Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785622

ABSTRACT

Trichomonas vaginalis, the causative pathogen for the most common nonviral sexually transmitted infection worldwide, is itself frequently infected with one or more of the four types of small double-stranded RNA (dsRNA) Trichomonas vaginalis viruses (TVV1 to 4, genus Trichomonasvirus, family Totiviridae). Each TVV encloses a nonsegmented genome within a single-layered capsid and replicates entirely intracellularly, like many dsRNA viruses, and unlike those in the Reoviridae family. Here, we have determined the structure of TVV2 by cryo-electron microscopy (cryoEM) at 3.6 Å resolution and derived an atomic model of its capsid. TVV2 has an icosahedral, T = 2*, capsid comprised of 60 copies of the icosahedral asymmetric unit (a dimer of the two capsid shell protein [CSP] conformers, CSP-A and CSP-B), typical of icosahedral dsRNA virus capsids. However, unlike the robust CSP-interlocking interactions such as the use of auxiliary "clamping" proteins among Reoviridae, only lateral CSP interactions are observed in TVV2, consistent with an assembly strategy optimized for TVVs' intracellular-only replication cycles within their protozoan host. The atomic model reveals both a mostly negatively charged capsid interior, which is conducive to movement of the loosely packed genome, and channels at the 5-fold vertices, which we suggest as routes of mRNA release during transcription. Structural comparison of TVV2 to the Saccharomyces cerevisiae L-A virus reveals a conserved helix-rich fold within the CSP and putative guanylyltransferase domain along the capsid exterior, suggesting conserved mRNA maintenance strategies among Totiviridae This first atomic structure of a TVV provides a framework to guide future biochemical investigations into the interplay between Trichomonas vaginalis and its viruses.IMPORTANCETrichomonas vaginalis viruses (TVVs) are double-stranded RNA (dsRNA) viruses that cohabitate in Trichomonas vaginalis, the causative pathogen of trichomoniasis, the most common nonviral sexually transmitted disease worldwide. Featuring an unsegmented dsRNA genome encoding a single capsid shell protein (CSP), TVVs contrast with multisegmented dsRNA viruses, such as the diarrhea-causing rotavirus, whose larger genome is split into 10 dsRNA segments encoding 5 unique capsid proteins. To determine how TVVs incorporate the requisite functionalities for viral replication into their limited proteome, we derived the atomic model of TVV2, a first for TVVs. Our results reveal the intersubunit interactions driving CSP association for capsid assembly and the properties that govern organization and maintenance of the viral genome. Structural comparison between TVV2 capsids and those of distantly related dsRNA viruses indicates conserved strategies of nascent RNA release and a putative viral guanylyltransferase domain implicated in the cytoplasmic maintenance of viral messenger and genomic RNA.


Subject(s)
RNA Viruses/ultrastructure , RNA, Double-Stranded/chemistry , Totiviridae/ultrastructure , Trichomonas vaginalis/virology , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , Genome, Viral , Protein Conformation, alpha-Helical , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Totiviridae/classification , Totiviridae/genetics , Totiviridae/isolation & purification
2.
Sci Rep ; 6: 33170, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27616740

ABSTRACT

Omono River virus (OmRV) is a double-stranded RNA virus isolated from Culex mosquitos, and it belongs to a group of unassigned insect viruses that appear to be related to Totiviridae. This paper describes electron cryo-microscopy (cryoEM) structures for the intact OmRV virion to 8.9 Å resolution and the structure of the empty virus-like-particle, that lacks RNA, to 8.3 Å resolution. The icosahedral capsid contains 120-subunits and resembles another closely related arthropod-borne totivirus-like virus, the infectious myonecrosis virus (IMNV) from shrimps. Both viruses have an elevated plateau around their icosahedral 5-fold axes, surrounded by a deep canyon. Sequence and structural analysis suggests that this plateau region is mainly composed of the extended C-terminal region of the capsid proteins. In contrast to IMNV, the infectious form of OmRV lacks extensive fibre complexes at its 5-fold axes as directly confirmed by a contrast-enhancement technique, using Zernike phase-contrast cryo-EM. Instead, these fibre complexes are replaced by a short "plug" structure at the five-fold axes of OmRV. OmRV and IMNV have acquired an extracellular phase, and the structures at the five-fold axes may be significant in adaptation to cell-to-cell transmission in metazoan hosts.


Subject(s)
Capsid/ultrastructure , Totiviridae/ultrastructure , Virion/ultrastructure , Aedes/virology , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Capsid Proteins/ultrastructure , Cells, Cultured , Cryoelectron Microscopy , Insect Vectors/virology , Models, Molecular , Protein Domains , Protein Structure, Quaternary
3.
PLoS One ; 11(5): e0155240, 2016.
Article in English | MEDLINE | ID: mdl-27166626

ABSTRACT

Papaya sticky disease, or "meleira", is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2.


Subject(s)
Carica/virology , Genome, Viral , Phylogeny , Plant Diseases/virology , Plant Viruses/genetics , RNA Viruses/genetics , Totiviridae/genetics , Amino Acid Sequence , Base Sequence , Capsid Proteins/genetics , Capsid Proteins/metabolism , Gene Expression , High-Throughput Nucleotide Sequencing , Nucleic Acid Conformation , Open Reading Frames , Plant Viruses/classification , Plant Viruses/ultrastructure , RNA Viruses/classification , RNA Viruses/ultrastructure , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Totiviridae/classification , Totiviridae/ultrastructure , Virion/genetics , Virion/ultrastructure
4.
mBio ; 4(2)2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23549915

ABSTRACT

The flagellated protozoan Trichomonas vaginalis is an obligate human genitourinary parasite and the most frequent cause of sexually transmitted disease worldwide. Most clinical isolates of T. vaginalis are persistently infected with one or more double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae, which appear to influence not only protozoan biology but also human disease. Here we describe the three-dimensional structure of Trichomonas vaginalis virus 1 (TVV1) virions, as determined by electron cryomicroscopy and icosahedral image reconstruction. The structure reveals a T = 1 capsid comprising 120 subunits, 60 in each of two nonequivalent positions, designated A and B, as previously observed for fungal Totiviridae family members. The putative protomer is identified as an asymmetric AB dimer consistent with either decamer or tetramer assembly intermediates. The capsid surface is notable for raised plateaus around the icosahedral 5-fold axes, with canyons connecting the 2- and 3-fold axes. Capsid-spanning channels at the 5-fold axes are unusually wide and may facilitate release of the viral genome, promoting dsRNA-dependent immunoinflammatory responses, as recently shown upon the exposure of human cervicovaginal epithelial cells to either TVV-infected T. vaginalis or purified TVV1 virions. Despite extensive sequence divergence, conservative features of the capsid reveal a helix-rich fold probably derived from an ancestor shared with fungal Totiviridae family members. Also notable are mass spectrometry results assessing the virion proteins as a complement to structure determination, which suggest that translation of the TVV1 RNA-dependent RNA polymerase in fusion with its capsid protein involves -2, and not +1, ribosomal frameshifting, an uncommonly found mechanism to date.


Subject(s)
Totiviridae/ultrastructure , Trichomonas vaginalis/virology , Virion/ultrastructure , Amino Acid Sequence , Capsid/ultrastructure , Cryoelectron Microscopy , Humans , Imaging, Three-Dimensional , Molecular Sequence Data , Totiviridae/isolation & purification , Virion/isolation & purification
5.
Virus Res ; 155(1): 147-55, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20875466

ABSTRACT

Two infectious agents were isolated from Culex species mosquitoes in Japan and were identified as distinct strains of a new RNA virus by a method for sequence-independent amplification of viral nucleic acids. The virus designated Omono River virus (OMRV) replicated in mosquito cells in which it produced a severe cytopathic effect. Icosahedral virus particles of approximately 40 nm in diameter were detected in the cytoplasm of infected cells. The OMRV genome was observed to consist of a nonsegmented, 7.6-kb double-stranded RNA (dsRNA) and contain two overlapping open reading frames (ORFs), namely ORF1 and ORF2. ORF1 was found to encode a putative dsRNA-binding protein, a major capsid protein, and other putative proteins, which might be generated by co- and/or post-translational processing of the ORF1 polyprotein precursor, and ORF2 was found to encode a putative RNA-dependent RNA polymerase (RdRp), which could be translated as a fusion with the ORF1 product by a -1 ribosomal frameshift. Phylogenetic analysis based on RdRp revealed that OMRV is closely related to penaeid shrimp infectious myonecrosis virus and Drosophila totivirus, which are tentatively assigned to the family Totiviridae. These results indicated that OMRV is a new member of the family of nonsegmented dsRNA viruses infecting arthropod hosts, but not fungal or protozoan hosts.


Subject(s)
Culex/virology , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Totiviridae/genetics , Totiviridae/isolation & purification , Animals , Cell Line , Cluster Analysis , Cytopathogenic Effect, Viral , Cytoplasm/virology , Japan , Microscopy, Electron, Transmission , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Totiviridae/classification , Totiviridae/ultrastructure , Viral Proteins/genetics , Virion/ultrastructure
6.
Virology ; 252(2): 399-406, 1998 Dec 20.
Article in English | MEDLINE | ID: mdl-9878619

ABSTRACT

Unsegmented double-stranded (ds)RNA viruses belonging to the family Totiviridae persistently infect protozoa and fungi. In this study, two totiviruses were found to coinfect the filamentous fungus Sphaeropsis sapinea, a well known pathogen of pines. Isometric, virus-like particles approximately 35 nm in diameter were isolated from extracts of this fungus. The nucleotide sequences of the genomes of the two S. sapinea RNA viruses named SsRV1 and SsRV2 were established. The linear genomes of 5163 and 5202 bp, respectively, are identically organized with two large, overlapping ORFs. The 5' located ORF1 probably encodes the coat protein, whereas the gene product of ORF2 shows the typical features of RNA-dependent RNA polymerases. The absence of a pseudoknot and a slippery site at the overlapping region between ORF1 and ORF2, as well as the shortness of that region, leads us to suggest that the translation of ORF2 of both viruses is internally initiated. The mode of translation and the genomic organization are similar to those of Helminthosporium victoriae 190S virus (Hv190SV; Huang, S., and Ghabrial, S. A. (1996). Proc. Natl. Acad. Sci. USA 93, 12541-12546). Hv190SV thus appears to be closely related to the SsRVs. Interestingly, based on amino acid sequence homology SsRV1 is more closely related to Hv190SV than to SsRV2.


Subject(s)
Capsid/genetics , Genome, Viral , Mitosporic Fungi/virology , Phylogeny , RNA, Double-Stranded/genetics , Totiviridae/genetics , Amino Acid Sequence , Base Sequence , Capsid/chemistry , Evolution, Molecular , Molecular Sequence Data , Open Reading Frames , Sequence Alignment , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Totiviridae/classification , Totiviridae/ultrastructure , Trees/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL