Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.158
Filter
1.
Food Res Int ; 188: 114525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823888

ABSTRACT

As a kind of green tea with unique multiple baking processes, the flavor code of Lu'an Guapian (LAGP) has recently been revealed. To improve and stabilize the quality of LAGP, further insight into the dynamic changes in odorants during the whole processing is required. In this study, 50 odorants were identified in processing tea leaves, 14 of which were selected for absolute quantification to profile the effect of processes. The results showed that spreading is crucial for key aroma generation and accumulation, while these odorants undergo significant changes at the deep baking stage. By adjusting the conditions of the spreading and deep baking, it was found that low-temperature (4 °C) spreading for 6 h and low-temperature with long-time baking (final leaf temperature: 102 °C, 45 min) could improve the overall aroma quality. These results provide a new direction for enhancing the quality of LAGP green tea.


Subject(s)
Odorants , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Plant Leaves/chemistry , Food Handling/methods , Cooking/methods , Camellia sinensis/chemistry , Gas Chromatography-Mass Spectrometry , Hot Temperature
2.
J Agric Food Chem ; 72(23): 13240-13249, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38825967

ABSTRACT

Acrolein (ACR), methylglyoxal (MGO), and glyoxal (GO) are a class of reactive carbonyl species (RCS), which play a crucial role in the pathogenesis of chronic and age-related diseases. Here, we explored a new RCS inhibitor (theanine, THE) and investigated its capture capacity on RCS in vivo by human experiments. After proving that theanine could efficiently capture ACR instead of MGO/GO by forming adducts under simulated physiological conditions, we further detected the ACR/MGO/GO adducts of theanine in the human urine samples after consumption of theanine capsules (200 and 400 mg) or green tea (4 cups, containing 200 mg of theanine) by using ultraperformance liquid chromatography-time-of-flight-high-resolution mass spectrometry. Quantitative assays revealed that THE-ACR, THE-2ACR-1, THE-MGO, and THE-GO were formed in a dose-dependent manner in the theanine capsule groups; the maximum value of the adducts of theanine was also tested. Furthermore, besides the RCS adducts of theanine, the RCS adducts of catechins could also be detected in the drinking tea group. Whereas, metabolite profile analysis showed that theanine could better capture RCS produced in the renal metabolic pathway than catechins. Our findings indicated that theanine could reduce RCS in the body in two ways: as a pure component or contained in tea leaves.


Subject(s)
Glutamates , Glyoxal , Pyruvaldehyde , Tea , Humans , Tea/chemistry , Glutamates/metabolism , Glutamates/analysis , Male , Pyruvaldehyde/metabolism , Pyruvaldehyde/chemistry , Glyoxal/metabolism , Glyoxal/chemistry , Adult , Acrolein/metabolism , Acrolein/chemistry , Capsules/chemistry , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Female , Young Adult , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/administration & dosage , Chromatography, High Pressure Liquid
3.
F1000Res ; 13: 208, 2024.
Article in English | MEDLINE | ID: mdl-38854441

ABSTRACT

Background: Striae distensae (SD) is a skin condition that frequently causes dermatological consultations and although asymptomatic, it may can cause itch and burning sensation. Green tea extract contains polyphenol, including flavanol, flavandiol, flavonoid, phenolic acid, amino acids and minerals which play a role in the repair of stretch marks through anti-inflammatory mechanism, increase collagen production, fibroblast proliferation, and skin hydration. Objective: To determine the efficacy of green tea extract cream on striae distensae. Methods: This is a pre-experimental clinical trial with a pretest-posttest design on 36 subjects with striae distensae. Diagnosis establishes through history taking and clinical evaluation. Imam Nelva Alviera (INA) score was used as SD severity before and after the application of the 3% green tea extract cream carried out at weeks 0, 2, 4, 6, and 8. Side effects and subjects' satisfaction were also recorded. Cochran test was carried out to see the difference before and after treatment, with a p-value <0.05 considered significant. Results: Majority of study subjects were 18-25 years (77.8%), had history of pregnancy (75%), had a history of menarche at the age of 12 years (27.8%) and all subjects had striae alba. There was significant decrement in INA score for striae distensae (p<0.001) after eight weeks administration of 3% green tea extract cream. Clinical improvement and no side effects were also noted. All subjects were satisfied. Conclusions: The use of 3% green tea extract cream can improve the appearance of SD.


Subject(s)
Camellia sinensis , Plant Extracts , Striae Distensae , Tea , Humans , Female , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Striae Distensae/drug therapy , Adult , Adolescent , Camellia sinensis/chemistry , Young Adult , Tea/chemistry , Male , Treatment Outcome , Skin Cream/therapeutic use
4.
Environ Monit Assess ; 196(7): 596, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839676

ABSTRACT

The issue of soil acidification in tea plantations has become a critical concern due to its potential impact on tea quality and plant health. Understanding the factors contributing to soil acidification is essential for implementing effective soil management strategies in tea-growing regions. In this study, a field study was conducted to investigate the effects of tea plantations on soil acidification and the associated acid-base buffering capacity (pHBC). We assessed acidification, pHBC, nutrient concentrations, and cation contents in the top 0-20 cm layer of soil across forty tea gardens of varying stand ages (0-5, 5-10, 10-20, and 20-40 years old) in Anji County, Zhejiang Province, China. The results revealed evident soil acidification due to tea plantation activities, with the lowest soil pH observed in tea gardens aged 10-20 and 20-40 years. Higher levels of soil organic matter (SOM), total nitrogen (TN), Olsen phosphorus (Olsen-P), available iron (Fe), and exchangeable hydrogen (H+) were notably recorded in 10-20 and 20-40 years old tea garden soils, suggesting an increased risk of soil acidification with prolonged tea cultivation. Furthermore, prolonged tea cultivation correlated with increased pHBC, which amplified with tea stand ages. The investigation of the relationship between soil pHBC and various parameters highlighted significant influences from soil pH, SOM, cation exchange capacity, TN, available potassium, Olsen-P, exchangeable acids (including H+ and aluminum), available Fe, and available zinc. Consequently, these findings underscore a substantial risk of soil acidification in tea gardens within the monitored region, with SOM and TN content being key driving factors influencing pHBC.


Subject(s)
Camellia sinensis , Environmental Monitoring , Nitrogen , Soil , Soil/chemistry , Camellia sinensis/chemistry , Nitrogen/analysis , China , Hydrogen-Ion Concentration , Ecosystem , Phosphorus/analysis , Tea/chemistry , Agriculture
5.
Front Immunol ; 15: 1362404, 2024.
Article in English | MEDLINE | ID: mdl-38745671

ABSTRACT

Introduction: The anti-inflammatory effect of green tea extract (GTE) has been confirmed in asthmatic mice, however, the pharmacological mechanism is not fully elucidated. Methods: To investigate the therapeutic efficacy of GTE in asthma and identify specific pathways, murine model of allergic asthma was established by ovalbumin (OVA) sensitization and the challenge for 4 weeks, with oral treatment using GTE and dexamethasone (DEX). Inflammatory cell counts, cytokines, OVA-specific IgE, airway hyperreactivity, and antioxidant markers in the lung were evaluated. Also, pulmonary histopathological analysis and western blotting were performed. In vitro, we established the model by stimulating the human airway epithelial cell line NCI-H292 using lipopolysaccharide, and treating with GTE and mitogen-activated protein kinases (MAPKs) inhibitors. Results: The GTE100 and GTE400 groups showed a decrease in airway hyperresponsiveness and the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared to the OVA group. GTE treatment also reduced interleukin (IL)-13, IL-5, and IL-4 levels in the BALF, and OVA-specific immunoglobulin E levels in the serum compared to those in the OVA group. GTE treatment decreased OVA-induced mucus secretion and airway inflammation. In addition, GTE suppressed the oxidative stress, and phosphorylation of MAPKs, which generally occurs after exposure to OVA. GTE administration also reduced matrix metalloproteinase-9 activity and protein levels. Conclusion: GTE effectively inhibited asthmatic respiratory inflammation and mucus hyperproduction induced by OVA inhalation. These results suggest that GTE has the potential to be used for the treatment of asthma.


Subject(s)
Asthma , Epithelial Cells , Matrix Metalloproteinase 9 , Oxidative Stress , Plant Extracts , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Animals , Oxidative Stress/drug effects , Mice , Humans , Plant Extracts/pharmacology , Matrix Metalloproteinase 9/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Disease Models, Animal , Tea/chemistry , Female , Signal Transduction/drug effects , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Cytokines/metabolism , Ovalbumin/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
6.
J Chromatogr A ; 1726: 464961, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723491

ABSTRACT

The improvement of the stability and adsorption properties of materials on targets in sample pre-treatment has long been an objective. Extensive efforts have been made to achieve this goal. In this work, metal-organic framework Ni-MOF precursors were first synthesized by solvothermal method using polyvinylpyrrolidone (PVP) as an ideal templating agent, stabiliser and nanoparticle dispersant. After carbonization and acid washing, the nanoporous carbon microspheres material (Ni@C-acid) was obtained. Compared with the material without acid treatment (Ni@C), the specific surface area, pore volume, adsorption performance of Ni@C-acid were increased. Thanks to its excellent characteristics (high stability, abundant benzene rings), Ni@C-acid was used as fiber coatings in headspace solid-phase microextraction (HS-SPME) technology for extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) prior to gas chromatography-flame ionization detector (GC-FID) analysis. The experimental parameters of extraction temperature, extraction time, agitation speed, desorption temperature, desorption time and sodium chloride (NaCl) concentration were studied. Under optimal experimental conditions, the wide linear range (0.01-30 ng mL-1), the good correlation coefficient (0.9916-0.9984), the low detection limit (0.003-0.011 ng mL-1), and the high enrichment factor (5273-13793) were obtained. The established method was successfully used for the detection of trace PAHs in actual tea infusions samples and satisfied recoveries ranging from 80.94-118.62 % were achieved. The present work provides a simple method for the preparation of highly stable and adsorbable porous carbon microsphere materials with potential applications in the extraction of environmental pollutants.


Subject(s)
Carbon , Limit of Detection , Metal-Organic Frameworks , Microspheres , Polycyclic Aromatic Hydrocarbons , Solid Phase Microextraction , Tea , Solid Phase Microextraction/methods , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Tea/chemistry , Carbon/chemistry , Metal-Organic Frameworks/chemistry , Porosity , Adsorption , Nickel/chemistry , Nickel/isolation & purification , Chromatography, Gas/methods , Reproducibility of Results
7.
J Agric Food Chem ; 72(21): 12184-12197, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38745351

ABSTRACT

Oolong tea polyphenols (OTP) have attracted wide attention due to their ability to reduce inflammatory response, regulate gut microbiota, and improve cognitive function. However, exactly how the gut microbiota modulates nervous system activity is still an open question. We previously expounded that supplementing with OTP alleviated neuroinflammation in circadian rhythm disorder (CRD) mice. Here, we showed that OTP can relieve microglia activation by reducing harmful microbial metabolites lipopolysaccharide (LPS) that alleviate CRD-induced cognitive decline. Mechanistically, OTP suppressed the inflammation response by regulating the gut microbiota composition, including upregulating the relative abundance of Muribaculaceae and Clostridia_UCG-014 and downregulating Desulfovibrio, promoting the production of short-chain fatty acids (SCFAs). Moreover, the use of OTP alleviated intestinal barrier damage and decreased the LPS transport to the serum. These results further inhibited the activation of microglia, thus alleviating cognitive impairment by inhibiting neuroinflammation, neuron damage, and neurotoxicity metabolite glutamate elevation. Meanwhile, OTP upregulated the expression of synaptic plasticity-related protein postsynaptic density protein 95 (PSD-95) and synaptophysin (SYN) by elevating the brain-derived neurotrophic factor (BDNF) level. Taken together, our findings suggest that the OTP has the potential to prevent CRD-induced cognition decline by modulating gut microbiota and microbial metabolites.


Subject(s)
Camellia sinensis , Chronobiology Disorders , Cognitive Dysfunction , Gastrointestinal Microbiome , Mice, Inbred C57BL , Neuroprotective Agents , Polyphenols , Tea , Gastrointestinal Microbiome/drug effects , Animals , Polyphenols/pharmacology , Polyphenols/administration & dosage , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Male , Tea/chemistry , Camellia sinensis/chemistry , Neuroprotective Agents/pharmacology , Chronobiology Disorders/metabolism , Chronobiology Disorders/drug therapy , Chronobiology Disorders/physiopathology , Humans , Bacteria/classification , Bacteria/drug effects , Bacteria/metabolism , Bacteria/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Microglia/drug effects , Microglia/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry
8.
J Hazard Mater ; 472: 134583, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749250

ABSTRACT

Iron-based materials such as nanoscale zerovalent iron (nZVI) are effective candidates to in situ remediate hexachromium (Cr(VI))-contaminated groundwater. The anaerobic bacteria could influence the remediation efficiency of Cr(VI) during its cotransport with nZVI in porous media. To address this issue, the present study investigated the adsorption and reduction of Cr(VI) during its cotransport with green tea (GT) modified nZVI (nZVI@GT) and iron sulfides (FeS and FeS2) in the presence of D. vulgaris or S. putrefaciens in water-saturated sand columns. Experimental results showed that the nZVI@GT preferred to heteroaggregate with FeS2 rather than FeS, forming nZVI@GT-FeS2 heteroaggregates. Although the presence of D. vulgaris further induced nZVI@GT-FeS2 heteroaggregates to form larger clusters, it pronouncedly improved the dissolution of FeS and FeS2 for more Cr(VI) reduction associated with lower Cr(VI) flux through sand. In contrast, S. putrefaciens could promote the dispersion of the heteroaggregates of nZVI@GT-FeS2 and the homoaggregates of nZVI@GT or FeS by adsorption on the extracellular polymeric substances, leading to the improved transport of Fe-based materials for a much higher Cr(VI) immobilization in sand media. Overall, our study provides the essential perspectives into a chem-biological remediation technique through the synergistic removal of Cr(VI) by nZVI@GT and FeS in contaminated groundwater. ENVIRONMENTAL IMPLICATION: The green-synthesized nano-zero-valent iron particles (nZVI@GT) using plant extracts (or iron sulfides) have been used for in situ remediation of Cr(VI) contaminated groundwater. Nevertheless, the removal of Cr(VI) (including Cr(VI) adsorption and Cr(III) generation) could be influenced by the anaerobic bacteria governing the transport of engineered nanoparticles in groundwater. This study aims to reveal the inherent mechanisms of D. vulgaris and S. putrefaciens governing the cotransport of nZVI@GT combined with FeS (or FeS2) to further influence the Cr(VI) removal in simulated complex groundwater media. Our findings provides a chemical and biological synergistic remediation strategy for nZVI@GT application in Cr(VI)-contaminated groundwater.


Subject(s)
Chromium , Groundwater , Iron , Metal Nanoparticles , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Chromium/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Sulfides/chemistry , Adsorption , Tea/chemistry , Water Purification/methods , Ferrous Compounds
9.
Food Chem ; 453: 139701, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781907

ABSTRACT

The current study offers the nanomolar quantification of gallic acid (GAL) based on gold nanoparticles (AuNps) and kaolinite minerals (KNT) modified on a screen-printed electrode (SPE). The electrochemical behavior of GAL was performed using differential pulse voltammetry (DPV) in Britton Robinson (BR) buffer solution at pH 2.0 as a supporting electrolyte. Under the optimized DPV mode parameters, the oxidation peak current of GAL (at 0.72 V vs Ag/AgCl) increased linearly in the range between 0.002 µmolL-1 and 40.0 µmolL-1 with a detection limit of 0.50 nmolL-1. The effect of common interfering agents was also investigated. Finally, the applicability of the proposed method was verified by quantification analysis of GAL in black tea and pomegranate juice samples.


Subject(s)
Electrochemical Techniques , Electrodes , Gallic Acid , Gold , Kaolin , Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Gallic Acid/analysis , Gallic Acid/chemistry , Kaolin/chemistry , Electrochemical Techniques/instrumentation , Limit of Detection , Pomegranate/chemistry , Tea/chemistry , Minerals/analysis , Minerals/chemistry , Fruit and Vegetable Juices/analysis , Camellia sinensis/chemistry , Food Contamination/analysis
10.
J Sep Sci ; 47(9-10): e2300628, 2024 May.
Article in English | MEDLINE | ID: mdl-38801755

ABSTRACT

The contents of organic acids (OAs) in tea beverage and their relationship with taste intensity have not been fully understood. In this work, a rapid (10 min for a single run) and sensitive (limits of quantification: 0.0044-0.4486 µg/mL) method was developed and validated for the simultaneous determination of 17 OAs in four types of tea, based on liquid chromatography-tandem mass spectrometry with multiple reaction monitoring mode. The contents of 17 OAs in 96 tea samples were measured at levels between 0.01 and 11.80 g/kg (dried weight). Quinic acid, citric acid, and malic acid were determined as the major OAs in green, black, and raw pu-erh teas, while oxalic acid and tartaric acid exhibited the highest contents in ripe pu-erh tea. Taking the OAs composition as input features, a partial least squares regression model was proposed to predict the sourness intensity of tea beverages. The model achieved a root-mean-square error of 0.58 and a coefficient of determination of 0.84 for the testing set. The proposed model provides a theoretical way to evaluate the sensory quality of tea infusion based on its chemical composition.


Subject(s)
Tandem Mass Spectrometry , Tea , Tea/chemistry , Tandem Mass Spectrometry/methods , Chemometrics , Chromatography, Liquid/methods , Taste , Chromatography, High Pressure Liquid/methods
11.
Nutrients ; 16(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794687

ABSTRACT

It has been strongly suggested that selenium deficiency and T-2 toxin contamination have a strong relationship with the occurrence and development of Kashin-Beck disease (KBD). In order to provide information for understanding the high prevalence of KBD in Tibet, this study collected the responses to a cubital venous blood and dietary questionnaire of 125 subjects including 75 KBD patients and 50 healthy controls in a KBD-prevalent county (Luolong County) in Tibet, China. A total of 10 household local families were randomly selected in this area, and local diet samples of brick tea, Zanba powder, milk residue, and hulless Barley were collected from these residents. Selenium content in blood was detected by inductively coupled plasma mass spectrometry (ICP-MS). The T-2 toxin contamination level in food sample was assayed using an ELISA kit. The selenium levels of patients and controls were 42.0 ± 19.8 and 56.06 ± 22.4 µg/L, respectively. The serum selenium level in controls was higher than that in patients, but there was no significant difference, and the serum selenium level both in patients and controls in Tibet was lower than the normal range. The results of the dietary survey showed that the number of respondents who consumed butter tea was large; 46.67% of patients indicated that they drank buttered tea every day, which was significantly higher than in controls. The contents of T-2 toxin in Zanba powder, milk residue, hulless barley and drinking water samples were below the detection limit (0.05 µg/kg); this result was labeled Tr. Unexpectedly, the contents of T-2 toxin in brick tea were higher, with average levels of 424 ± 56 µg/kg in Detong village and 396 ± 24 µg/kg in Langcuo village. For the first time, we report the presence of an extremely high concentration of T-2 toxin in brick tea of Tibet.


Subject(s)
Kashin-Beck Disease , Selenium , T-2 Toxin , Humans , Tibet/epidemiology , Kashin-Beck Disease/epidemiology , Kashin-Beck Disease/blood , T-2 Toxin/blood , T-2 Toxin/analogs & derivatives , T-2 Toxin/analysis , Female , Male , Selenium/blood , Adult , Middle Aged , Prevalence , Beverages , Food Contamination/analysis , Tea/chemistry , Diet/statistics & numerical data , Case-Control Studies , Diet Surveys
12.
Int J Nanomedicine ; 19: 4299-4317, 2024.
Article in English | MEDLINE | ID: mdl-38766654

ABSTRACT

Background: Inhibition of amyloid ß protein fragment (Aß) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods: The interaction between EGCG and Aß42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aß42 aggregation. Results: EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aß42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aß42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion: Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Catechin , Gold , Metal Nanoparticles , Molecular Docking Simulation , Peptide Fragments , Tea , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Catechin/chemistry , Catechin/pharmacology , Catechin/analogs & derivatives , Tea/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Gold/chemistry , Ligands , Peptide Fragments/chemistry , Peptide Fragments/antagonists & inhibitors , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Protein Aggregates/drug effects
13.
J Sep Sci ; 47(11): e2300730, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819790

ABSTRACT

A fast and effective analytical method with biomass solid-phase microextraction sorbent combined with a high-performance liquid chromatography-ultraviolet detector was proposed for the determination of benzoylurea (BU) insecticides in tea products. The novel sorbent was prepared by activating and then carbonizing water hyacinth with a fast growth rate and low application value as raw material and showed a high specific surface area and multiple interactions with analytes, such as electrostatic action, hydrogen bonding, and π-π conjugation. After optimizing the three most important extraction parameters (pH [X1], sample loading rate [X2], and solution volume [X3]) by Box-Behnken design, the as-established analytical method showed good extraction performance: excellent recovery (80.13%-106.66%) and wide linear range (1-400 µg/L) with a determination coefficient of 0.9992-0.9999, a low limit of detection of 0.02-0.1 µg/L and the satisfactory practical application results in tea products. All these indicate that the water hyacinth-derived material has the potential as a solid-phase extraction sorbent for the detection and removal of BU insecticides from tea products, and at the same time, it can also achieve the effect of rational use of biological resources, maintaining ecological balance, turning waste into treasure, and achieving industrial production.


Subject(s)
Biomass , Eichhornia , Insecticides , Tea , Insecticides/analysis , Insecticides/chemistry , Insecticides/isolation & purification , Eichhornia/chemistry , Tea/chemistry , Adsorption , Chromatography, High Pressure Liquid , Solid Phase Microextraction , Phenylurea Compounds/analysis , Phenylurea Compounds/chemistry , Phenylurea Compounds/isolation & purification
14.
Food Chem ; 453: 139641, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761733

ABSTRACT

This study presents a comprehensive analysis of the elemental profiles of tea leaves coming from plants grown in several European gardens, with a focus on the bioaccumulation of essential and potentially toxic trace elements in relation to processing and location of tea garden. Samples were collected from various gardens across Europe, including Portugal, the Azores, Germany, the Netherlands, and Switzerland. Elemental analysis was conducted on fresh tea leaves, dried leaves, and leaves processed for the production of green and black tea, along with soil samples from the root zones of tea plants. The results reveal no significant differences in elemental content based on the processing of tea leaves. However, distinct elemental profiles were observed among tea leaves of plants grown in gardens from different European regions. Utilizing chemometric and machine learning tools, the study highlights the potential of these elemental profiles for enhancing the traceability of tea products.


Subject(s)
Camellia sinensis , Plant Leaves , Tea , Trace Elements , Camellia sinensis/chemistry , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Trace Elements/analysis , Tea/chemistry , Europe , Gardens , Soil/chemistry
15.
Food Chem ; 453: 139643, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761734

ABSTRACT

The study aimed to evaluate a food adhesive developed using tea polyphenols (TPs) with soybean protein isolate (SPI) to create a cohesive bond between soy protein gel and simulated fat. Upon the addition of 5.0 % TPs, significant increases in viscosity, thermal stability, and crystallinity were noted in adhesives, suggesting the formation of a cohesive network. Furthermore, TPs effectively enhanced adhesion strength, with the optimal addition being 5.0 %. This enhancement can be attributed to hydrogen bonding, hydrophobic and electrostatic interactions between TPs and SPI molecules. TPs induced a greater expansion of the protein structure, exposing numerous buried hydrophobic groups to a more hydrophilic and polar environment. However, excessive TPs were found to diminish adhesion strength. This can be attributed to enhanced reactions between TPs and SPI, where high molecular weight SPI-TPs cooperatively aggregate to form agglomerates that eventually precipitated, rendering the adhesive network inhomogeneous, less stable, and more prone to disruption.


Subject(s)
Adhesives , Polyphenols , Soybean Proteins , Tea , Tensile Strength , Soybean Proteins/chemistry , Polyphenols/chemistry , Adhesives/chemistry , Tea/chemistry , Hydrophobic and Hydrophilic Interactions , Viscosity , Camellia sinensis/chemistry , Plant Extracts/chemistry , Hydrogen Bonding
16.
Food Chem ; 453: 139628, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761731

ABSTRACT

Umami taste is a key criteria of green tea quality evaluation. The aim of this study was to comprehensively explore the key umami taste contributors in Longjing tea. The taste and molecular profiles of 36 Longjing green tea infusions were characterized by sensory quantitative descriptive analysis and LC-MS based metabolomics, respectively. By uni-/multi-variate statistical analysis, 84 differential compounds were screened among tea infusions with varied umami perceptions. Among them, 17 substances were identified as candidate umami-enhancing compounds, which showed significant positive correlations with umami intensities. Their natural concentrations were accurately quantified, and their umami taste-modifying effects were further investigated by taste addition into glutamic acid solution. Glutamic acid, aspartic acid, glutamine, theanine, phenylalanine, histidine, theogallin, galloylglucose, 1,2,6-trigalloylglucose significantly enhanced the umami taste. This study uncovered for the first time of some bitter amino acids and galloylglucose homologous series as important umami-enhancers, which provided a novel perspective into the tea taste.


Subject(s)
Camellia sinensis , Metabolomics , Taste , Tea , Tea/chemistry , Humans , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Male , Adult , Mass Spectrometry , Female , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/analysis , Chromatography, High Pressure Liquid
17.
J Ethnopharmacol ; 332: 118298, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38714238

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Green tea (Camellia sinensis) is a popular beverage consumed all over the world due to its health benefits. Many of these beneficial effects of green tea are attributed to polyphenols, particularly catechins. AIM OF THE STUDY: The present study focuses on underlying anti-platelet aggregation, anti-thrombotic, and anti-lipidemic molecular mechanisms of green tea in South Indian smokers. MATERIALS AND METHODS: We selected 120 South Indian male volunteers for this study to collect the blood and categorised them into four groups; control group individuals (Controls), smokers, healthy control individuals consuming green tea, and smokers consuming green tea. Smokers group subjects have been smoking an average 16-18 cigarettes per day for the last 7 years or more. The subjects (green tea consumed groups) consumed 100 mL of green tea each time, thrice a day for a one-year period. RESULTS: LC-MS analysis revealed the presence of multiple phytocompounds along with catechins in green tea extract. Increased plasma lipid peroxidation (LPO), protein carbonyls, cholesterol, triglycerides, and LDL-cholesterol with decreased HDL-cholesterol levels were observed in smokers compared to the control group and the consumption of green tea showed beneficial effect. Furthermore, docking studies revealed that natural compounds of green tea had high binding capacity with 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA) when compared to their positive controls, whereas (-) epigallocatechin-3-gallate (EGCG) and (-) epicatechin-gallate (ECG) had high binding capacity with sterol regulatory element-binding transcription factor 1 (SREBP1c). Further, our ex vivo studies showed that green tea extract (GTE) significantly inhibited platelet aggregation and increased thrombolytic activity in a dose dependent manner. CONCLUSION: In conclusion, in smokers, catechins synergistically lowered oxidative stress, platelet aggregation and modified the aberrant lipid profile. Furthermore, molecular docking studies supported green tea catechins' antihyperlipidemic efficacy through strong inhibitory activity on HMG-CoA reductase and SREBP1c. The mitigating effects of green tea on cardiovascular disease risk factors in smokers that have been reported can be attributed majorly to catechins or to their synergistic effects.


Subject(s)
Camellia sinensis , Molecular Docking Simulation , Plant Extracts , Tea , Humans , Male , India , Adult , Camellia sinensis/chemistry , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Smoking , Middle Aged , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Smokers , Catechin/pharmacology , Catechin/analogs & derivatives , Lipids/blood , Antioxidants/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects
18.
Talanta ; 276: 126209, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38728802

ABSTRACT

The rapid development of nanozymes has offered substantial opportunities for the fields of biomedicine, chemical sensing, and food safety. Among these applications, multichannel sensors, with the capability of simultaneously detecting multiple target analytes, hold promise for the practical application of nanozymes in chemical sensing with high detection efficiency. In this study, Rh-decorated Pd nanocubes (Pd-Rh nanocubes) with significantly enhanced peroxidase-like activity are synthesized through the mediation of underpotential deposition (UPD) and subsequently employed to develop a multichannel colorimetric sensor for discriminating tea polyphenols (TPs) and tea authentication. Based on a single reactive unit of efficient catalytic oxidation of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB), the nanozyme-based multichannel colorimetric sensor responds to each analyte in as short as 1 min. With the aid of principal component analysis (PCA) and hierarchical cluster analysis (HCA), various TPs and types of tea can be accurately identified. This work not only provides a new type of simply structured and highly active nanozymes but also develops a concise and rapid multichannel sensor for practical application in tea authentication and quality inspection.


Subject(s)
Colorimetry , Palladium , Polyphenols , Tea , Tea/chemistry , Polyphenols/analysis , Polyphenols/chemistry , Colorimetry/methods , Palladium/chemistry , Benzidines/chemistry , Metal Nanoparticles/chemistry , Principal Component Analysis , Peroxidase/chemistry , Catalysis , Oxidation-Reduction
19.
J Agric Food Chem ; 72(21): 11837-11853, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743877

ABSTRACT

Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic ß-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.


Subject(s)
Camellia sinensis , Hypoglycemic Agents , Plant Extracts , Tea , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Tea/chemistry , Camellia sinensis/chemistry , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Insulin Resistance , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism
20.
J Chromatogr A ; 1727: 465000, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38763086

ABSTRACT

Design and preparation of fiber coatings with excellent electrochemical performance and high polarity is significant for efficient extraction of polar targets in electro-enhanced solid-phase microextraction (EE-SPME). In this work, a combination strategy for structure regulation of covalent organic framework (COF) was proposed to fabricate a nitrogen-rich thiocarbamide linked COF coating (Thiocarbamide-TZ-DHTP) via molecular design and post-synthetic thiocarbamide conversion. The prepared COF coating possesses a large number of O, N, and S functional groups, which not only endow the coating with higher polarity but also significantly enhance its electrochemical performance. The COF coating was used for EE-SPME of polar bisphenols (BPs), demonstrating excellent enrichment efficiency and durability. Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method was developed for determination of trace BPs. The established method possess wide linear ranges (2.0-800.0 ng L-1), good correlation coefficients (0.9985-0.9994) and low detection limits (0.1-2.0 ng L-1). Moreover, the established method had been successfully applied to detection of trace BPs in tea beverage with satisfactory recoveries (81.6 % to 118.6 %). This research provides a feasible pathway for preparing COF coating with excellent electrochemical performance and high polarity for EE-SPME.


Subject(s)
Gas Chromatography-Mass Spectrometry , Limit of Detection , Metal-Organic Frameworks , Nitrogen , Phenols , Solid Phase Microextraction , Tandem Mass Spectrometry , Solid Phase Microextraction/methods , Phenols/analysis , Phenols/isolation & purification , Phenols/chemistry , Gas Chromatography-Mass Spectrometry/methods , Metal-Organic Frameworks/chemistry , Tandem Mass Spectrometry/methods , Nitrogen/chemistry , Benzhydryl Compounds/analysis , Benzhydryl Compounds/isolation & purification , Benzhydryl Compounds/chemistry , Electrochemical Techniques/methods , Reproducibility of Results , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL