Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 763
Filter
1.
BMC Pulm Med ; 24(1): 456, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285346

ABSTRACT

Acute lung injury (ALI) is the result of damage to the capillary endothelia and the alveolar epithelial cell caused by various direct and indirect factors, leading to significant pulmonary interstitial and alveolar edema and acute hypoxic respiratory insufficiency. A subset of ALI cases progresses to irreversible pulmonary fibrosis, a condition with fatal implications. Zafirlukast is a leukotriene receptor antagonist licensed for asthma prevention and long-term treatment. This study demonstrated a significant improvement in lung tissue pathology and a reduction in inflammatory cell infiltration in models of lipopolysaccharide (LPS)-induced ALI and bleomycin (BLM)-induced lung inflammation following zafirlukast administration, both in vivo and in vitro. Moreover, zafirlukast was found to suppress the inflammatory response of alveolar epithelial cells in vitro and lung inflammation in vivo by reducing the activation of the TLR4/NF-κB/NLRP3 inflammasome pathway. In conclusion, zafirlukast relieved lung injury and the infiltration of inflammatory cells in the lung by regulating the TLR4/NF-κB/NLRP3 pathway.


Subject(s)
Acute Lung Injury , Bleomycin , Indoles , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Phenylcarbamates , Pneumonia , Sulfonamides , Toll-Like Receptor 4 , Tosyl Compounds , Animals , Bleomycin/adverse effects , Tosyl Compounds/pharmacology , Tosyl Compounds/therapeutic use , Mice , Indoles/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfonamides/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/pathology , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Toll-Like Receptor 4/metabolism , Disease Models, Animal , Leukotriene Antagonists/pharmacology , Leukotriene Antagonists/therapeutic use , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects
2.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063165

ABSTRACT

Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are highly aggressive neoplastic diseases that share numerous characteristics. In IBC and IMC, chemotherapy produces a limited pathological response and anti-androgen therapies have been of interest for breast cancer treatment. Therefore, the aim was to evaluate the effect of a therapy based on bicalutamide, a non-steroidal anti-androgen, with doxorubicin and docetaxel chemotherapy on cell proliferation, migration, tumor growth, and steroid-hormone secretion. An IMC-TN cell line, IPC-366, and an IBC-TN cell line, SUM149, were used. In vitro assays revealed that SUM149 exhibited greater sensitivity, reducing cell viability and migration with all tested drugs. In contrast, IPC-366 exhibited only significant in vitro reductions with docetaxel as a single agent or in different combinations. Decreased estrogen levels reduced in vitro tumor growth in both IMC and IBC. Curiously, doxorubicin resulted in low efficacy, especially in IMC. In addition, all drugs reduced the tumor volume in IBC and IMC by increasing intratumoral testosterone (T) levels, which have been related with reduced tumor progression. In conclusion, the addition of bicalutamide to doxorubicin and docetaxel combinations may represent a potential treatment for IMC and IBC.


Subject(s)
Anilides , Cell Proliferation , Docetaxel , Inflammatory Breast Neoplasms , Mammary Neoplasms, Animal , Nitriles , Tosyl Compounds , Tosyl Compounds/pharmacology , Humans , Animals , Female , Nitriles/pharmacology , Nitriles/therapeutic use , Cell Line, Tumor , Anilides/pharmacology , Dogs , Inflammatory Breast Neoplasms/drug therapy , Inflammatory Breast Neoplasms/pathology , Inflammatory Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Docetaxel/pharmacology , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/metabolism , Doxorubicin/pharmacology , Mice , Cell Survival/drug effects , Cell Movement/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Testosterone
3.
Antimicrob Agents Chemother ; 68(8): e0002924, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38990015

ABSTRACT

Mycobacterium abscessus infections are emerging in cystic fibrosis patients, and treatment success rate in these patients is only 33% due to extreme antibiotic resistance. Thus, new treatment options are essential. An interesting target could be Lsr2, a nucleoid-associated protein involved in mycobacterial virulence. Zafirlukast is a Food and Drug Administration (FDA)-approved drug against asthma that was shown to bind Lsr2. In this study, zafirlukast treatment is shown to reduce M. abscessus growth, with a minimal inhibitory concentration of 16 µM and a bactericidal concentration of 64 µM in replicating bacteria only. As an initial response, DNA condensation, a known stress response of mycobacteria, occurs after 1 h of treatment with zafirlukast. During continued zafirlukast treatment, the morphology of the bacteria alters and the structural integrity of the bacteria is lost. After 4 days of treatment, reduced viability is measured in different culture media, and growth of M. abscessus is reduced in a dose-dependent manner. Using transmission electron microscopy, we demonstrated that the hydrophobic multilayered cell wall and periplasm are disorganized and ribosomes are reduced in size and relocalized. In summary, our data demonstrate that zafirlukast alters the morphology of M. abscessus and is bactericidal at 64 µM. The bactericidal concentration of zafirlukast is relatively high, and it is only effective on replicating bacteria but as zafirlukast is an FDA-approved drug, and currently used as an anti-asthma treatment, it could be an interesting drug to further study in in vivo experiments to determine whether it could be used as an antibiotic for M. abscessus infections.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Mycobacterium abscessus , Phenylcarbamates , Sulfonamides , Tosyl Compounds , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Anti-Bacterial Agents/pharmacology , Tosyl Compounds/pharmacology , Sulfonamides/pharmacology , Phenylcarbamates/pharmacology , Indoles/pharmacology , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics
4.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38904207

ABSTRACT

Montelukast and zafirlukast, cysteinyl leukotriene receptor antagonists (LTRAs), trigger apoptosis and inhibit cell proliferation of triple­negative breast cancer MDA­MB­231 cells. By contrast, only zafirlukast induces G0/G1 cell cycle arrest. The present study compared the effects of these drugs on proteins regulating cell proliferation, apoptosis, autophagy, and endoplasmic reticulum (ER) and oxidative stress using reverse transcription­quantitative PCR, western blotting and flow cytometry. The expression of proliferating markers, Ki­67 and proliferating cell nuclear antigen, was decreased by both drugs. Zafirlukast, but not montelukast, decreased the expression of cyclin D1 and CDK4, disrupting progression from G1 to S phase. Zafirlukast also increased the expression of p27, a cell cycle inhibitor. Both drugs decreased the expression of anti­apoptotic protein Bcl­2 and ERK1/2 phosphorylation, and increased levels of the autophagy marker LC3­II and DNA damage markers, including cleaved PARP­1, phosphorylated (p)­ATM and p­histone H2AX. The number of caspase 3/7­positive cells was greater in montelukast­treated cells compared with zafirlukast­treated cells. Montelukast induced higher levels of the ER stress marker CHOP compared with zafirlukast. Montelukast activated PERK, activating transcription factor 6 (ATF6) and inositol­requiring enzyme type 1 (IRE1) pathways, while zafirlukast only stimulated ATF6 and IRE1 pathways. GSK2606414, a PERK inhibitor, decreased apoptosis mediated by montelukast, but did not affect zafirlukast­induced cell death. The knockdown of CHOP by small interfering RNA reduced apoptosis triggered by montelukast and zafirlukast. In conclusion, the effects on cell cycle regulator proteins may contribute to cell cycle arrest caused by zafirlukast. The greater apoptotic effects of montelukast may be caused by the higher levels of activated caspase enzymes and the activation of three pathways of ER stress: PERK, ATF6, and IRE1.


Subject(s)
Acetates , Apoptosis , Autophagy , Cyclopropanes , DNA Damage , Endoplasmic Reticulum Stress , Indoles , Quinolines , Sulfides , Sulfonamides , Humans , Sulfides/pharmacology , Cyclopropanes/pharmacology , Quinolines/pharmacology , Apoptosis/drug effects , Acetates/pharmacology , Endoplasmic Reticulum Stress/drug effects , Cell Line, Tumor , Autophagy/drug effects , Sulfonamides/pharmacology , Indoles/pharmacology , Female , DNA Damage/drug effects , Phenylcarbamates/pharmacology , Tosyl Compounds/pharmacology , Cell Proliferation/drug effects , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Cell Cycle Checkpoints/drug effects , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Cell Cycle/drug effects , Leukotriene Antagonists/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics
5.
Steroids ; 208: 109456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889811

ABSTRACT

Occupancy of prostate cancer (PCa) cell androgen receptors (AR) signals proliferation, therefore testosterone biosynthesis inhibitors and AR antagonists are important PCa treatments. Conversely, androgen mimics (e.g., prednisone) used in management of PCa might cause proliferation. The balance between PCa proliferation and inhibition predicts treatment success. We used in silico molecular modelling to explore interactions between ARs, androgens (testosterone, dihydrotestosterone (DHT)) and drugs used to treat (bicalutamide) and manage (dexamethasone, prednisone, hydrocortisone) PCa. We found that hydrogen (H-) bonds between testosterone, DHT and Arg752, Asn705 and Thr877 followed by ligand binding cleft hydrophobic interactions signal proliferation, whereas bicalutamide antagonism is via Phe764 interactions. Hydrocortisone, dexamethasone and prednisone H-bond Asn705 and Thr877, but not Arg752 in the absence of a water molecule. Studies with a bicalutamide agonist AR mutation showed different amino acid interactions, indicating testosterone and DHT would not promote proliferation as effectively as via the native receptor. However, hydrocortisone and bicalutamide form Arg752 and Asn705 H-bonds indicating agonism. Our results suggest that as PCa progresses the resulting mutations will change the proliferative response to androgens and their drug mimics, which have implications for the treatment of prostate cancer.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Male , Receptors, Androgen/metabolism , Humans , Anilides/pharmacology , Anilides/chemistry , Tosyl Compounds/pharmacology , Tosyl Compounds/chemistry , Tosyl Compounds/metabolism , Computer Simulation , Molecular Docking Simulation , Models, Molecular , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/metabolism , Steroids/metabolism , Steroids/chemistry , Testosterone/metabolism , Testosterone/pharmacology , Protein Binding , Dihydrotestosterone/metabolism
6.
Nat Commun ; 13(1): 3760, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768468

ABSTRACT

The KCNQ1 ion channel plays critical physiological roles in electrical excitability and K+ recycling in organs including the heart, brain, and gut. Loss of function is relatively common and can cause sudden arrhythmic death, sudden infant death, epilepsy and deafness. Here, we report cryogenic electron microscopic (cryo-EM) structures of Xenopus KCNQ1 bound to Ca2+/Calmodulin, with and without the KCNQ1 channel activator, ML277. A single binding site for ML277 was identified, localized to a pocket lined by the S4-S5 linker, S5 and S6 helices of two separate subunits. Several pocket residues are not conserved in other KCNQ isoforms, explaining specificity. MD simulations and point mutations support this binding location for ML277 in open and closed channels and reveal that prevention of inactivation is an important component of the activator effect. Our work provides direction for therapeutic intervention targeting KCNQ1 loss of function pathologies including long QT interval syndrome and seizures.


Subject(s)
KCNQ1 Potassium Channel , Long QT Syndrome , Piperidines , Thiazoles , Tosyl Compounds , Animals , KCNQ1 Potassium Channel/metabolism , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Mutation , Piperidines/pharmacology , Thiazoles/pharmacology , Tosyl Compounds/pharmacology , Xenopus
7.
Toxicol Appl Pharmacol ; 440: 115953, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35245614

ABSTRACT

R-bicalutamide is a first-line therapy used to treat prostate cancer (PCa) inhibiting the androgen receptor (AR) which plays an important role in the development and the progression of PCa. However, after a protracted drug administration, many patients develop a form of androgen insensitivity since R-bicalutamide starts to exhibit some agonistic properties lead by the W741L AR mutation in the ligand-binding pocket even if the mechanism of the antagonist-agonist switch is still not clear. To study the drug-resistant mechanism, we explored the structural effects of the antagonist R-bicalutamide on the homodimer stability considering both the AR wild-type and W741L employing molecular dynamic (MD) simulations. The results obtained indicate that the binding of R-bicalutamide in the two AR monomers induces a great instability in the homodimer, which may determine the monomer's dissociation preventing AR migration into the nucleus and avoiding the transcriptional activity. If the W741L mutation occurs, the homodimer tends to have a behaviour close to the agonistic system where the two monomers are tightly bound, which may explain the effect of the W741L in drug insensitivity from a structural point of view.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgen Antagonists , Anilides/pharmacology , Cell Line, Tumor , Humans , Male , Molecular Dynamics Simulation , Nitriles/pharmacology , Nitriles/therapeutic use , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Tosyl Compounds/pharmacology
8.
Oncol Rep ; 47(1)2022 01.
Article in English | MEDLINE | ID: mdl-34738630

ABSTRACT

Androgen deprivation therapy (ADT) is used to treat prostate cancer (PCa). However, ADT may increase the expression of androgen receptor (AR) through the amplification of chromosome X. The gene oligophrenin 1 (OPHN1) is located in the same region as the AR gene, which could be amplified by ADT. Thus, the role of OPHN1 in PCa pathology was investigated. The expression status of OPHN1 in PCa was searched in The Cancer Genome Atlas (TCGA) database. Androgen­sensitive cells LNCaP and 22RV1 were cultured under ADT conditions, and then the expression of OPHN1 was evaluated by northern blotting. The expression of OPHN1 was enhanced or knocked down in LNCaP and 22RV1 cells by transfection. Subsequently, the LNCaP and 22RV1 cells were cultured under ADT, and the viability rate, apoptosis, and migration of cells were assessed by MTT, flow cytometry, and Transwell assay respectively. The expression of OPHN1 was also enhanced or knocked down in androgen­insensitive PC3 cells, and then the effects of OPHN1 on the viability, apoptosis, and migration of PC3 cells were assessed. A mouse xenograft model was created by injecting LNCaP cells with OPHN1 overexpression subcutaneously, and the tumor growth rates were monitored. In TCGA database, amplification of the OPHN1 gene was observed in the PCa tumors. ADT increased the expression of OPHN1 in LNCaP and 22RV1 cells (P<0.05). OPHN1 could promote resistance of LNCaP and 22RV1 cells to ADT by promoting cell survival and preventing their apoptosis (P<0.05). In addition, OPHN1 contributed to cell viability (P<0.05) and enhanced the migration ability in LNCaP, 22RV1 and PC3 cells (P<0.05). In the mouse model, the PCa xenograft with OPHN1 overexpression had a higher growth rate and was more resistant to the ADT condition (P<0.05). In summary, ADT induced the overexpression of OPHN1 in PCa, which facilitated PCa cell survival and promoted PCa progression.


Subject(s)
Anilides/pharmacology , Cytoskeletal Proteins/genetics , GTPase-Activating Proteins/genetics , Nitriles/pharmacology , Nuclear Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Tosyl Compounds/pharmacology , Androgen Antagonists/pharmacology , Animals , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , PC-3 Cells , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/drug effects
9.
F1000Res ; 11: 516, 2022.
Article in English | MEDLINE | ID: mdl-38779468

ABSTRACT

Background: Prostate cancer is a disease that occurs in men aged more than 50 years. In Iraq, 8.89 men per 100,000 population suffer from prostate cancer, with the incidence being 14,016 cases and mortality being 6,367 cases. Despite advances in treatment against prostate cancer, it can become resistant to drugs. Therefore, the aim of current study was to search and identify binding sites for the repositioning of drugs by computational methods (docking).  Methods: Based on the protein structure of the wild androgen receptor, the analysis parameters (22x22x22 on the X, Y, and Z axes) were established. Results: The interactions of the natural ligands with androgen receptor were 10.0 (testosterone) and 10.8 (dihydrotestosterone) while mutated androgen receptor (T877A) had a low affinity with testosterone and dihydrotestosterone (-5.3 and -6.7, respectively). In the interactions of both receptors with the reported inhibitors (antagonists), a decrease with Bicalutamide (-8.3 and -4.3, respectively) and an increase in affinity with Flutamide and Nilutamide (-7.7 and 8.6, wild AR; -8.7 and -9.3 AR T877A) were observed. As for Enzalutamide and Apalutamide (second-generation antagonists), the change was minimal between wild androgen receptor and T877A (-7.6 and -7.7; -7.3 and -7.3, respectively). The change in the affinity of the ligands with androgen receptor and androgen receptor T877A shows how a mutation alters the bonds between these molecules. Conclusion: The identification of key sites and potent inhibitors against abnormal androgen receptor functions will enrich prostate cancer treatments.


Subject(s)
Androgen Receptor Antagonists , Mutation , Prostatic Neoplasms , Receptors, Androgen , Male , Receptors, Androgen/metabolism , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Androgen Receptor Antagonists/therapeutic use , Androgen Receptor Antagonists/pharmacology , Molecular Docking Simulation , Dihydrotestosterone , Computer Simulation , Nitriles/therapeutic use , Anilides/therapeutic use , Anilides/pharmacology , Tosyl Compounds/therapeutic use , Tosyl Compounds/pharmacology , Flutamide/therapeutic use , Flutamide/pharmacology , Phenylthiohydantoin/therapeutic use , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Ligands
10.
Br J Cancer ; 125(10): 1377-1387, 2021 11.
Article in English | MEDLINE | ID: mdl-34471256

ABSTRACT

INTRODUCTION: The combination of radiotherapy with bicalutamide is the standard treatment of prostate cancer patients with high-risk or locally advanced disease. Whether new-generation anti-androgens, like apalutamide, can improve the radio-curability of these patients is an emerging challenge. MATERIALS AND METHODS: We comparatively examined the radio-sensitising activity of apalutamide and bicalutamide in hormone-sensitive (22Rv1) and hormone-resistant (PC3, DU145) prostate cancer cell lines. Experiments with xenografts were performed for the 22Rv1 cell line. RESULTS: Radiation dose-response viability and clonogenic assays showed that apalutamide had a stronger radio-sensitising activity for all three cell lines. Confocal imaging for γΗ2Αx showed similar DNA double-strand break repair kinetics for apalutamide and bicalutamide. No difference was noted in the apoptotic pathway. A striking cell death pattern involving nuclear karyorrhexis and cell pyknosis in the G1/S phase was exclusively noted when radiation was combined with apalutamide. In vivo experiments in SCID and R2G2 mice showed significantly higher efficacy of radiotherapy (2 and 4 Gy) when combined with apalutamide, resulting in extensive xenograft necrosis. CONCLUSIONS: In vitro and in vivo experiments support the superiority of apalutamide over bicalutamide in combination with radiotherapy in prostate cancer. Clinical studies are encouraged to show whether replacement of bicalutamide with apalutamide may improve the curability rates.


Subject(s)
Anilides/administration & dosage , Nitriles/administration & dosage , Prostatic Neoplasms/therapy , Radiation-Sensitizing Agents/administration & dosage , Thiohydantoins/administration & dosage , Tosyl Compounds/administration & dosage , Anilides/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemoradiotherapy , Dose-Response Relationship, Radiation , Humans , Male , Mice , Nitriles/pharmacology , PC-3 Cells , Radiation-Sensitizing Agents/pharmacology , Thiohydantoins/pharmacology , Tosyl Compounds/pharmacology , Xenograft Model Antitumor Assays
11.
Sci Rep ; 11(1): 15887, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354111

ABSTRACT

The androgen receptor (AR) is critical in the progression of prostate cancer (PCa). Small molecule antagonists that bind to the ligand binding domain (LBD) of the AR have been successful in treating PCa. However, the structural basis by which the AR antagonists manifest their therapeutic efficacy remains unclear, due to the lack of detailed structural information of the AR bound to the antagonists. We have performed accelerated molecular dynamics (aMD) simulations of LBDs bound to a set of ligands including a natural substrate (dihydrotestosterone), an agonist (RU59063) and three antagonists (bicalutamide, enzalutamide and apalutamide) as well as in the absence of ligand (apo). We show that the binding of AR antagonists at the substrate binding pocket alter the dynamic fluctuations of H12, thereby disrupting the structural integrity of the agonistic conformation of AR. Two antagonists, enzalutamide and apalutamide, induce considerable structural changes to the agonist conformation of LBD, when bound close to H12 of AR LBD. When the antagonists bind to the pocket with different orientations having close contact with H11, no significant conformational changes were observed, suggesting the AR remains in the functionally activated (agonistic) state. The simulations on a drug resistance mutant F876L bound to enzalutamide demonstrated that the mutation stabilizes the agonistic conformation of AR LBD, which compromises the efficacy of the antagonists. Principal component analysis (PCA) of the structural fluctuations shows that the binding of enzalutamide and apalutamide induce conformational fluctuations in the AR, which are markedly different from those caused by the agonist as well as another antagonist, bicalutamide. These fluctuations could only be observed with the use of aMD.


Subject(s)
Androgen Receptor Antagonists/chemistry , Androgens/chemistry , Receptors, Androgen/ultrastructure , Androgen Receptor Antagonists/pharmacology , Androgens/metabolism , Anilides/pharmacology , Benzamides/pharmacology , Binding Sites , Dihydrotestosterone/pharmacology , Humans , Imidazoles/pharmacology , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Principal Component Analysis , Protein Binding , Protein Conformation , Receptors, Androgen/metabolism , Receptors, Androgen/physiology , Thiohydantoins/pharmacology , Tosyl Compounds/pharmacology
12.
Molecules ; 26(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926033

ABSTRACT

A series of PROTACs (PROteolysis-TArgeting Chimeras) consisting of bicalutamide analogs and thalidomides were designed, synthesized, and biologically evaluated as novel androgen receptor (AR) degraders. In particular, we found that PROTAC compound 13b could successfully demonstrate a targeted degradation of AR in AR-positive cancer cells and might be a useful chemical probe for the investigation of AR-dependent cancer cells, as well as a potential therapeutic candidate for prostate cancers.


Subject(s)
Androgen Antagonists/chemistry , Anilides/chemistry , Nitriles/chemistry , Receptors, Androgen/chemistry , Thalidomide/chemistry , Tosyl Compounds/chemistry , Androgen Antagonists/chemical synthesis , Androgen Antagonists/pharmacology , Anilides/pharmacology , Binding Sites , Cell Line , Chemistry Techniques, Synthetic , Humans , Models, Biological , Models, Molecular , Molecular Conformation , Molecular Structure , Nitriles/pharmacology , Protein Binding , Proteolysis/drug effects , Receptors, Androgen/metabolism , Structure-Activity Relationship , Thalidomide/pharmacology , Tosyl Compounds/pharmacology
13.
ACS Chem Biol ; 16(4): 642-650, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33787221

ABSTRACT

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 µM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 µM. There was no toxicity to any of the host cell lines at 10-100 µM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.


Subject(s)
Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Phenylalanine/pharmacology , Piperazines/pharmacology , SARS-CoV-2/drug effects , Tosyl Compounds/pharmacology , Animals , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests , Protein Domains , Proteolysis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Internalization/drug effects
14.
Cell Calcium ; 96: 102391, 2021 06.
Article in English | MEDLINE | ID: mdl-33752082

ABSTRACT

Redox-sensitivity is a common property of several transient receptor potential (TRP) ion channels. Oxidants and UVA-light activate TRPV2 by oxidizing methionine pore residues which are conserved in the capsaicin-receptor TRPV1. However, the redox-sensitivity of TRPV1 is regarded to depend on intracellular cysteine residues. In this study we examined if TRPV1 is gated by UVA-light, and if the conserved methionine residues are relevant for redox-sensitivity of TRPV1. Patch clamp recordings were performed to explore wildtype (WT) and mutants of human TRPV1 (hTRPV1). UVA-light induced hTRPV1-mediated membrane currents and potentiated both proton- and heat-evoked currents. The reducing agent dithiothreitol (DTT) prevented and partially reversed UVA-light induced sensitization of hTRPV1. UVA-light induced sensitization was reduced in the mutant hTRPV1-C158A/C387S/C767S (hTRPV1-3C). The remaining sensitivity to UVA-light of hTRRPV1-3C was not further reduced upon exchange of the methionine residues M568 and M645. While UVA-induced sensitization was reduced in the protein kinase C-insensitive mutant hTRPV1-S502A/S801A, the PKC-inhibitors chelerythrine chloride, staurosporine and Gö6976 did not reduce UVA-induced effects on hTRPV1-WT. While hTRPV1-3C was insensitive to the cysteine-selective oxidant diamide, it displayed a residual sensitivity to H2O2 and chloramine-T. However, the exchange of M568 and M645 in hTRPV1-3C did not further reduce these effects. Our data demonstrate that oxidants and UVA-light gate hTRPV1 by cysteine-dependent as well as cysteine-independent mechanisms. In contrast to TRPV2, the methionine residues 568 and 645 seem to be of limited relevance for redox-sensitivity of hTRPV1. Finally, UVA-light induced gating of hTRPV1 does not seem to require activation of protein kinase C.


Subject(s)
Ion Channel Gating/drug effects , Oxidants/pharmacology , TRPV Cation Channels/metabolism , TRPV Cation Channels/radiation effects , Ultraviolet Rays , Chloramines/pharmacology , HEK293 Cells , Humans , Hydrogen Peroxide/pharmacology , Ion Channel Gating/physiology , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , TRPV Cation Channels/agonists , Tosyl Compounds/pharmacology
15.
Bioorg Med Chem Lett ; 36: 127817, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33513386

ABSTRACT

The androgen receptor (AR) is a pivotal target for the treatment of prostate cancer (PC) even when the disease progresses toward androgen-independent or castration-resistant forms. In this study, a series of sulfoxide derivatives were prepared and their antiproliferative activity evaluated in vitro against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap). Bicalutamide and enzalutamide were used as positive controls. Compound 28 displayed significant enhancement in anticancer activity across the four PC cell lines with IC50 = 9.09 - 31.11 µM compared to the positive controls: bicalutamide (IC50 = 45.20 -51.61 µM) and enzalutamide (IC50 = 11.47 - 53.04 µM). Sulfoxide derivatives of bicalutamide were prepared efficiently from the corresponding sulfides using only one equivalent of mCPBA, limiting the reaction time to 15-30 min and maintaining the temperature at 0 °C. Interestingly, three pairs of sulfoxide diastereomers were separated and NMR comparison of their diastereotopic methylene (CH2) group is presented. X-ray diffraction crystal structure analysis provided relative configuration assignment at the chiral sulfur and carbon centres. Molecular modelling study of the four diastereoisomers of compound 28 is described.


Subject(s)
Anilides/pharmacology , Antineoplastic Agents/pharmacology , Nitriles/pharmacology , Prostatic Neoplasms/drug therapy , Sulfoxides/pharmacology , Tosyl Compounds/pharmacology , Anilides/chemical synthesis , Anilides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Models, Molecular , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Prostatic Neoplasms/pathology , Structure-Activity Relationship , Sulfoxides/chemical synthesis , Sulfoxides/chemistry , Tosyl Compounds/chemical synthesis , Tosyl Compounds/chemistry
16.
Biomed Pharmacother ; 137: 111247, 2021 May.
Article in English | MEDLINE | ID: mdl-33517191

ABSTRACT

Androgenic alopecia (AGA), also known as male pattern baldness, is one of the most common hair loss diseases worldwide. The main treatments of AGA include hair transplant surgery, oral medicines, and LDL laser irradiation, although no treatment to date can fully cure this disease. Animal models play important roles in the exploration of potential mechanisms of disease development and in assessing novel treatments. The present study describes androgen receptor (AR) in C57BL/6 mouse hair follicles that can be activated by dihydrotestosterone (DHT) and translocate to the nucleus. This led to the design of a mouse model of androgen-induced AGA in vivo and in vitro. DHT was found to induce early hair regression, hair miniaturization, hair density loss, and changes in hair morphology in male C57BL/6 mice. These effects of DHT could be partly reversed by the AR antagonist bicalutamide. DHT had similar effects in an ex vivo model of hair loss. Evaluation of histology, organ culture, and protein expression could explain the mechanism by which DHT delayed hair regrowth.


Subject(s)
Alopecia/metabolism , Dihydrotestosterone , Hair Follicle/metabolism , Receptors, Androgen/metabolism , Alopecia/chemically induced , Alopecia/drug therapy , Alopecia/physiopathology , Androgen Antagonists/pharmacology , Anilides/pharmacology , Animals , Disease Models, Animal , Hair Follicle/drug effects , Hair Follicle/growth & development , Male , Mice , Mice, Inbred C57BL , Nitriles/pharmacology , Organ Culture Techniques , Signal Transduction , Tosyl Compounds/pharmacology
17.
Biochem Biophys Res Commun ; 541: 56-62, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33477033

ABSTRACT

The present study aims to investigate the roles of U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1) in the resistance to anti-androgen treatment in prostate cancer and its underlying mechanism. U2AF1 and androgen receptor variant 7 (ARV7) knockdown and overexpression were introduced in PC3 and DU145 cells. In addition, a bicalutamide-resistant PC3 (PC3 BR) cell line was also constructed. Cell count, MTT and soft agar colony formation assays were performed to evaluate cell proliferation. qRT-PCR was applied to determine the mRNA levels of U2AF1, ARV7 and Mitogen-Activated Protein Kinase 1 (MAPK1). Western blot was used to determine the MAPK1 protein expression. A negative correlation between ARV7 and U2AF1 in prostate tumor tissues was observed. U2AF1 downregulation was correlated with poor prognosis in prostate cancer patients. U2AF1 exhibited a negative correlation with ARV7 and its downregulation promoted prostate cancer cell proliferation and bicalutamide resistance. The regulatory effects of U2AF1 on ARV7 splicing were associated with MAPK1. U2AF1 affected prostate cancer proliferation and anti-androgen resistance by regulating ARV7 splicing.


Subject(s)
Down-Regulation , Gene Expression Regulation, Neoplastic , Genetic Variation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA Splicing , Receptors, Androgen/genetics , Splicing Factor U2AF/genetics , Anilides/pharmacology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Humans , Male , Mitogen-Activated Protein Kinase 1/metabolism , Nitriles/pharmacology , Prognosis , Splicing Factor U2AF/deficiency , Splicing Factor U2AF/metabolism , Tosyl Compounds/pharmacology
18.
Cell Oncol (Dordr) ; 44(2): 385-403, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33464483

ABSTRACT

PURPOSE: Resistance to androgen-deprivation therapies and progression to so-called castrate-resistant prostate cancer (CRPC) remain challenges in prostate cancer (PCa) management and treatment. Among other alterations, CRPC has been associated with metabolic reprogramming driven by androgens. Here, we investigated the role of androgens in regulating glutaminolysis in PCa cells and determined the relevance of this metabolic route in controlling the survival and growth of androgen-sensitive (LNCaP) and CRPC (DU145 and PC3) cells. METHODS: PCa cells (LNCaP, DU145 and PC3) and 3-month old rats were treated with 5α-dihydrotestosterone (DHT). Alternatively, LNCaP cells were exposed to the glutaminase inhibitor BPTES, alone or in combination with the anti-androgen bicalutamide. Biochemical, Western blot and extracellular flux assays were used to evaluate the viability, proliferation, migration and metabolism of PCa cells in response to DHT treatment or glutaminase inhibition. RESULTS: We found that DHT up-regulated the expression of the glutamine transporter ASCT2 and glutaminase, both in vitro in LNCaP cells and in vivo in rat prostate cells. BPTES diminished the viability and migration of PCa cells, while increasing caspase-3 activity. CRPC cells were found to be more dependent on glutamine and more sensitive to glutaminase inhibition. BPTES and bicalutamide co-treatment had an additive effect on suppressing LNCaP cell viability. Finally, we found that inhibition of glutaminolysis differentially affected glycolysis and lipid metabolism in both androgen-sensitive and CRPC cells. CONCLUSION: Our data reveal glutaminolysis as a central metabolic route controlling PCa cell fate and highlight the relevance of targeting glutaminase for CRPC treatment.


Subject(s)
Dihydrotestosterone/pharmacology , Glutamine/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Androgens/pharmacology , Anilides/pharmacology , Animals , Caspase 3/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glucose/metabolism , Glutaminase/metabolism , Glycolysis/drug effects , Humans , Lactic Acid/biosynthesis , Lipid Metabolism/drug effects , Male , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Nitriles/pharmacology , Prostatic Neoplasms, Castration-Resistant/pathology , Rats , Sulfides/pharmacology , Thiadiazoles/pharmacology , Tosyl Compounds/pharmacology
19.
J Leukoc Biol ; 109(2): 363-371, 2021 02.
Article in English | MEDLINE | ID: mdl-32401398

ABSTRACT

TNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single-molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1-mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand-independent preligand assembly domain (PLAD)-mediated TNFR1 dimerization as well as TNFα-induced TNFR1 oligomerization. In addition, zafirlukast-mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF-ĸB signaling in reconstituted TNFR1-mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD-mediated, ligand-independent TNFR1 dimerization for NF-ĸB activation, highlight the PLAD as central regulator of TNFα-induced TNFR1 oligomerization, and demonstrate that TNFR1-mEos2 MEFs can be used to investigate TNFR1-antagonizing compounds employing single-molecule quantification and functional NF-ĸB assays at physiologic conditions.


Subject(s)
NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Signal Transduction , Single Molecule Imaging , Tosyl Compounds/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cell Line , Cytokines/biosynthesis , HeLa Cells , Humans , Indoles , Mice , Phenylcarbamates , Protein Multimerization/drug effects , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Signal Transduction/drug effects , Sulfonamides , Transcription, Genetic/drug effects
20.
Molecules ; 26(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374450

ABSTRACT

The androgen receptor (AR) is a pivotal target for the treatment of prostate cancer (PC) even when the disease progresses toward androgen-independent or castration-resistant forms. In this study, a series of 15 bicalutamide analogues (sulfide, deshydroxy, sulfone, and O-acetylated) were prepared and their antiproliferative activity evaluated against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP, and VCap). Bicalutamide and enzalutamide were used as positive controls. Seven of these compounds displayed remarkable enhancement in anticancer activity across the four PC cell lines. The deshydroxy analogue (16) was the most active compound with IC50 = 6.59-10.86 µM. Molecular modeling offers a plausible explanation of the higher activity of the sulfide analogues compared to their sulfone counterparts.


Subject(s)
Anilides/chemical synthesis , Anilides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Nitriles/chemical synthesis , Nitriles/pharmacology , Tosyl Compounds/chemical synthesis , Tosyl Compounds/pharmacology , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Anilides/chemistry , Antineoplastic Agents/chemistry , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Models, Molecular , Molecular Structure , Nitriles/chemistry , Prostatic Neoplasms , Protein Binding , Receptors, Androgen/chemistry , Structure-Activity Relationship , Tosyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL