Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.611
Filter
1.
Mol Microbiol ; 122(4): 455-464, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39115038

ABSTRACT

The recently discovered methodologies to cultivate and genetically manipulate Treponema pallidum subsp. pallidum (T. pallidum) have significantly helped syphilis research, allowing the in vitro evaluation of antibiotic efficacy, performance of controlled studies to assess differential treponemal gene expression, and generation of loss-of-function mutants to evaluate the contribution of specific genetic loci to T. pallidum virulence. Building on this progress, we engineered the T. pallidum SS14 strain to express a red-shifted green fluorescent protein (GFP) and Sf1Ep cells to express mCherry and blue fluorescent protein (BFP) for enhanced visualization. These new resources improve microscopy- and cell sorting-based applications for T. pallidum, better capturing the physical interaction between the host and pathogen, among other possibilities. Continued efforts to develop and share new tools and resources are required to help our overall knowledge of T. pallidum biology and syphilis pathogenesis reach that of other bacterial pathogens, including spirochetes.


Subject(s)
Luminescent Proteins , Syphilis , Treponema pallidum , Treponema pallidum/genetics , Syphilis/microbiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Humans , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Red Fluorescent Protein , Virulence/genetics , Treponema
2.
Lancet Microbe ; 5(9): 100871, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39181152

ABSTRACT

BACKGROUND: The increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We aimed to explore Treponema pallidum subspecies pallidum (TPA) molecular epidemiology essential for vaccine research by analysing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. METHODS: In this multicentre, cross-sectional, molecular epidemiology study, we enrolled patients with primary, secondary, or early latent syphilis from clinics in China, Colombia, Malawi, and the USA between Nov 28, 2019, and May 27, 2022. Participants aged 18 years or older with laboratory confirmation of syphilis by direct detection methods or serological testing, or both, were included. Patients were excluded from enrolment if they were unwilling or unable to give informed consent, did not understand the study purpose or nature of their participation, or received antibiotics active against syphilis in the past 30 days. TPA detection and WGS were conducted on lesion swabs, skin biopsies, skin scrapings, whole blood, or rabbit-passaged isolates. We compared our WGS data to publicly available genomes and analysed TPA populations to identify mutations associated with lineage and geography. FINDINGS: We screened 2802 patients and enrolled 233 participants, of whom 77 (33%) had primary syphilis, 154 (66%) had secondary syphilis, and two (1%) had early latent syphilis. The median age of participants was 28 years (IQR 22-35); 154 (66%) participants were cisgender men, 77 (33%) were cisgender women, and two (1%) were transgender women. Of the cisgender men, 66 (43%) identified as gay, bisexual, or other sexuality. Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants showed a predominance of SS14-lineage strains with geographical clustering. Phylogenomic analyses confirmed that Nichols-lineage strains were more genetically diverse than SS14-lineage strains and clustered into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models showed population-specific substitutions, some in outer membrane proteins (OMPs) of interest. INTERPRETATION: Our study substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains is vital for vaccine development and understanding syphilis pathogenesis on a population level. FUNDING: US National Institutes of Health National Institute for Allergy and Infectious Disease, the Bill & Melinda Gates Foundation, Connecticut Children's, and the Czech Republic National Institute of Virology and Bacteriology.


Subject(s)
Molecular Epidemiology , Syphilis , Treponema pallidum , Whole Genome Sequencing , Humans , Treponema pallidum/genetics , Treponema pallidum/immunology , Male , Female , Syphilis/epidemiology , Syphilis/microbiology , Adult , Cross-Sectional Studies , Genome, Bacterial , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Middle Aged , Young Adult , Genetic Variation/genetics , Phylogeny , United States/epidemiology , Genomics , Treponema
3.
PLoS One ; 19(8): e0307196, 2024.
Article in English | MEDLINE | ID: mdl-39133700

ABSTRACT

The treponemes infecting lagomorphs include Treponema paraluisleporidarum ecovar Cuniculus (TPeC) and ecovar Lepus (TPeL), infecting rabbits and hares, respectively. In this study, we described the first complete genome sequence of TPeL, isolate V3603-13, from an infected mountain hare (Lepus timidus) in Sweden. In addition, we determined 99.0% of the genome sequence of isolate V246-08 (also from an infected mountain hare, Sweden) and 31.7% of the genome sequence of isolate Z27 A77/78 (from a European hare, Lepus europeaus, The Netherlands). The TPeL V3603-13 genome had considerable gene synteny with the TPeC Cuniculi A genome and with the human pathogen T. pallidum, which causes syphilis (ssp. pallidum, TPA), yaws (ssp. pertenue, TPE) and endemic syphilis (ssp. endemicum, TEN). Compared to the TPeC Cuniculi A genome, TPeL V3603-13 contained four insertions and 11 deletions longer than three nucleotides (ranging between 6 and2,932 nts). In addition, there were 25 additional indels, from one to three nucleotides long, altogether spanning 36 nts. The number of single nucleotide variants (SNVs) between TPeC Cuniculi A and TPeL V3603-13 were represented by 309 nucleotide differences. Major proteome coding differences between TPeL and TPeC were found in the tpr gene family, and (predicted) genes coding for outer membrane proteins, suggesting that these components are essential for host adaptation in lagomorph syphilis. The phylogeny revealed that the TPeL sample from the European brown hare was more distantly related to TPeC Cuniculi A than V3603-13 and V246-08.


Subject(s)
Hares , Phylogeny , Syphilis , Treponema , Animals , Rabbits , Syphilis/microbiology , Treponema/genetics , Treponema/isolation & purification , Hares/microbiology , Genome, Bacterial
4.
Vet Microbiol ; 296: 110184, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996749

ABSTRACT

Zebu cattle (Bos indicus) is reported to be more resistant towards harmful environmental factors than taurine cattle (Bos taurus). A few hundred zebu cattle are kept in Switzerland and in contrast to the Swiss indigenous breeds, infectious hoof disease in zebu is not observed. Therefore, we compared the prevalence of three ruminant hoof pathogens in zebu and taurine cattle. These included Treponema spp., Fusobacterium necrophorum and Dichelobacter nodosus which are associated with bovine digital dermatitis (BDD), different bovine hoof diseases and ovine footrot, respectively. Interdigital swabs and punch biopsies from hind feet of slaughter animals were tested for the three pathogens by PCR. Sixty zebu from eight farms were compared to a convenience sample of 20 taurine cattle from 17 farms. Treponema spp. associated with BDD were not detected in zebu while 23 % of animals and 50 % of farms were positive for benign D. nodosus, with results indicating environmental contamination rather than colonization. Taurine cattle showed 35 % of animals and 41 % of farms positive for T. phagedenis while 90 % of animals and 94 % of farms were colonized by D. nodosus as indicated by a 500-fold higher bacterial load than in zebu. The difference in prevalence of the two pathogens between zebu and taurine cattle was highly significant. F. necrophorum was as well only detected in taurine cattle with values of 15 % of animals and 17.7 % of farms, being significantly different at the animal level. Furthermore, genetic analysis of Swiss zebu indicates high genomic diversity and clear separation from taurine cattle. This is the first evidence that zebu show resistance towards colonization by bacterial hoof pathogens in contrast to taurine cattle.


Subject(s)
Cattle Diseases , Dichelobacter nodosus , Fusobacterium necrophorum , Hoof and Claw , Animals , Cattle , Cattle Diseases/microbiology , Switzerland/epidemiology , Hoof and Claw/microbiology , Dichelobacter nodosus/genetics , Dichelobacter nodosus/pathogenicity , Fusobacterium necrophorum/genetics , Fusobacterium necrophorum/pathogenicity , Fusobacterium necrophorum/isolation & purification , Treponema/genetics , Treponema/isolation & purification , Treponema/classification , Foot Diseases/veterinary , Foot Diseases/microbiology , Prevalence , Disease Resistance , Fusobacterium Infections/veterinary , Fusobacterium Infections/microbiology
5.
Res Vet Sci ; 177: 105345, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996658

ABSTRACT

Contagious ovine digital dermatitis (CODD) causes a severe, infectious foot disease and lameness of sheep, is common within the UK and is now also emerging in other countries. As well as causing severe animal welfare issues, huge economic losses emerge from the disease due to weight loss/lack of weight gain, and veterinary treatments. CODD lesion progress is measured, with a scoring system from 1 (early lesions) to 5 (healed). Here, using samples from an experimental flock infected by natural means, samples were taken from CODD stage 5 lesions, post treatment, and subjected to bacterial isolation and MLST using previously published methods. Sequences were compared to others from the same flock, and those from previous studies. All CODD 5 lesions produced viable Treponema spp. bacteria. High levels of variation of bacteria were seen, with 12 sequence types (STs) for T. medium phylogroup (11 new), 15 STs for T. phagedenis phylogroup (9 new) and six T. pedis STs, of which two were new. This study shows that CODD stage 5 lesions still contain viable bacteria, representing all three known pathogenic Treponema spp. phylogroups, and these may thus play a role in disease transmission and epidemiology despite appearing healed after treatment. The high level CODD treponeme variability within an infected flock where sheep were bought from different sources, as might occur in common agricultural practice, may suggest reasons as to why the bacterial disease is difficult to treat, control and eradicate, and adds further complexity to the polybacterial pathogenesis of these lesions.


Subject(s)
Digital Dermatitis , Multilocus Sequence Typing , Sheep Diseases , Treponema , Treponemal Infections , Animals , Sheep , Treponema/genetics , Treponema/classification , Sheep Diseases/microbiology , Sheep Diseases/transmission , Digital Dermatitis/microbiology , Digital Dermatitis/transmission , Multilocus Sequence Typing/veterinary , Treponemal Infections/veterinary , Treponemal Infections/microbiology , Treponemal Infections/transmission
6.
Anaerobe ; 88: 102882, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39029736

ABSTRACT

Bovine digital dermatitis (BDD) is an infectious skin disease of the hoof characterized by painful ulcerations that cause lameness in dairy cattle. Cell-free supernatants (CFS) of Falsiporphyromonas endometrii predominantly isolated from BDD lesions had the highest growth-stimulating effect on Treponema phagedenis among BDD-associated bacteria. Butyric acid was detected at a concentration of 45.4 mM in CFS of F. endometrii, and the growth of T. phagedenis was significantly promoted by butyric acid supplementation.


Subject(s)
Cattle Diseases , Digital Dermatitis , Treponema , Animals , Cattle , Treponema/isolation & purification , Treponema/genetics , Digital Dermatitis/microbiology , Cattle Diseases/microbiology , Butyric Acid/metabolism , Treponemal Infections/microbiology , Treponemal Infections/veterinary
7.
J Dairy Sci ; 107(9): 7256-7266, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825105

ABSTRACT

Bovine digital dermatitis remains a widespread endemic disease of dairy cattle worldwide. Footbathing is commonly used as a control measure and has significant economic and environmental impacts. Few studies document footbathing practices on dairy farms or evaluate their suitability for achieving foot disinfection. This study describes footbathing practices on 32 farms observed in the United Kingdom, Ireland, and the Netherlands. We measured solution depth throughout footbathing and observed levels below 7 cm on 9 out of 32 farms, which leads to inadequate foot coverage. Solution depth was associated with the number of cow passages and decreased by 1.2 cm for every 100 cow passages. We also describe levels of OM content (g/L) throughout footbathing as a proxy for footbath hygiene. Our data indicates that almost half of footbaths (15/32) became contaminated above the 20 g/L threshold to which veterinary biocides are tested for efficacy, and that OM content is associated with the number of cow passages per liter of footbathing solution provided. A multivariable mixed model predicted that 1 L of footbathing solution per cow should be sufficient to prevent excess contamination. As a further measure of hygiene, we tested a subset of footbath samples to quantify the amount of DNA present from the Treponema species which are considered instrumental in the etiology of digital dermatitis. We did not detect Treponema DNA in footbath samples, which suggested they are unlikely to act as infection reservoirs for this disease. Multivariable mixed models including farm identity as a random effect demonstrated that for both change in solution depth and OM content the effect of farm-level factors was large. Because of the magnitude of this farm effect, applying model predictions will not translate to adequate solution depth and hygiene on all farms. Our data highlights the importance of footbath auditing on individual farms.


Subject(s)
Cattle Diseases , Digital Dermatitis , Disinfection , Hygiene , Treponema , Animals , Cattle , Digital Dermatitis/prevention & control , Cattle Diseases/prevention & control , Cattle Diseases/microbiology , Female , Netherlands , Treponemal Infections/veterinary , Treponemal Infections/prevention & control , Ireland , United Kingdom
8.
Infect Immun ; 92(8): e0011724, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38940601

ABSTRACT

Digital dermatitis (DD) is an ulcerative foot lesion on the heel bulbs of dairy cattle. DD is a polymicrobial disease with no precise etiology, although Treponema spirochetes are found disproportionally abundant in diseased tissue. Within Treponema, several different species are found in DD; however, the species Treponema phagedenis is uniformly found in copious quantities and deep within the skin layers of the active, ulcerative stages of disease. The pathogenic mechanisms these bacteria use to persist in the skin and the precise role they play in the pathology of DD are widely unknown. To explore the pathogenesis and virulence of Treponema phagedenis, newly isolated strains of this species were investigated in a subcutaneous murine abscess model. In the first trial, a dosage study was conducted to compare the pathogenicity of different strains across three different treponemes per inoculum (TPI) doses based on abscess volumes. In the second trial, the expression levels of 11 putative virulence genes were obtained to gain insight into their involvement in pathogenesis. During the RT-qPCR analysis, it was determined that genes encoding for two metal-ion import lipoproteins and two adherence genes were found highly upregulated during infection. Conversely, two genes involved in motility and chemotaxis were found to not be significantly upregulated or utilized during infection. These results were supported by gene expression data from natural M2 lesions of dairy cattle. This gene expression analysis could highlight the preference in strategy for T. phagedenis to persist and adhere in the host rather than engage in motility and disseminate.


Subject(s)
Cattle Diseases , Digital Dermatitis , Treponema , Treponemal Infections , Animals , Cattle , Treponema/genetics , Treponema/pathogenicity , Treponema/isolation & purification , Digital Dermatitis/microbiology , Treponemal Infections/microbiology , Mice , Cattle Diseases/microbiology , Bacterial Adhesion , Gene Expression Regulation, Bacterial , Virulence/genetics , Female , Metals/metabolism , Abscess/microbiology , Virulence Factors/genetics
9.
BMC Vet Res ; 20(1): 261, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890626

ABSTRACT

BACKGROUND: Digital dermatitis (DD) is a contagious bovine foot disease causing reduced animal welfare and negative economic consequences for the farmer. Treponema spp. are the most important causative agents. Studies indicate that trimming equipment can transfer DD-associated treponemes between cows. The aim of this observational study in 22 DD-positive Norwegian dairy herds was to investigate the risk of transferring Treponema spp. with trimming equipment and chutes after claw trimming, and after washing and disinfection. Swabs from the trimming equipment and chutes were collected from nine different locations, at five different time points. Bacterial DNA was extracted from 647 swabs and analysed by qPCR for Treponema spp. In addition, 172 swabs taken immediately after trimming, were analysed by a multiplex qPCR targeting T. phagedenis, T. pedis and T. medium/vincentii. Biopsy sampling from DD lesions was performed on cows in the same herds during trimming. Altogether 109 biopsies were analysed by FISH for confirmation of the DD diagnosis and identification of Treponema phylotypes (PTs). RESULTS: High numbers of Treponema spp. were detected from all nine locations on the trimming equipment and chutes immediately after trimming, and T. phagedenis was detected on two or more locations in all but two herds, 1 and 19. There was a decline in the amount of Treponema spp. after washing and disinfection. The belly belt, the cuff, and the footrest on the chute had the highest proportion of positive samples after disinfection. The belly belt had the highest copy numbers of all nine locations (median = 7.9, max = 545.1). No Treponema spp. was detected on the hoof knives after disinfection. Treponema phagedenis, T. pedis, and Treponema phylotype 3 (T. refringens) were detected by FISH analysis of the biopsies. Treponema phagedenis was detected in biopsies from all herds except 1 and 19. CONCLUSION: This study shows that DD-associated Treponema spp. were present on the trimming equipment and chutes after trimming cows in DD-positive herds. Washing and disinfection reduced the load of Treponema spp. However, large differences in Treponema spp. between different locations were documented. High copy numbers on the grinder and the chute after disinfection, indicates that sufficient cleaning and disinfection of these locations is difficult, and that passive transfer of DD-associated treponemes (viable or not) is possible.


Subject(s)
Cattle Diseases , Digital Dermatitis , Disinfection , Treponema , Treponemal Infections , Animals , Cattle , Treponema/isolation & purification , Digital Dermatitis/microbiology , Treponemal Infections/veterinary , Treponemal Infections/microbiology , Cattle Diseases/microbiology , Disinfection/methods , Female , Norway , Hoof and Claw/microbiology , DNA, Bacterial/analysis , Animal Husbandry/methods , Animal Husbandry/instrumentation
10.
Microbiome ; 12(1): 116, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943206

ABSTRACT

BACKGROUND: Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS: We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION: We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.


Subject(s)
Feces , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/genetics , Swine/microbiology , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Metagenomics/methods , Prevotella/genetics , Prevotella/classification , Ruminococcus/genetics , Treponema/genetics
11.
BMC Genomics ; 25(1): 549, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824509

ABSTRACT

BACKGROUND: Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage. RESULTS: We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes. CONCLUSIONS: In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.


Subject(s)
Genome, Bacterial , Genomics , Phylogeny , Prophages , Treponema , Prophages/genetics , Treponema/genetics , Treponema/virology , Genomics/methods , Computational Biology/methods , Genome, Viral , Bacteriophages/genetics , Bacteriophages/classification
12.
Appl Environ Microbiol ; 90(6): e0010524, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38742897

ABSTRACT

Pododermatitis, also known as treponeme-associated hoof disease (TAHD), presents a significant challenge to elk (Cervus canadensis) populations in the northwestern USA, with Treponema spp. consistently implicated in the lesion development. However, identifying species-specific Treponema strains from these lesions is hindered by its culture recalcitrance and limited genomic information. This study utilized shotgun sequencing, in silico genome reconstruction, and comparative genomics as a culture-independent approach to identify metagenome-assembled Treponema genomes (MATGs) from skin scraping samples collected from captive elk experimentally challenged with TAHD. The genomic analysis revealed 10 new MATGs, with 6 representing novel genomospecies associated with pododermatitis in elk and 4 corresponding to previously identified species-Treponema pedis and Treponema phagedenis. Importantly, genomic signatures of novel genomospecies identified in this study were consistently detected in biopsy samples of free-ranging elk diagnosed with TAHD, indicating a potential etiologic association. Comparative metabolic profiling of the MATGs against other Treponema genomes showed a distinct metabolic profile, suggesting potential host adaptation or geographic uniqueness of these newly identified genomospecies. The discovery of novel Treponema genomospecies enhances our understanding of the pathogenesis of pododermatitis and lays the foundation for the development of improved molecular surveillance tools to monitor and manage the disease in free-ranging elk.IMPORTANCETreponema spp. play an important role in the development of pododermatitis in free-ranging elk; however, the species-specific detection of Treponema from pododermatitis lesions is challenging due to culture recalcitrance and limited genomic information. The study utilized shotgun sequencing and in silico genome reconstruction to identify novel Treponema genomospecies from elk with pododermatitis. The discovery of the novel Treponema species opens new avenues to develop molecular diagnostic and epidemiologic tools for the surveillance of pododermatitis in elk. These findings significantly enhance our understanding of the genomic landscape of the Treponemataceae consortium while offering valuable insights into the etiology and pathogenesis of emerging pododermatitis in elk populations.


Subject(s)
Deer , Genome, Bacterial , Treponema , Treponemal Infections , Treponema/genetics , Treponema/classification , Treponema/isolation & purification , Animals , Deer/microbiology , Treponemal Infections/microbiology , Treponemal Infections/veterinary , Foot Diseases/microbiology , Foot Diseases/veterinary , Phylogeny , Dermatitis/microbiology , Dermatitis/veterinary
13.
Acta Trop ; 256: 107254, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759832

ABSTRACT

The etiological agent of yaws is the spirochete Treponema pallidum (TP) subsp. pertenue (TPE) and infects the children of Papua New Guinea, causing ulcerative skin lesions that impairs normal growth and development. Closely related strains of Treponema pallidum subsp. pertenue, JE11, and TE13 were detected in an ulcer biospecimen derived from a 5-year-old yaws patient. Cloning experiments validated the presence of two distinct but similar genotypes, namely TE13 and JE11, co-occurring within a single host. While coinfection with highly related TPE strains has only limited epidemiological and clinical relevance, this is the first documented coinfection with genetically distinct TP strains in a single patient. Similar coinfections in the past were explained by the existence of over a dozen recombinant loci present in the TP genomes as a result of inter-strain or inter-subspecies recombination events following an anticipated scenario of TP coinfection, i.e., uptake of foreign DNA and DNA recombination.


Subject(s)
Coinfection , Genotype , Treponema pallidum , Yaws , Humans , Yaws/microbiology , Coinfection/microbiology , Treponema pallidum/genetics , Treponema pallidum/isolation & purification , Treponema pallidum/classification , Papua New Guinea , Child, Preschool , Phylogeny , Male , DNA, Bacterial/genetics , Sequence Analysis, DNA , Treponema
14.
BMC Vet Res ; 20(1): 168, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698418

ABSTRACT

BACKGROUND: Digital dermatitis (DD) is a contagious hoof infection affecting cattle worldwide. The disease causes lameness and a reduction in animal welfare, which ultimately leads to major decreases in milk production in dairy cattle. The disease is most likely of polymicrobial origin with Treponema phagedenis and other Treponema spp. playing a key role; however, the etiology is not fully understood. Diagnosis of the disease is based on visual assessment of the feet by trained hoof-trimmers and veterinarians, as a more reliable diagnostic method is lacking. The aim of this study was to evaluate the use of an enzyme-linked immunosorbent assay (ELISA) on bulk tank milk samples testing for the presence of T. phagedenis antibodies as a proxy to assess herd prevalence of DD in Swedish dairy cattle herds. RESULTS: Bulk tank milk samples were collected in 2013 from 612 dairy herds spread across Sweden. A nationwide DD apparent prevalence of 11.9% (8.1-14.4% CI95%) was found, with the highest proportion of test-positive herds in the South Swedish regions (31.3%; 19.9-42.4% CI95%). CONCLUSIONS: This study reveals an underestimation of DD prevalence based on test results compared to hoof trimming data, highlighting the critical need for a reliable and accurate diagnostic method. Such a method is essential for disease monitoring and the development of effective control strategies. The novelty of ELISA-based diagnostic methods for DD, coupled with the disease's polymicrobial origin, suggests an avenue for improvement. Developing an expanded ELISA, incorporating antigens from various bacterial species implicated in the disease, could enhance diagnostic accuracy. The significance of this study is underscored by the extensive analysis of a substantial sample size (612). Notably, this investigation stands as the largest assessment to date, evaluating the application of ELISA on bulk tank milk for DD diagnosis at the herd level.


Subject(s)
Cattle Diseases , Digital Dermatitis , Enzyme-Linked Immunosorbent Assay , Milk , Treponema , Animals , Cattle , Enzyme-Linked Immunosorbent Assay/veterinary , Milk/microbiology , Sweden/epidemiology , Digital Dermatitis/diagnosis , Digital Dermatitis/microbiology , Treponema/isolation & purification , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Female , Treponemal Infections/veterinary , Treponemal Infections/diagnosis , Treponemal Infections/microbiology , Prevalence , Antibodies, Bacterial/analysis , Dairying
15.
Res Vet Sci ; 171: 105210, 2024 May.
Article in English | MEDLINE | ID: mdl-38460203

ABSTRACT

Treponema spp. are associated with infectious lameness in livestock and wild ruminants. While extensive research has been conducted on cattle, investigations in wild ruminants are scarce. Hoof disease is common in caribou populations (Rangifer tarandus), but investigations are limited due to the remoteness of the Arctic. Our study aimed to assess the presence of Treponema spp. associated with bovine digital dermatitis in caribou. DNA was extracted from coronary band tissues from forty-eight caribou without visible hoof lesions and analyzed using two PCR methods (qPCR and nPCR). Treponema spp. were detected in low copy numbers/mg of tissue (3.6 to 6.6 × 101). T. phagedenis was the most prevalent and abundant species in 58% of samples by qPCR, followed by T. medium (44%), and T. pedis (10%). The qPCR and nPCR agreement ranged between 65% and 75% (Cohen's kappa 0.22-0.51). Sanger sequencing of thirteen nPCR products confirmed that treponemes in caribou are remarkably similar to those found in domestic ruminants and wild elk. Our study highlights the colonization of treponemes in healthy hooves of a wild ruminant in the Arctic, where there is no presence of livestock, and expands knowledge on the host range and distribution of treponemes. These findings also emphasize the need for further research into the multifactorial nature of treponema-associated hoof diseases and the putative role of treponemes in infectious lameness affecting caribou.


Subject(s)
Cattle Diseases , Digital Dermatitis , Reindeer , Treponemal Infections , Cattle , Animals , Treponema/genetics , Lameness, Animal , Animals, Wild , Treponemal Infections/veterinary
16.
Microbes Infect ; 26(1-2): 105241, 2024.
Article in English | MEDLINE | ID: mdl-38380602

ABSTRACT

Transplacental transmission of syphilis causing spirochete, Treponema pallidum subspecies pallidum, from mother to child results in congenital syphilis, an ever-expanding devastating disease worldwide. Although adverse effects of untreated gestational Lyme disease, caused by a related spirochete, Borrelia burgdorferi on fetus viability and development have been observed, cases of congenital Lyme disease are not reported. In this study, we show that B. burgdorferi colonizes mammary glands of C3H mice only postpartum; however, neither transmission of these spirochetes from dams-to-pups occurs nor congenital Lyme disease is observed in pups.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Mammary Glands, Human , Treponema , Humans , Mice , Animals , Child , Female , Mice, Inbred C3H , Lactation , Infectious Disease Transmission, Vertical
17.
PLoS Negl Trop Dis ; 18(1): e0011831, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166151

ABSTRACT

Yaws is an endemic disease caused by Treponema pallidum subsp. pertenue (TPE) that primarily affects children in rural regions of the tropics. The endemic character of yaws infections and the expected exclusive reservoir of TPE in humans opened a new opportunity to start a yaws eradication campaign. We have developed a multi-locus sequence typing (MLST) scheme for TPE isolates combining the previously published (TP0548, TP0488) and new (TP0858) chromosomal loci, and we compared this typing scheme to the two previously published MLST schemes. We applied this scheme to TPE-containing clinical isolates obtained during a mass drug administration study performed in the Namatanai District of Papua New Guinea between June 2018 and December 2019. Of 1081 samples collected, 302 (28.5%) tested positive for TPE DNA, from which 255 (84.4%) were fully typed. The TPE PCR-positivity in swab samples was higher in younger patients, patients with single ulcers, first ulcer episodes, and with ulcer duration less than six months. Non-treponemal serological test positivity correlated better with PCR positivity compared to treponema-specific serological tests. The MLST revealed a low level of genetic diversity among infecting TPE isolates, represented by just three distinct genotypes (JE11, SE22, and TE13). Two previously used typing schemes revealed similar typing resolutions. Two new alleles (one in TP0858 and one in TP0136) were shown to arise by intragenomic recombination/deletion events. Compared to samples genotyped as JE11, the minor genotypes (TE13 and SE22) were more frequently detected in samples from patients with two or more ulcers and patients with higher values of specific TP serological tests. Moreover, the A2058G mutation in the 23S rRNA genes of three JE11 isolates was found, resulting in azithromycin resistance.


Subject(s)
Treponema pallidum , Yaws , Child , Humans , Treponema pallidum/genetics , Ulcer , Multilocus Sequence Typing , Yaws/epidemiology , Papua New Guinea/epidemiology , Treponema/genetics , Mutation , Genotype
18.
Infect Immun ; 92(2): e0034223, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38189287

ABSTRACT

Digital dermatitis (DD) is a skin disease in cattle characterized by painful inflammatory ulcerative lesions in the feet, mostly associated with local colonization by Treponema spp., including Treponema phagedenis. The reason why most DD lesions remain actively inflamed and progress to chronic conditions despite antibiotic treatment remains unknown. Herein, we show an abundant infiltration of proinflammatory (CD14highCD16low) monocytes/macrophages in active DD lesions, a skin response that was not mitigated by topical treatment with oxytetracycline. The associated bacterium, T. phagedenis, isolated from DD lesions in cattle, when injected subcutaneously into mice, induced abscesses with a local recruitment of Ly6G+ neutrophils and proinflammatory (Ly6ChighCCR2+) monocytes/macrophages, which appeared at infection onset (4 days post challenge) and persisted for at least 7 days post challenge. When exploring the ability of macrophages to regulate inflammation, we showed that bovine blood-derived macrophages challenged with live T. phagedenis or its structural components secreted IL-1ß via a mechanism dependent on the NLRP3 inflammasome. This study shows that proinflammatory characteristics of monocytes/macrophages and neutrophils dominate active non-healing ulcerative lesions in active DD, thus likely impeding wound healing after antibiotic treatment.


Subject(s)
Cattle Diseases , Digital Dermatitis , Animals , Cattle , Mice , Digital Dermatitis/microbiology , Monocytes , Treponema , Abscess , Cattle Diseases/microbiology , Anti-Bacterial Agents
19.
Sex Transm Dis ; 51(1): 1-7, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37889936

ABSTRACT

BACKGROUND: Since 2000, there have been rising rates of syphilis infections nationally with higher incidence among minorities and persons living with human immunodeficiency virus (HIV) (PLWH). The purpose of this study was to determine syphilis treatment adequacy and factors associated with treatment delay. METHODS: This was a retrospective academic-public health collaboration with the District of Columbia Department of Public Health reviewing surveillance data of all primary, secondary, and early latent syphilis cases diagnosed between January 1, 2015, and December 31, 2019. Data were analyzed using multivariable logistic regression to identify factors associated with delayed treatment >14 days from diagnosis. RESULTS: Among 1852 individuals diagnosed with early syphilis, 93% (1730/1852) were male; 48% (893/1852) were coinfected with HIV; 43% (n = 796/1852) were African American/Black, 27% (n = 492/1852) were White, and race/ethnicity was unknown for 17% (n = 318/1852) of cases. Among 679 PLWH for whom viral load (VL) was known, 41% (278/679) had a VL < 20 copies/mL, and 18% (123/679) had VL >10,000 copies/mL. Treatment adequacy overall was 96.5%. Median time to syphilis treatment was 6 days (interquartile range = 4-7). Factors associated with delay of treatment included refused/unknown race (adjusted odds ratio [aOR], 1.95; 95% confidence interval [CI], 1.00-3.79), and HIV VL > 10,000 copies/mL (aOR, 1.97; 95% CI, 1.08-3.58). CONCLUSIONS: The factors we identified associated with delayed treatment may reflect systemic factors contributing to the increased rates of infection among key populations. This highlights the importance of targeted public health efforts with the goal of reducing transmission of both HIV and syphilis.


Subject(s)
HIV Infections , Syphilis , Humans , Male , Female , Syphilis/diagnosis , Syphilis/drug therapy , Syphilis/epidemiology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Retrospective Studies , District of Columbia , Treponema
20.
Microbiol Spectr ; 12(1): e0177423, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38095473

ABSTRACT

IMPORTANCE: Syphilis is an ancient disease of humans and lagomorphs caused by two distinct but genetically closely related bacteria (>98% sequence identity based on the whole genome) of the genus Treponema. While human syphilis is well studied, little is known about the disease in the lagomorph host. Yet, comparative studies are needed to understand mechanisms in host-pathogen coevolution in treponematoses. Importantly, Treponema paraluisleporidarum-infected hare populations provide ample opportunity to study the syphilis-causing pathogen in a naturally infected model population without antibiotic treatment, data that cannot be obtained from syphilis infection in humans. We provide data on genetic diversity and are able to highlight various types of repetitions in one of the two hypervariable regions at the tp0548 locus that have not been described in the human syphilis-causing sister bacterium Treponema pallidum subsp. pallidum.


Subject(s)
Lagomorpha , Syphilis , Animals , Humans , Syphilis/epidemiology , Syphilis/microbiology , Treponema pallidum , Prevalence , Treponema/genetics , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL