Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.065
Filter
1.
Int J Mol Sci ; 25(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273480

ABSTRACT

The quality of food is one of the emergent points worldwide. Many microorganisms produce toxins that are harmful for human and animal health. In particular, mycotoxins from Fusarium fungi are strictly controlled in cereals. Simple and robust biosensors are necessary for 'in field' control of the crops and processed products. Nucleic acid-based sensors (aptasensors) offer a new era of point-of-care devices with excellent stability and limits of detection for a variety of analytes. Here we report the development of a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the detection of T-2 and deoxynivalenol in wheat grains. The aptasensor was able to detect as low as 0.17% of pathogen fungi in the wheat grains. The portable devices, inexpensive SERS substrate, and short analysis time encourage further implementation of the aptasensors outside of highly equipped laboratories.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Spectrum Analysis, Raman , Trichothecenes , Triticum , Spectrum Analysis, Raman/methods , Trichothecenes/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Triticum/microbiology , Triticum/chemistry , T-2 Toxin/analysis , Fusarium , Food Contamination/analysis
2.
BMC Plant Biol ; 24(1): 852, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256692

ABSTRACT

BACKGROUND: Fusarium head blight (FHB), caused by Fusarium graminearum, is a major disease of wheat in North America. FHB infection causes fusarium damaged kernels (FDKs), accumulation of deoxynivalenol (DON) in the grain, and a reduction in quality and grain yield. Inheritance of FHB resistance is complex and involves multiple genes. The objective of this research was to identify QTL associated with native FHB and DON resistance in a 'D8006W'/'Superior', soft white winter wheat population. RESULTS: Phenotyping was conducted in replicated FHB field disease nurseries across multiple environments and included assessments of morphological and FHB related traits. Parental lines had moderate FHB resistance, however, the population showed transgressive segregation. A 1913.2 cM linkage map for the population was developed with SNP markers from the wheat 90 K Infinium iSelect SNP array. QTL analysis detected major FHB resistance QTL on chromosomes 2D, 4B, 5A, and 7A across multiple environments, with resistance from both parents. Trait specific unique QTL were detected on chromosomes 1A (visual traits), 5D (FDK), 6B (FDK and DON), and 7D (DON). The plant height and days to anthesis QTL on chromosome 2D coincided with Ppd-D1 and were linked with FHB traits. The plant height QTL on chromosome 4B was also linked with FHB traits; however, the Rht-B1 locus did not segregate in the population. CONCLUSIONS: This study identified several QTL, including on chromosome 2D linked with Ppd-D1, for FHB resistance in a native winter wheat germplasm.


Subject(s)
Disease Resistance , Fusarium , Plant Diseases , Quantitative Trait Loci , Trichothecenes , Triticum , Triticum/genetics , Triticum/microbiology , Fusarium/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Chromosome Mapping , Phenotype , Chromosomes, Plant/genetics , Polymorphism, Single Nucleotide , Genetic Linkage , White
3.
Mikrochim Acta ; 191(10): 588, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39256210

ABSTRACT

Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01 ng/mL, and a wide linear range from 2 to 100 ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.


Subject(s)
Benzidines , Biosensing Techniques , Colorimetry , Copper , Limit of Detection , Metal Nanoparticles , Trichothecenes , Zea mays , Trichothecenes/analysis , Trichothecenes/immunology , Colorimetry/methods , Copper/chemistry , Biosensing Techniques/methods , Benzidines/chemistry , Zea mays/chemistry , Metal Nanoparticles/chemistry , Triticum/chemistry , Peroxidase/chemistry , Antibodies, Immobilized/immunology , Food Contamination/analysis
4.
Food Res Int ; 192: 114784, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147488

ABSTRACT

The distribution of deoxynivalenol (DON) and its derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON) throughout the wheat processing chain were systemically evaluated by one-to-one corresponding studies of the whole processing chain. DON and its derivatives were determined by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and corresponding wheat bran, wheat flour, and semi-finished and finished wheat flour-based products. This investigation showed that wheat grain processing to wheat flour significantly decreased the levels of DON by approximately 52.7%-68.2%. Wheat flour processing of wheat flour-based products decreased the DON concentration by approximately 7.0%-70.6%. Among the processing methods, biscuit making showed the largest reduction (70.6%). The co-occurrence frequency of DON with low levels of 3-Ac-DON and 15-Ac-DON was significantly greater in wheat grains and wheat bran than in wheat flour. For wheat flour-based products, only the distribution pattern of 3-Ac-DON was observable in processed wheat flour products prepared using grains heavily contaminated with DON. In China, to the best of our knowledge, the processing factors (PFs) of DON in wheat flour and wheat flour-based products were systematically evaluated for the first time. The average PF of DON was 0.35 for wheat flour and the average PFs were 0.37-0.84 for wheat flour-based products, with biscuits having the smallest PF (0.37), indicating DON significantly decreasing in biscuit making. Furthermore, dietary exposure assessment of DON indicated an acceptable overall health risk in Chinese consumers, with the highest exposure being observed in infants and young children. This study provides important references for classified management of DON limits in wheat and its various products in China.


Subject(s)
Flour , Food Contamination , Food Handling , Tandem Mass Spectrometry , Trichothecenes , Triticum , Trichothecenes/analysis , Triticum/chemistry , Flour/analysis , Food Contamination/analysis , Food Handling/methods , Chromatography, Liquid , Humans , China
5.
Anal Bioanal Chem ; 416(22): 4999-5012, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39093417

ABSTRACT

Oat products have gained widespread recognition as a health food due to their rich and balanced nutritional profile and convenience. However, the unique matrix composition of oats, which differs significantly from other cereals, presents specific challenges for mycotoxin analysis. This study presents an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method enhanced with an innovative egg white gel pretreatment for the simultaneous analysis of 13 regulated and unregulated trichothecenes in oats. The method demonstrated excellent performance with high accuracy (> 87.5%), repeatability (< 5.7%), and reproducibility (< 8.1%). Analysis of 100 commercial oat products revealed a concerning detection rate (78%) for at least one of the 11 trichothecenes investigated. Notably, deoxynivalenol, exceeding the standard limit in 2% of samples, exhibited the highest detection rate (62%). Additionally, concerning co-occurrence patterns and positive correlations were observed, highlighting potential synergistic effects. The first-time detection of unregulated mycotoxins (T-2 triol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, and neosolaniol) underscores the need for comprehensive monitoring. This method, while developed for oats, shows potential for broader application to other cereals, though further investigation and confirmation are necessary. These findings suggest a potentially underestimated risk of trichothecenes in oats, necessitating continuous monitoring to ensure consumer safety.


Subject(s)
Avena , Food Contamination , Limit of Detection , Tandem Mass Spectrometry , Trichothecenes , Avena/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Trichothecenes/analysis , Food Contamination/analysis , Gels/chemistry , Reproducibility of Results
6.
BMC Microbiol ; 24(1): 306, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152378

ABSTRACT

BACKGROUND: Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS: The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION: The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.


Subject(s)
Campylobacter jejuni , Chickens , Transcriptome , Trichothecenes , Trichothecenes/metabolism , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Campylobacter jejuni/metabolism , Animals , Transcriptome/drug effects , Chickens/microbiology , Gene Expression Regulation, Bacterial/drug effects , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Animal Feed/microbiology
7.
Sci Rep ; 14(1): 19340, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164367

ABSTRACT

The quantitative nature of fusarium head blight (FHB) resistance requires further exploration of the wheat genome to identify regions conferring resistance. In this study, we explored the application of hyperspectral imaging of Fusarium-infected wheat kernels and identified regions of the wheat genome contributing significantly to the accumulation of Deoxynivalenol (DON) mycotoxin. Strong correlations were identified between hyperspectral reflectance values for 204 wavebands in the 397-673 nm range and DON mycotoxin. Dimensionality reduction using principal components was performed for all 204 wavebands and 38 sliding windows across the range of wavebands. The first principal component (PC1) of all 204 wavebands explained 70% of the total variation in waveband reflectance values and was highly correlated with DON mycotoxin. PC1 was used as a phenotype in a genome wide association study and a large effect QTL on chromosome 2D was identified for PC1 of all wavebands as well as nearly all 38 sliding windows. The allele contributing variation in PC1 values also led to a substantial reduction in DON. The 2D polymorphism affecting DON levels localized to the exon of TraesCS2D02G524600 which is upregulated in wheat spike and rachis tissues during FHB infection. This work demonstrates the value of hyperspectral imaging as a correlated trait for investigating the genetic basis of resistance and developing wheat varieties with enhanced resistance to FHB.


Subject(s)
Fusarium , Genome-Wide Association Study , Plant Diseases , Quantitative Trait Loci , Trichothecenes , Triticum , Triticum/microbiology , Triticum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Phenotype , Genome, Plant , Disease Resistance/genetics , Hyperspectral Imaging/methods
8.
J Hazard Mater ; 477: 135366, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39088943

ABSTRACT

Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.


Subject(s)
Cerium , Electrochemical Techniques , Manganese , Trichothecenes , Trichothecenes/analysis , Trichothecenes/chemistry , Cerium/chemistry , Manganese/chemistry , Molecularly Imprinted Polymers/chemistry , Molecular Imprinting , Polymers/chemistry , Reproducibility of Results , Edible Grain/chemistry , Limit of Detection , Glucosides/chemistry , Glucosides/analysis , Food Contamination/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis
9.
Food Chem ; 459: 140341, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39121528

ABSTRACT

A highly sensitive method based on MBs-cDNA@Apt-AuNCs519 was developed for deoxynivalenol (DON) detection in wheat. The MBs-cDNA@Apt-AuNCs519 was established using green emission gold nanoclusters (AuNCs519) with aggregation-induced emission properties as signal probes and combining amino-modified DON-aptamer (Apt), biotin-modified DNA strand (the partially complementary to Apt (cDNA)), and streptavidin-modified magnetic beads (MBs). The Apt-AuNCs519 were well connected with MBs-cDNA without DON but dissociated from MBs-cDNA@Apt-AuNCs519 with the addition of DON, leading to a noticeable reduction in the fluorescent intensity of the aptasensor. Moreover, this fluorescence aptasensor showed two linear relationships in the concentration range of 0.1-50 ng/mL and 50-5000 ng/mL with a limit of detection of 3.73 pg/mL with good stability, reproducibility and specificity. The results were consistent with high-performance liquid chromatography and enzyme-linked immunosorbent assay methods, further indicating the potential of this method for accurate trace detection of DON in wheat.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Food Contamination , Gold , Metal Nanoparticles , Trichothecenes , Triticum , Trichothecenes/chemistry , Trichothecenes/analysis , Gold/chemistry , Triticum/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Food Contamination/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Limit of Detection , Fluorescence
10.
Int J Food Microbiol ; 425: 110876, 2024 Dec 02.
Article in English | MEDLINE | ID: mdl-39173288

ABSTRACT

The diversity of fungi in wheat with different deoxynivalenol (DON) content at various periods post-harvest and in the environment of storage were investigated. The changes in DON content were measured with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and an amplicon sequence analysis of fungi was performed in traditional storage structures using high-throughput sequencing. The changes in temperature, humidity, and CO2 concentration were collected by sensors. In addition, we analyzed principal component analysis, species composition, species differences, and community differences of fungi. There was an obvious separation of the fungal communities under different storage conditions and times. Many fungal genera were gradually decreasing during storage and were eventually undetectable, and many fungal genera that were undetectable at first gradually increased during storage and even became dominant fungal genera. The competition between fungi was fierce. The competition between fungi were affected by the presence of DON. As the initial DON content increased, the contribution of inter-group differences became more obvious. The temperature, humidity, and CO2 concentration of wheat in the silo's environment changed with extended storage time. The content of DON decreased with extended storage time. We had investigated the changes in DON content and their correlation with the changes in fungal communities and environmental factors, which showed a high degree of correlation. This study offers theoretical justification for optimizing safe wheat grain in traditional storage conditions.


Subject(s)
Food Storage , Fungi , Triticum , Triticum/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Trichothecenes/analysis , Mycobiome , Food Contamination/analysis , Temperature , Tandem Mass Spectrometry , Food Microbiology , Chromatography, High Pressure Liquid
11.
Toxins (Basel) ; 16(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39195766

ABSTRACT

In the context of the potential immunomodulatory properties of curcumin in counteracting the detrimental effects of concurrent exposure to Deoxynivalenol (DON) and Aflatoxin B1 (AFB1), a comprehensive 28-days trial was conducted utilizing 60 randomly allocated mice divided into four groups. Administration of curcumin at a dosage of 5 mg/kg body weight in conjunction with DON at 0.1 mg/kg and AFB1 at 0.01 mg/kg body weight was undertaken to assess its efficacy. Results indicated that curcumin intervention demonstrated mitigation of splenic structural damage, augmentation of serum immunoglobulin A (IgA) and immunoglobulin G (IgG) levels, elevation in T lymphocyte subset levels, and enhancement in the mRNA expression levels of pro-inflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-6. Furthermore, curcumin exhibited a suppressive effect on apoptosis in mice, as evidenced by decreased activity of caspase-3 and caspase-9, reduced expression levels of pro-apoptotic markers Bax and Cytochrome-c (Cyt-c) at both the protein and mRNA levels, and the maintenance of a balanced expression ratio of mitochondrial apoptotic regulators Bax and Bcl-2. Collectively, these findings offer novel insights into the therapeutic promise of curcumin in mitigating immunosuppression and apoptotic events triggered by mycotoxin co-exposure.


Subject(s)
Aflatoxin B1 , Apoptosis , Curcumin , Cytokines , Spleen , Trichothecenes , Animals , Trichothecenes/toxicity , Curcumin/pharmacology , Aflatoxin B1/toxicity , Apoptosis/drug effects , Spleen/drug effects , Spleen/immunology , Mice , Cytokines/metabolism , Cytokines/genetics , Male
12.
Toxins (Basel) ; 16(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39195763

ABSTRACT

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC-J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.


Subject(s)
Gastrointestinal Microbiome , Trichothecenes , Trichothecenes/toxicity , Animals , Cell Line , Gastrointestinal Microbiome/drug effects , Cell Survival/drug effects , Swine , Intestines/drug effects , Food Contamination/analysis , China , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Triticum/microbiology
13.
Toxins (Basel) ; 16(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39195782

ABSTRACT

Mycotoxin emergence and co-occurrence trends in Canadian grains are dynamic and evolving in response to changing weather patterns within each growing season. The mycotoxins deoxynivalenol and zearalenone are the dominant mycotoxins detected in grains grown in Eastern Canada. Two potential emerging mycotoxins of concern are sterigmatocystin, produced by Aspergillus versicolor, and diacetoxyscirpenol, a type A trichothecene produced by a number of Fusarium species. In response to a call from the 83rd Joint Expert Committee on Food Additives and Contaminants, we conducted a comprehensive survey of samples from cereal production areas in Ontario, Canada. Some 159 wheat and 160 corn samples were collected from farms over a three-year period. Samples were extracted and analyzed by LC-MS/MS for 33 mycotoxins and secondary metabolites. Ergosterol was analyzed as an estimate of the overall fungal biomass in the samples. In wheat, the ratio of DON to its glucoside, deoxynivalenol-3-glucoside (DON-3G), exhibited high variability, likely attributable to differences among cultivars. In corn, the ratio was more consistent across the samples. Sterigmatocystin was detected in some wheat that had higher concentrations of ergosterol. Diacetoxyscirpenol was not detected in either corn or wheat over the three years, demonstrating a low risk to Ontario grain. Overall, there was some change to the mycotoxin profiles over the three years for wheat and corn. Ongoing surveys are required to reassess trends and ensure the safety of the food value chain, especially for emerging mycotoxins.


Subject(s)
Food Contamination , Mycotoxins , Triticum , Zea mays , Zea mays/microbiology , Zea mays/chemistry , Triticum/microbiology , Triticum/chemistry , Ontario , Mycotoxins/analysis , Food Contamination/analysis , Trichothecenes/analysis , Tandem Mass Spectrometry , Ergosterol/analysis
14.
Toxicology ; 508: 153920, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39137830

ABSTRACT

Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.


Subject(s)
Chlorogenic Acid , Immunity, Innate , Macrophages, Alveolar , Mitochondrial Dynamics , Mycotoxins , Trichothecenes , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/analogs & derivatives , Mycotoxins/toxicity , Swine , Mitochondrial Dynamics/drug effects , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Trichothecenes/toxicity , Immunity, Innate/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Ochratoxins/toxicity , Aflatoxin B1/toxicity , Cells, Cultured , Signal Transduction/drug effects , Cell Survival/drug effects , Oxidative Stress/drug effects
15.
Toxicology ; 508: 153923, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39147090

ABSTRACT

Deoxynivalenol (DON), one of the most common mycotoxins in food and feed, can cause acute and chronic liver injury, posing a serious health risk to humans and animals. One of the important manifestations of DON-induced hepatotoxicity is ferroptosis. It has been reported that CYP2E1 can mediated ferroptosis, but the role of DON-induced CYP2E1 in DON-induced ferroptosis in hepatocytes is unknown. In the present study, we observed that DON significantly increased the expression of CYP2E1 and decreased the expression of the ferroptosis inhibitory proteins GPX4 and SLC7A11, as well as GCLC and NQO1. This resulted in an increase in the levels of cell lipid ROS and FeII, 4-HNE, which ultimately led to cell ferroptosis. Notably, knockdown of CYP2E1 resulted in an increase in DON-induced low levels of GPX4 and SLC7A11, a decrease in DON-induced high levels of lipid ROS, FeII and cell secreted 4-HNE, thus ameliorating cell ferroptosis. Moreover, the ferroptosis inhibitor ferrostatin-1 was observed to antagonise the cell growth inhibitory toxicity induced by DON exposure. This was achieved by blocking the increase in lipid ROS and FeII overload, which in turn reduced the extent of ferroptosis and increased IGF-1 protein expression. In conclusion, the present study demonstrated that CYP2E1 played a regulatory role in DON-induced ferroptosis in hepatocytes. Targeting ferroptosis may prove an effective strategy for alleviating DON-induced cell growth retardation toxicity. These findings provided a potential target and strategies to mitigate DON hepatotoxicity in the future.


Subject(s)
Cytochrome P-450 CYP2E1 , Ferroptosis , Hepatocytes , Reactive Oxygen Species , Trichothecenes , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Ferroptosis/drug effects , Trichothecenes/toxicity , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/genetics , Reactive Oxygen Species/metabolism , Humans , Animals , Hep G2 Cells , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
16.
Toxicology ; 508: 153928, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153657

ABSTRACT

Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.


Subject(s)
Depsipeptides , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Trichothecenes , ras Proteins , Trichothecenes/toxicity , Humans , Caco-2 Cells , Proto-Oncogene Proteins c-akt/metabolism , Depsipeptides/toxicity , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , ras Proteins/metabolism , ras Proteins/antagonists & inhibitors , Apoptosis/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Reactive Oxygen Species/metabolism , Intestines/drug effects , Cell Survival/drug effects
17.
Food Chem Toxicol ; 192: 114916, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128691

ABSTRACT

Trichothecenes are naturally occurring chemicals, produced by fungi, that can be found in contaminated crops. Trichothecenes have the potential to indirectly damage DNA and exacerbate genotoxic effects of genotoxicants. However, genotoxicity data for most trichothecenes are limited and data gaps remain. Here we use the γH2AX/pH3 assay to evaluate DNA damage in vitro of 13 trichothecenes. Three human cell lines (SH-SY5Y, ACHN, and HepG2) were exposed to each trichothecene (0.001-100 µM) to assess toxicity as models for the brain, kidney, and liver, respectively. Concentration-dependent induction of DNA damage, illustrated by γH2AX induction, was observed for all trichothecenes. In vitro-in vivo extrapolation (IVIVE) modeling was employed to support in vivo equivalent potency ranking and screen for risk potential. Diacetoxyscirpenol, T-2, and HT-2 had the highest genotoxic potency, notably in SH-SY5Y cells. Administered equivalent doses (AEDs) derived from IVIVE were compared against exposure data from French total diet studies to assess risk potential. AEDs derived for T-2 and HT-2 from the SH-SY5Y model were within 100-fold of exposure levels for infants aged one year or less. Overall, the potential for trichothecenes to damage DNA and higher exposures in infants highlights the need to investigate the cumulative effects across the broader trichothecene family.


Subject(s)
DNA Damage , Trichothecenes , Trichothecenes/toxicity , Humans , Risk Assessment , DNA Damage/drug effects , Hep G2 Cells , Cell Line, Tumor
18.
PLoS One ; 19(8): e0309662, 2024.
Article in English | MEDLINE | ID: mdl-39208293

ABSTRACT

Silage has been identified as a source of different microbial toxins, that may impair farm animal health and productivity as human health can also be compromised. In this sense, the aim of this study was to determine the impact of silage additives on the concentrations of deoxynivalenol (DON) and zearalenone (ZEN) mycotoxins and, eventually, to evaluate the hygienic quality of orchardgrass (Dactylis glomerata L.) silage based on the concentration of them compared to control silage. This study evaluated the influence of biological and chemical additives used in six different varieties of orchardgrass silage on DON and ZEN mycotoxin contents for the first time. The content of both fusariotoxins (DON and ZEN) in fresh matter and grass silage were below the threshold stipulated by the European Commission. The concentration of DON ranges from ~21.86 to 37.26 ng/kg, ~10.21 to 15 ng/kg, ~20.72 to 29.14 ng/kg; and ZEN range from ~3.42 to 7.87 ng/kg, ~3.85 to 8.62 ng/kg and ~2.15 to 5.08 ng/kg, in control, biological and chemical silages, respectively. In general, the biological additive was more efficient for preventing DON contamination, whereas the chemical additive was more efficient for preventing ZEN contamination in grass silage. In summary, the results obtained in this work demonstrate that biological and chemical additives can inhibit fungal growth and mycotoxin production on Dactylis glomerata L. silage and whose use could prevent animal and human diseases.


Subject(s)
Dactylis , Mycotoxins , Silage , Trichothecenes , Zearalenone , Silage/analysis , Silage/microbiology , Zearalenone/analysis , Zearalenone/metabolism , Trichothecenes/metabolism , Trichothecenes/analysis , Mycotoxins/biosynthesis , Mycotoxins/analysis , Dactylis/metabolism , Animals
19.
Food Chem ; 460(Pt 2): 140550, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39142026

ABSTRACT

An emerging fluorescent ratiometric aptasensor based on gold nanoclusters (AuNCs) with aggregation-induced emission (AIE) properties was prepared and studied for deoxynivalenol (DON) detection. The ratiometric aptasensor used red fluorescent AuNCs620 labelled with DON aptamer (Apt-AuNCs620) as an indicator and green fluorescent AuNCs519 modified by complementary DNA (cDNA) and magnetic beads (MBs) as internal reference, namely MBs-cDNA-AuNCs519. Under the optimal conditions, the aptasensor exhibited two good linear ranges of 0.1-50 and 50-5000 pg/mL for DON detection with coefficient of determination (R2) of 0.9937 and 0.9928, respectively, and the low detection limit (LOD) of 4.09 pg/mL was achieved. Furthermore, this aptasensor was feasible to detect DON in positive wheat samples, and the results were in line with those from HPLC and ELISA, thus providing a promising route to detect DON with high sensitivity in cereals, even for other mycotoxins by replacing the suitable aptamer and cDNA.


Subject(s)
Aptamers, Nucleotide , Food Contamination , Gold , Limit of Detection , Trichothecenes , Triticum , Trichothecenes/analysis , Trichothecenes/chemistry , Aptamers, Nucleotide/chemistry , Gold/chemistry , Triticum/chemistry , Food Contamination/analysis , Biosensing Techniques , Metal Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Fluorescence , Spectrometry, Fluorescence
20.
Int J Biol Macromol ; 276(Pt 2): 133662, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025188

ABSTRACT

Fusarium pseudograminearum, the causal agent of Fusarium crown rot, poses a significant threat to cereal crops. Building upon our previous investigation of the transcriptional response of this pathogen to four key fungicides (carbendazim, phenamacril, pyraclostrobin, and tebuconazole), this study delves into the impact of elevated fungicide concentrations using RNA-seq. Global transcriptomic analysis and gene clustering revealed significant enrichment of genes involved in the ABC transporter pathway. Among these transporters, FPSE_06011 (FpZRA1), a conserved gene in eukaryotes, exhibited consistent upregulation at both low and high fungicide concentrations. Targeted deletion of FpZRA1 resulted in reduced sporulation, spore germination, and tolerance to cell wall stress, osmotic stress, and oxidative stress. Furthermore, the FpZRA1 knockout mutants exhibited decreased pathogenicity on wheat coleoptiles and reduced production of the mycotoxin deoxynivalenol (DON), as evidenced by the markedly down-regulated expression of TRI5, TRI6, and TRI10 in the RT-qPCR analysis. In summary, our findings highlight the impact of fungicide concentration on transcriptional reprogramming in F. pseudograminearum and identify FpZRA1 as a critical regulator of fungal development, stress tolerance, and pathogenicity.


Subject(s)
Fungal Proteins , Fungicides, Industrial , Fusarium , Gene Expression Regulation, Fungal , Fusarium/genetics , Fusarium/pathogenicity , Fusarium/drug effects , Fusarium/metabolism , Fungicides, Industrial/pharmacology , Gene Expression Regulation, Fungal/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Trichothecenes/metabolism , Triticum/microbiology , Stress, Physiological/drug effects , Virulence/genetics , Virulence/drug effects , Plant Diseases/microbiology , Transcription, Genetic/drug effects , Gene Expression Profiling , Spores, Fungal/drug effects , Spores, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL