Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 826
Filter
1.
Nat Commun ; 15(1): 8519, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39353976

ABSTRACT

The fusion of autophagosomes and lysosomes is essential for the prevention of nonalcoholic fatty liver disease (NAFLD). Here, we generate a hepatocyte-specific CHIP knockout (H-KO) mouse model that develops NAFLD more rapidly in response to a high-fat diet (HFD) or high-fat, high-fructose diet (HFHFD). The accumulation of P62 and LC3 in the livers of H-KO mice and CHIP-depleted cells indicates the inhibition of autophagosome-lysosome fusion. AAV8-mediated overexpression of CHIP in the murine liver slows the progression of NAFLD induced by HFD or HFHFD feeding. Mechanistically, CHIP induced K63- and K27-linked polyubiquitination at the lysine 198 residue of STX17, resulting in increased STX17-SNAP29-VAMP8 complex formation. The STX17 K198R mutant was not ubiquitinated by CHIP; it interfered with its interaction with VAMP8, rendering STX17 incapable of inhibiting steatosis development in mice. These results indicate that a signaling regulatory mechanism involving CHIP-mediated non-degradative ubiquitination of STX17 is necessary for autophagosome-lysosome fusion.


Subject(s)
Autophagosomes , Lysosomes , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Lysosomes/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Autophagosomes/metabolism , Mice , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Diet, High-Fat/adverse effects , Male , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , Hepatocytes/metabolism , Disease Models, Animal , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , R-SNARE Proteins/metabolism , R-SNARE Proteins/genetics , Membrane Fusion , Autophagy , Transcription Factor TFIIH
2.
Nat Commun ; 15(1): 8511, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39353945

ABSTRACT

Nucleotide excision repair (NER) is vital for genome integrity. Yet, our understanding of the complex NER protein machinery remains incomplete. Combining cryo-EM and XL-MS data with AlphaFold2 predictions, we build an integrative model of the NER pre-incision complex(PInC). Here TFIIH serves as a molecular ruler, defining the DNA bubble size and precisely positioning the XPG and XPF nucleases for incision. Using simulations and graph theoretical analyses, we unveil PInC's assembly, global motions, and partitioning into dynamic communities. Remarkably, XPG caps XPD's DNA-binding groove and bridges both junctions of the DNA bubble, suggesting a novel coordination mechanism of PInC's dual incision. XPA rigging interlaces XPF/ERCC1 with RPA, XPD, XPB, and 5' ssDNA, exposing XPA's crucial role in licensing the XPF/ERCC1 incision. Mapping disease mutations onto our models reveals clustering into distinct mechanistic classes, elucidating xeroderma pigmentosum and Cockayne syndrome disease etiology.


Subject(s)
DNA Repair , DNA-Binding Proteins , Endonucleases , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Humans , Endonucleases/metabolism , Endonucleases/genetics , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/genetics , Xeroderma Pigmentosum Group D Protein/metabolism , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/chemistry , Cryoelectron Microscopy , Xeroderma Pigmentosum Group A Protein/metabolism , Xeroderma Pigmentosum Group A Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding , DNA/metabolism , DNA/chemistry , DNA/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Models, Molecular , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Excision Repair , Nuclear Proteins
3.
Nat Commun ; 15(1): 6597, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097586

ABSTRACT

Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.


Subject(s)
Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Phosphorylation , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/genetics , Cyclin H/metabolism , Cyclin H/chemistry , Cyclin H/genetics , Crystallography, X-Ray , RNA Polymerase II/metabolism , RNA Polymerase II/chemistry , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/genetics , Models, Molecular , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Protein Domains , Cell Cycle Proteins
4.
Nat Commun ; 15(1): 6223, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043658

ABSTRACT

Transcription coupled-nucleotide excision repair (TC-NER) removes DNA lesions that block RNA polymerase II (Pol II) transcription. A key step in TC-NER is the recruitment of the TFIIH complex, which initiates DNA unwinding and damage verification; however, the mechanism by which TFIIH is recruited during TC-NER, particularly in yeast, remains unclear. Here, we show that the C-terminal domain (CTD) of elongation factor-1 (Elf1) plays a critical role in TC-NER in yeast by binding TFIIH. Analysis of genome-wide repair of UV-induced cyclobutane pyrimidine dimers (CPDs) using CPD-seq indicates that the Elf1 CTD in yeast is required for efficient TC-NER. We show that the Elf1 CTD binds to the pleckstrin homology (PH) domain of the p62 subunit of TFIIH in vitro, and identify a putative TFIIH-interaction region (TIR) in the Elf1 CTD that is important for PH binding and TC-NER. The Elf1 TIR shows functional, structural, and sequence similarities to a conserved TIR in the mammalian UV sensitivity syndrome A (UVSSA) protein, which recruits TFIIH during TC-NER in mammalian cells. These findings suggest that the Elf1 CTD acts as a functional counterpart to mammalian UVSSA in TC-NER by recruiting TFIIH in response to Pol II stalling at DNA lesions.


Subject(s)
DNA Repair , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factor TFIIH , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Protein Binding , Transcription, Genetic , Ultraviolet Rays , Protein Domains , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , DNA Damage , Pyrimidine Dimers/metabolism , Excision Repair
5.
Nat Struct Mol Biol ; 31(10): 1580-1588, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38806694

ABSTRACT

The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision.


Subject(s)
Cryoelectron Microscopy , DNA Damage , DNA Repair , DNA , Models, Molecular , Xeroderma Pigmentosum Group D Protein , Xeroderma Pigmentosum Group D Protein/metabolism , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/chemistry , DNA/metabolism , DNA/chemistry , Humans , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/genetics
6.
Trends Genet ; 40(7): 560-563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789376

ABSTRACT

Transcription factor (TF) IIH is a factor involved in transcription, DNA repair, mitosis, and telomere stability. These functions stem from its helicase/ATPase and kinase activities. Recent reports on the structure and function of the transcription machinery, as well as chromosome compaction during mitosis, suggest that TFIIH also influences nucleosome movement, are explored here.


Subject(s)
Nucleosomes , Transcription Factor TFIIH , Nucleosomes/genetics , Nucleosomes/metabolism , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , Humans , Transcription, Genetic , DNA Repair/genetics , Mitosis/genetics , Animals
7.
Mol Cell ; 84(12): 2287-2303.e10, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38821049

ABSTRACT

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.


Subject(s)
Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Promoter Regions, Genetic , RNA Polymerase II , Transcription Initiation, Genetic , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Mediator Complex/metabolism , Mediator Complex/genetics , HeLa Cells , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , HEK293 Cells
8.
Nucleic Acids Res ; 52(11): 6333-6346, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38634797

ABSTRACT

Transcription-coupled repair (TCR) and global genomic repair (GGR) are two subpathways of nucleotide excision repair (NER). The TFIIH subunit Tfb1 contains a Pleckstrin homology domain (PHD), which was shown to interact with one PHD-binding segment (PB) of Rad4 and two PHD-binding segments (PB1 and PB2) of Rad2 in vitro. Whether and how the different Rad2 and Rad4 PBs interact with the same Tfb1 PHD, and whether and how they affect TCR and GGR within the cell remain mysterious. We found that Rad4 PB constitutively interacts with Tfb1 PHD, and the two proteins may function within one module for damage recognition in TCR and GGR. Rad2 PB1 protects Tfb1 from degradation and interacts with Tfb1 PHD at a basal level, presumably within transcription preinitiation complexes when NER is inactive. During a late step of NER, the interaction between Rad2 PB1 and Tfb1 PHD augments, enabling efficient TCR and GGR. Rather than interacting with Tfb1 PHD, Rad2 PB2 constrains the basal interaction between Rad2 PB1 and Tfb1 PHD, thereby weakening the protection of Tfb1 from degradation and enabling rapid augmentation of their interactions within TCR and GGR complexes. Our results shed new light on NER mechanisms.


Subject(s)
DNA Repair , Saccharomyces cerevisiae Proteins , Transcription, Genetic , DNA Damage , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endodeoxyribonucleases , Excision Repair , Protein Binding , Protein Domains , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics
9.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664429

ABSTRACT

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Subject(s)
Caenorhabditis elegans , DNA Damage , DNA Repair , DNA-Binding Proteins , Endonucleases , Transcription Factor TFIIH , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Humans , Animals , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endonucleases/metabolism , Endonucleases/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Xeroderma Pigmentosum Group A Protein/metabolism , Xeroderma Pigmentosum Group A Protein/genetics , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
10.
Mol Cell ; 84(9): 1699-1710.e6, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38604172

ABSTRACT

The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.


Subject(s)
Phosphoproteins , Promoter Regions, Genetic , RNA Polymerase II , TATA-Box Binding Protein , Transcription Factor TFIIB , Transcription Factors , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Humans , Transcription Factor TFIIB/metabolism , Transcription Factor TFIIB/genetics , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Initiation, Genetic , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/chemistry , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Binding , Transcription Factor TFIIA/metabolism , Transcription Factor TFIIA/genetics , Transcription, Genetic , Transcription Elongation, Genetic , RNA/metabolism , RNA/genetics , Transcription Factors, TFII/metabolism , Transcription Factors, TFII/genetics
11.
Environ Mol Mutagen ; 65 Suppl 1: 72-81, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37545038

ABSTRACT

DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.


Subject(s)
Excision Repair , Xeroderma Pigmentosum , Humans , DNA Repair/genetics , Xeroderma Pigmentosum/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA Damage/genetics , DNA/genetics , Nucleotides , Transcription, Genetic
12.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139171

ABSTRACT

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Subject(s)
Neoplasms , Repressor Proteins , Humans , RNA Splicing Factors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Alternative Splicing , Neoplasms/drug therapy , Neoplasms/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism
13.
Enzymes ; 54: 273-304, 2023.
Article in English | MEDLINE | ID: mdl-37945175

ABSTRACT

Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment. In addition, UvrD facilitates transcription-coupled repair (TCR) by backtracking RNA polymerase stalled at the lesion. In eukaryotes, two helicases XPB and XPD from the transcription factor TFIIH complex fulfill the helicase requirements of NER. Interestingly, homologs of all these four helicases UvrB, UvrD, XPB, and XPD have been identified in archaea. This review summarizes our current understanding about the structure, function, and mechanism of these four helicases.


Subject(s)
DNA Damage , DNA Repair , Humans , DNA Helicases/metabolism , Transcription Factor TFIIH/metabolism , DNA/chemistry
14.
DNA Repair (Amst) ; 132: 103568, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977600

ABSTRACT

The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage. This central activity leads to dual incision and removal of the DNA strand containing the damage, after which the resulting DNA gap is restored. In this review, we discuss new structural and mechanistic insights into the central function of TFIIH in NER. Moreover, we provide an elaborate overview of all currently known patients and diseases associated with inherited TFIIH mutations and describe how our understanding of TFIIH function in NER and transcription can explain the different disease features caused by TFIIH deficiency.


Subject(s)
Xeroderma Pigmentosum Group D Protein , Xeroderma Pigmentosum , Humans , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/metabolism , DNA Repair , Xeroderma Pigmentosum/genetics , DNA/genetics
15.
Biosci Rep ; 43(7)2023 07 26.
Article in English | MEDLINE | ID: mdl-37340985

ABSTRACT

The general transcription factor TFIIH is a multi-subunit complex involved in transcription, DNA repair, and cell cycle in eukaryotes. In the human p62 subunit and the budding yeast Saccharomyces cerevisiae Tfb1 subunit of TFIIH, the pleckstrin homology (PH) domain (hPH/scPH) recruits TFIIH to transcription-start and DNA-damage sites by interacting with an acidic intrinsically disordered region in transcription and repair factors. Whereas metazoan PH domains are highly conserved and adopt a similar structure, fungal PH domains are divergent and only the scPH structure is available. Here, we have determined the structure of the PH domain from Tfb1 of fission yeast Schizosaccharomyces pombe (spPH) by NMR. spPH holds an architecture, including the core and external backbone structures, that is closer to hPH than to scPH despite having higher amino acid sequence identity to scPH. In addition, the predicted target-binding site of spPH shares more amino acid similarity with scPH, but spPH contains several key residues identified in hPH as required for specific binding. Using chemical shift perturbation, we have identified binding modes of spPH to spTfa1, a homologue of hTFIIEα, and to spRhp41, a homologue of the repair factors hXPC and scRad4. Both spTfa1 and spRhp41 bind to a similar but distinct surface of spPH by modes that differ from those of target proteins binding to hPH and scPH, revealing that the PH domain of TFIIH interacts with its target proteins in a polymorphic manner in Metazoa, and budding and fission yeasts.


Subject(s)
Pleckstrin Homology Domains , Saccharomyces cerevisiae Proteins , Animals , Humans , Protein Structure, Tertiary , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/metabolism , Binding Sites , Protein Domains , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
16.
Mol Cell ; 83(11): 1763-1764, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267901

ABSTRACT

In this issue of Molecular Cell, Abril-Garrido et al.1 used cryo-EM to uncover that the +1 nucleosome inhibits transcription by interfering with the function of the TFIIH translocase via mechanisms that depend on its position relative to the transcription start site.


Subject(s)
Nucleosomes , Transcription, Genetic , Nucleosomes/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism
17.
Mol Cell ; 83(11): 1798-1809.e7, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37148879

ABSTRACT

At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.


Subject(s)
Nucleosomes , RNA Polymerase II , Humans , Nucleosomes/genetics , RNA Polymerase II/metabolism , Promoter Regions, Genetic , Transcription Factor TFIIH/metabolism , DNA/genetics , DNA/chemistry , Transcription, Genetic , Transcription Initiation Site
18.
Curr Opin Struct Biol ; 80: 102605, 2023 06.
Article in English | MEDLINE | ID: mdl-37150041

ABSTRACT

Nucleotide excision repair (NER) is unique in its ability to identify and remove vastly different lesions from DNA. Recent advances in the structural characterization of complexes involved in detection, verification, and excision of damaged DNA have reshaped our understanding of the molecular architecture of this efficient and accurate machinery. Initial damage recognition achieved through transcription coupled repair (TC-NER) or global genome repair (GG-NER) has been addressed by complexes of RNA Pol II with different TC-NER factors and XPC/RAD23B/Centrin-2 with TFIIH, respectively. Moreover, transcription factor IIH (TFIIH), one of the core repair factors and a central NER hub was resolved in different states, providing important insights how this complex facilitates DNA opening and damage verification. Combined, these recent advances led to a highly improved understanding of the molecular landscape of NER core processes, sharpening our view on how NER is successfully achieved.


Subject(s)
DNA Damage , DNA Repair , Transcription Factor TFIIH/metabolism , DNA/genetics
19.
Int J Neuropsychopharmacol ; 26(6): 396-411, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37235790

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a type of emotional dysfunction, and its pathogenesis has not been fully elucidated. Specifically, the key molecules in depression-related brain regions involved in this disease and their contributions to this disease are currently unclear. METHODS: GSE53987 and GSE54568 were selected from the Gene Expression Omnibus database. The data were standardized to identify the common differentially expressed genes (DEGs) in the cortex of MDD patients in the 2 datasets. The DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The STRING database was used to build protein-protein interaction networks, and the cytoHubba plugin was used to identify hub genes. Furthermore, we selected another blood transcriptome dataset that included 161 MDD and 169 control samples to explore the changes in the screened hub genes. Mice were subjected to 4 weeks of chronic unpredictable mild stress to establish an animal model of depression, and the expression of these hub genes in tissues of the prefrontal cortex was then detected by quantitative real time polymerase chain reaction (qRT-PCR). We subsequently predicted the possible posttranscriptional regulatory networks and traditional Chinese medicine according to the hub genes using a few online databases. RESULTS: The analysis identified 147 upregulated genes and 402 downregulated genes were identified in the cortex of MDD patients compared with that of the controls. Enrichment analyses revealed that DEGs were predominantly enriched in synapse-related cell functions, linoleic acid metabolism, and other pathways. Protein-protein interaction analysis identified 20 hub genes based on the total score. The changes in KDM6B, CUX2, NAAA, PHKB, NFYA, GTF2H1, CRK, CCNG2, ACER3, and SLC4A2 in the peripheral blood of MDD patients were consistent with those in the brain. Furthermore, the prefrontal cortex of mice with depressive-like behaviors showed significantly increased Kdm6b, Aridb1, Scaf11, and Thoc2 expression and decreased Ccng2 expression compared with that of normal mice, which was consistent with the results found for the human brain. Potential therapeutic candidates, such as citron, fructus citri, leaves of Panax Notoginseng, sanchi flower, pseudoginseng, and dan-shen root, were selected via traditional Chinese medicine screening. CONCLUSIONS: This study identified several novel hub genes in specific brain regions involved in the pathogenesis of MDD, which may not only deepen our understanding of depression but may also provide new ideas for its diagnosis and treatment.


Subject(s)
Depressive Disorder, Major , Humans , Animals , Mice , Depressive Disorder, Major/genetics , Gene Regulatory Networks , Gene Expression Profiling/methods , Protein Interaction Maps , Brain , Computational Biology/methods , Transcription Factor TFIIH/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Chloride-Bicarbonate Antiporters/genetics
20.
Nat Commun ; 14(1): 2758, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179334

ABSTRACT

Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH's global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.


Subject(s)
DNA Helicases , DNA Repair , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Molecular Conformation , DNA/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL