysis , Chitin/chemistry , Chitin/pharmacology
3.
J Agric Food Chem ; 72(28): 15613-15623, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38978453

ABSTRACT

Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of ß-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.


Subject(s)
Aspergillus oryzae , Chitin , Chitinases , Fungal Proteins , Oligosaccharides , Talaromyces , Chitin/metabolism , Chitin/chemistry , Chitinases/metabolism , Chitinases/genetics , Chitinases/chemistry , Talaromyces/enzymology , Talaromyces/genetics , Talaromyces/chemistry , Talaromyces/metabolism , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Hydrolysis , Aspergillus oryzae/enzymology , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Biocatalysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
4.
J Agric Food Chem ; 72(28): 15801-15810, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38962874

ABSTRACT

Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 µg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 µM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.


Subject(s)
Benzopyrans , Fungal Proteins , Multigene Family , Pigments, Biological , Talaromyces , Talaromyces/genetics , Talaromyces/metabolism , Talaromyces/chemistry , Pigments, Biological/chemistry , Pigments, Biological/metabolism , Humans , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Endophytes/genetics , Endophytes/metabolism , Endophytes/chemistry , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Cell Line, Tumor
5.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928398

ABSTRACT

Five new diterpenes including four diterpenes with 1,2,3,4,4a,5,6,8a-octalin skeleton talaroacids A-D (1-4) and an isopimarane diterpenoid talaromarane A (5) were isolated from the mangrove endophytic fungus Talaromyces sp. JNQQJ-4. Their structures and absolute configurations were determined by analysis of high-resolution electrospray ionization mass spectroscopy (HRESIMS), 1D/2D Nuclear Magnetic Resonance (NMR) spectra, single-crystal X-ray diffraction, quantum chemical calculation, and electronic circular dichroism (ECD). Talaromarane A (5) contains a rare 2-oxabicyclo [3.2.1] octan moiety in isopimarane diterpenoids. In bioassays, compounds 1, 2, 4, and 5 displayed significant anti-inflammatory activities with the IC50 value from 4.59 to 21.60 µM.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Talaromyces , Talaromyces/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Animals , Mice , Molecular Structure , RAW 264.7 Cells , Magnetic Resonance Spectroscopy
6.
Mar Drugs ; 22(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921548

ABSTRACT

Six new compounds, talamitones A and B (1 and 2), demethyltalamitone B (3), talamiisocoumaringlycosides A and B (4 and 5), and talaminaphtholglycoside (6), together with six known compounds (7-12), were isolated from the marine-derived fungus Talaromyces minnesotensis BTBU20220184. The new structures were characterized by using HRESIMS and NMR. This is the first report of isocoumaringlycoside derivatives from a fungus of the Talaromyces genus. Compounds 5, 6, and 9 showed synergistic antibacterial activity against Staphylococcus aureus.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Talaromyces , Talaromyces/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Aquatic Organisms , Microbial Sensitivity Tests , Secondary Metabolism , Molecular Structure , Magnetic Resonance Spectroscopy
7.
Mar Drugs ; 22(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921585

ABSTRACT

Talaromyces, a filamentous fungus widely distributed across terrestrial and marine environments, can produce a diverse array of natural products, including alkaloids, polyketones, and polyketide-terpenoids. Among these, chrodrimanins represented a typical class of natural products. In this study, we isolated three previously undescribed pentaketide-sesquiterpenes, 8,9-epi-chrodrimanins (1-3), along with eight known compounds (4-11). The structures of compounds 1-3 were elucidated using nuclear magnetic resonance (NMR) and mass spectrometry (MS), while their absolute configurations were determined through X-ray crystallography and electronic circular dichroism (ECD) computations. The biosynthetic pathways of compounds 1-3 initiate with 6-hydroxymellein and involve multiple stages of isoprenylation, cyclization, oxidation, and acetylation. We selected four strains of gastrointestinal cancer cells for activity evaluation. We found that compound 3 selectively inhibited MKN-45, whereas compounds 1 and 2 exhibited no significant inhibitory activity against the four cell lines. These findings suggested that 8,9-epi-chrodrimanins could serve as scaffold compounds for further structural modifications, potentially leading to the development of targeted therapies for gastric cancer.


Subject(s)
Antineoplastic Agents , Talaromyces , Talaromyces/chemistry , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Crystallography, X-Ray , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Aquatic Organisms , Magnetic Resonance Spectroscopy , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Molecular Structure
8.
J Nat Prod ; 87(7): 1808-1816, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38943602

ABSTRACT

Four new p-terphenyl derivatives, talaroterphenyls A-D (1-4), together with three biosynthetically related known ones (5-7), were obtained from the mangrove sediment-derived Talaromyces sp. SCSIO 41412. Compounds 1-3 are rare p-terphenyls, which are completely substituted on the central benzene ring by oxygen atoms; this is the first report of their isolation from natural sources. Their structures were elucidated through NMR spectroscopy, HRESIMS, and X-ray diffraction. Genome sequence analysis revealed that 1-7 were biosynthesized from tyrosine and phenylalanine, involving four key biosynthetic genes (ttpB-ttpE). These p-terphenyls (1-7) and 36 marine-derived terphenyl analogues (8-43) were screened for phosphodiesterase 4 (PDE4) inhibitory activities, and 1-5, 14, 17, 23, and 26 showed notable activities with IC50 values of 0.40-16 µM. The binding pattern of p-terphenyl inhibitors 1-3 with PDE4 were explored by molecular docking analysis. Talaroterphenyl A (1), with a low cytotoxicity, showed obvious anti-inflammatory activity in LPS-stimulated RAW264.7 cells. Furthermore, in the TGF-ß1-induced medical research council cell strain-5 (MRC-5) pulmonary fibrosis model, 1 could down-regulate the expression levels of FN1, COL1, and α-SMA significantly at concentrations of 5-20 µM. This study suggests that the oxidized p-terphenyl 1, as a marine-derived PDE4 inhibitor, could be used as a promising antifibrotic agent.


Subject(s)
Phosphodiesterase 4 Inhibitors , Terphenyl Compounds , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/isolation & purification , Mice , Animals , Terphenyl Compounds/pharmacology , Terphenyl Compounds/chemistry , Terphenyl Compounds/isolation & purification , Molecular Structure , Talaromyces/chemistry , RAW 264.7 Cells , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Marine Biology
9.
Fitoterapia ; 177: 106085, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901806

ABSTRACT

Three new meroterpenoids (1-3) and ten known ones (4-13) were obtained from the endophytic fungus Talaromyces primulinus H21 isolated from the plant of Euphorbia sikkimensis. Their structures including their absolute configurations were elucidated by extensive analysis of spectroscopic data such as HR-ESI-MS, 1D/2D NMR, and X-ray diffraction of single crystal together with comparison of experimental ECD with calculated ECD. All compounds were examined for their inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 cells, and compounds 3, 9, 12, and 13 exhibited certain inhibition on NO production, with IC50 values of 27.19, 41.55, 25.23, and 24.71 µM, respectively.


Subject(s)
Nitric Oxide , Talaromyces , Terpenes , Talaromyces/chemistry , Mice , Molecular Structure , Nitric Oxide/metabolism , Animals , Terpenes/isolation & purification , Terpenes/pharmacology , RAW 264.7 Cells , Endophytes/chemistry , China
10.
Bioorg Chem ; 147: 107417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701596

ABSTRACT

Marine natural products play an important role in biopesticides. Seven new secondary metabolites with different structural classes, including two cycloheptapeptides, scortide A (1) and scortide B (2), two 19-nor-diterpenoids, talascortene H (3) and talascortene I (4), two diterpenoid acids, talascortene J (5) and talascortene K (6), and one triterpenoid, talascortene L (7) were isolated and identified from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. Their structures were comprehensively assigned by spectroscopic data analysis, single-crystal X-ray diffraction, tandem mass spectrometry, and electronic circular dichroism (ECD) calculations. The result of the antimicrobial assay demonstrated that compounds 1 - 6 have inhibitory activity against several human, aquatic, and plant pathogens with minimum inhibitory concentration (MIC) values ranging from 1 to 64 µg/mL. Specially, compounds 2 and 4 showed significant activities against the pathogenic fungus Curvularia spicifera with the MIC value of 1 µg/mL, providing an experimental basis of 2 and 4 with the potential as lead compounds to be developed into biopesticides.


Subject(s)
Microbial Sensitivity Tests , Talaromyces , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Molecular Structure , Structure-Activity Relationship , Talaromyces/chemistry , Talaromyces/metabolism , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology
11.
Phytochemistry ; 223: 114119, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705266

ABSTRACT

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.


Subject(s)
Diketopiperazines , Talaromyces , Talaromyces/chemistry , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Diketopiperazines/isolation & purification , Humans , Molecular Structure , Prenylation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Indole Alkaloids/isolation & purification , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Hep G2 Cells , Cell Proliferation/drug effects , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Cell Line, Tumor
12.
Int J Biol Macromol ; 269(Pt 2): 132173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729461

ABSTRACT

This study aimed to encapsulate Talaromyces amestolkiae colorants in maltodextrin and chitosan microparticles using the spraydrying technique and to evaluate the biopolymers' capacities to protect the fungal colorant against temperature (65 °C) and extreme pH (2.0 and 13.0). The compact microparticles exhibited smooth or indented surfaces with internal diameters ranging between 2.58-4.69 µm and ζ ~ -26 mV. The encapsulation efficiencies were 86 % and 56 % for chitosan and maltodextrin microparticles, respectively. The shifted endothermic peaks of the free colorants indicated their physical stabilization into microparticles. The encapsulated colorants retained most of their absorbance (compared to the 0 h) even after 25 days at 65 °C. Contrary, the free colorant presented almost no absorbance after 1 day under the same conditions. Colorants in chitosan and maltodextrin matrices also partially maintained their colorimetric and fluorometric properties at acidic pH. However, only maltodextrin improved the resistance of the red colorant to alkaline environments. For the first time, the potential of polysaccharide-based microparticles to preserve polyketide colorants was demonstrated using 3D fluorescence. Therefore, this study demonstrated an alternative in developing functional products with natural color additives.


Subject(s)
Chitosan , Polysaccharides , Chitosan/chemistry , Polysaccharides/chemistry , Hydrogen-Ion Concentration , Coloring Agents/chemistry , Talaromyces/chemistry , Particle Size , Temperature , Microspheres
13.
Mar Drugs ; 22(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786595

ABSTRACT

Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 µg/mL.


Subject(s)
Anti-Bacterial Agents , Polyketides , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure
14.
J Antibiot (Tokyo) ; 77(8): 499-505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816448

ABSTRACT

Antiviral agents are highly sought after. In this study, a novel alkylated decalin-type polyketide, alaspelunin, was isolated from the culture broth of the fungus Talaromyces speluncarum FMR 16671, and its structure was determined using spectroscopic analyses (1D/2D NMR and MS). The compound was condensed with alanine, and its absolute configuration was determined using Marfey's method. Furthermore, the antiviral activity of alaspelunin against various viruses was evaluated, and it was found to be effective against both severe acute respiratory syndrome coronavirus 2 and pseudorabies (Aujeszky's disease) virus, a pathogen affecting pigs. Our results suggest that this compound is a potential broad-spectrum antiviral agent.


Subject(s)
Alanine , Antiviral Agents , Polyketides , Talaromyces , Talaromyces/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Animals , Alanine/pharmacology , Alanine/chemistry , Alanine/analogs & derivatives , Herpesvirus 1, Suid/drug effects , SARS-CoV-2/drug effects , Swine , Magnetic Resonance Spectroscopy , Molecular Structure
15.
J Asian Nat Prod Res ; 26(5): 555-561, 2024 May.
Article in English | MEDLINE | ID: mdl-38563409

ABSTRACT

A newly discovered trihydroxynaphthalenone derivative, epoxynaphthalenone (1) involving the condensation of ortho-hydroxyl groups into an epoxy structure, and a novel pyrone metabolite characterized as pyroneaceacid (2), were extracted from Talaromyces purpurpgenus, an endophytic fungus residing in Rhododendron molle. The structures of these compounds were elucidated through a comprehensive analysis of their NMR and HRESIMS data. The determination of absolute configurations was accomplished using electronic circular dichroism (ECD) calculations and CD spectra. Notably, these recently identified metabolites exhibited a moderate inhibitory activity against xanthine oxidase (XOD).


Subject(s)
Pyrones , Talaromyces , Xanthine Oxidase , Talaromyces/chemistry , Molecular Structure , Pyrones/chemistry , Pyrones/pharmacology , Pyrones/isolation & purification , Xanthine Oxidase/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Naphthalenes/chemistry , Naphthalenes/isolation & purification , Naphthalenes/pharmacology , Circular Dichroism
16.
Mar Drugs ; 22(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667803

ABSTRACT

Three novel meroterpenoids, taladrimanins B-D (1-3), were isolated from the marine-derived fungus Talaromyces sp. M27416, alongside three biogenetically related compounds (4-6). We delineated taladrimanin B's (1) structure using HRESIMS and NMR, confirmed its configuration via quantum chemical NMR analysis and DP4+ methodology, and verified it through X-ray crystallography. ECD calculations determined the absolute configuration of compound 1, while comparative NMR and ECD analyses elucidated the absolute configurations of 2 and 3. These compounds are drimane-type meroterpenoids with a C10 polyketide unit (8R-configuration). We proposed a biosynthetic pathway and noted that compound 1 showed cytotoxic activity against MKN-45 and 5637 cell lines and selective antibacterial effects against Staphylococcus aureus CICC 10384.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Talaromyces , Terpenes , Talaromyces/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Cell Line, Tumor , Staphylococcus aureus/drug effects , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Crystallography, X-Ray , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Microbial Sensitivity Tests , Aquatic Organisms , Molecular Structure , Magnetic Resonance Spectroscopy
17.
J Nat Prod ; 87(5): 1407-1415, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38662578

ABSTRACT

Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 µM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 µg/mL.


Subject(s)
Alkaloids , Hydrazones , Microbial Sensitivity Tests , Staphylococcus aureus , Talaromyces , Talaromyces/chemistry , Hydrazones/pharmacology , Hydrazones/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Staphylococcus aureus/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Drug Screening Assays, Antitumor , Crystallography, X-Ray
18.
Photochem Photobiol Sci ; 23(5): 941-955, 2024 May.
Article in English | MEDLINE | ID: mdl-38643418

ABSTRACT

The identification of more efficient, clean, secure, and competitive energy supply is necessary to align with the needs of sustainable devices. For this reason, a study for developing innovative dye-sensitized solar cells (DSSCs) based on microbial pigments is reported starting from Talaromyces atroroseus GH2. The fungus was cultivated by fermentation and the extracellular pigment extract was characterized by HPLC-DAD-ESI-MS analyses. The most abundant compound among the 22 azaphilone-type pigments identified was represented by PP-O. The device's behavior was investigated in relation to electrolyte and pH for verifying the stability on time and the photovoltaic performance. Devices obtained were characterized by UV-vis measurements to verify the absorbance intensity and transmittance percentage. Moreover, photovoltaic parameters through photo-electrochemical measurements (I-V curves) and impedance characteristics by Electrochemical Impedance Spectroscopy (EIS) were determined. The best microbial device showed a short-circuit current density (Jsc) of 0.69 mA/cm2, an open-circuit photo-voltage (Voc) of 0.27 V and a Fill Factor (FF) of 0.60. Furthermore, the power conversion efficiency (PCE) of the device was 0.11%. Thus, the present study demonstrated the potential of microbial origin pigments for developing DSSCs.


Subject(s)
Coloring Agents , Solar Energy , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Coloring Agents/chemistry , Pigments, Biological/chemistry
19.
J Nat Prod ; 87(4): 935-947, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38575516

ABSTRACT

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.


Subject(s)
Aminoglycosides , Isoptera , Nitric Oxide , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Isoptera/microbiology , Aminoglycosides/pharmacology , Australia , Transcriptional Activation/drug effects , Fungi/metabolism , Talaromyces/chemistry , Talaromyces/metabolism , Actinomyces/metabolism , Actinomyces/drug effects
20.
J Nat Prod ; 87(4): 1230-1234, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626456

ABSTRACT

Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Peptides, Cyclic , Porifera , Talaromyces , Talaromyces/chemistry , Animals , Porifera/microbiology , Humans , Molecular Structure , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Drug Screening Assays, Antitumor , Marine Biology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL