Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.634
Filter
2.
Zhonghua Bing Li Xue Za Zhi ; 53(7): 697-701, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-38955701

ABSTRACT

Objective: To investigate the clinicopathological and genetic features of confined placental mosaicism (CPM) and its effect on fetal intrauterine growth. Methods: Fourteen CPM cases of Haidian Maternal and Children Health Hospital were collected from May 2018 to March 2022. Clinicopathological examination on placental specimens and molecular genetic analysis were performed. Results: The age of the parturient women ranged from 27 to 34 years, with an average age of (30.0±3.54) years. The gestational weeks ranged from 35+1 to 41+2 weeks. There were 4 premature births and 10 term births, among which 6 were female and 8 were male fetuses. Nine cases (9/14) had adverse pregnancy outcomes, including 7 cases of fetal growth restriction. The weight of CPM placenta decreased, with 6 cases below the 10th percentile of weight standards and 5 cases between the 10th and 25th percentile. All 14 CPM placental specimens showed morphological changes of perfusion dysfunction to varying degrees, with mainly placental-maternal vascular malperfusion followed by placental-fetal vascular malperfusion. The mosaic chromosomes in different CPM cases varied, with 16-trisomy/monosomy mosaicism being the most common followed by 7-trisomy and 21-trisomy/monosomy mosaicism. The mosaic proportion was unequal in different parts of the same CPM placenta, with the mosaic proportion of umbilical cord, fetal membranes, fetal surface, maternal surface, and edge ranging from 1% to 70%. Conclusions: The mosaic chromosomes in different CPM cases vary, and the mosaic proportion is unequal in different parts of the same CPM placenta. The pathological morphology is mainly manifested as perfusion dysfunction, which can lead to adverse pregnancy outcomes such as fetal growth restriction and preterm birth.


Subject(s)
Fetal Growth Retardation , Mosaicism , Placenta , Humans , Pregnancy , Female , Adult , Placenta/pathology , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Pregnancy Outcome , Male , Placenta Diseases/pathology , Placenta Diseases/genetics , Trisomy/genetics , Infant, Newborn , Gestational Age
3.
Diagn Pathol ; 19(1): 103, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061087

ABSTRACT

BACKGROUND: Extraneural metastasis of central nervous system tumors is generally rare and most often reported in glioblastomas and medulloblastomas, whereas oligodendrogliomas seem to have the lowest risk of extracranial metastasis. Given its infrequent occurrence, both the diagnosis and therapy of metastatic oligodendroglioma is often challenging. CASE PRESENTATION: This case study presents an oligodendroglioma, the isocitrate dehydrogenase 1 (IDH1) mutant, 1p/19q-codeleted tumor with bone marrow metastasis. The significance of this case lies in the comprehensive molecular analysis conducted for both the primary tumor and the metastasis. Chromosome 7 trisomy and chromosome 10 monosomy (+ 7/-10) were detected in the metastasis indicating molecular progression, which, to the best of our knowledge, has not been previously documented in metastatic oligodendroglioma. CONCLUSIONS: This case study serves additional information for better understanding of the metastatic capabilities of CNS tumors.


Subject(s)
Brain Neoplasms , Isocitrate Dehydrogenase , Oligodendroglioma , Humans , Oligodendroglioma/genetics , Oligodendroglioma/secondary , Oligodendroglioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Disease Progression , Mutation , Bone Marrow Neoplasms/secondary , Bone Marrow Neoplasms/genetics , Male , Biomarkers, Tumor/genetics , Middle Aged , Trisomy/genetics
4.
Taiwan J Obstet Gynecol ; 63(4): 549-551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004485

ABSTRACT

OBJECTIVE: We present low-level mosaic trisomy at amniocentesis in a pregnancy associated with cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, perinatal progressive decrease of the trisomy 7 cell line and a favorable fetal outcome. CASE REPORT: A 40-year-old, primigravid woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY in cultured amniocytes. Simultaneous array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed the result of arr (7) × 2-3, (X,Y) × 1, consistent with 24% mosaicism for trisomy 7. Polymorphic DNA marker analysis on the DNA extracted from the uncultured amniocytes and parental bloods excluded uniparental disomy (UPD) 7. Prenatal ultrasound findings were normal. She was referred for genetic counseling at 19 weeks of gestation. No repeat amniocentesis was suggested, and continuing the pregnancy was advised. At 22 weeks of gestation, the result of soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) = 6.1 (normal < 38). She did not have preeclampsia. At 39 weeks of gestation, a 3346-g male baby was delivered without any phenotypic abnormality. aCGH analysis on the DNA extracted from cord blood and placenta revealed the result of arr (1-22) × 2, (X,Y) × 1 with no genomic imbalance in all tissues. When follow-up at age three months, the baby was normal in development and phenotype. The peripheral blood had a karyotype of 46,XY, and interphase fluorescence in situ hybridization (FISH) analysis using the bacterial artificial chromosome (BAC) probes of chromosome 7 showed disomy 7 cells in all 102/102 cells. CONCLUSION: Low-level mosaic trisomy 7 at amniocentesis can be associated with cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, perinatal progressive decrease of the trisomy 7 cell line and a favorable fetal outcome.


Subject(s)
Amniocentesis , Chromosomes, Human, Pair 7 , Comparative Genomic Hybridization , Mosaicism , Trisomy , Uniparental Disomy , Humans , Pregnancy , Female , Mosaicism/embryology , Trisomy/diagnosis , Trisomy/genetics , Adult , Chromosomes, Human, Pair 7/genetics , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Infant, Newborn , Cell Line , Cells, Cultured , Pregnancy Outcome/genetics
5.
Am J Hum Genet ; 111(8): 1544-1558, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39079538

ABSTRACT

Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex, we conducted single-nucleus RNA sequencing and multi-omic sequencing on dup15q-affected individuals (n = 6) as well as individuals with non-dup15q autism (n = 7) and neurotypical control individuals (n = 7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene-expression changes. As compared to other cell types, neuronal subtypes showed greater upregulation of gene expression across a critical region within the duplication. Genes that fell within the duplicated region and had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and autism had largely distinct signatures of chromatin accessibility but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding-factor motifs implicated in each condition implicated distinct biological mechanisms: neuronal JUN and FOS networks in autism vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain, and it finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects of copy-number variants more broadly in neurodevelopmental disorders.


Subject(s)
Autistic Disorder , Brain , Chromosomes, Human, Pair 15 , DNA Copy Number Variations , Humans , Chromosomes, Human, Pair 15/genetics , Brain/metabolism , Brain/pathology , Male , Autistic Disorder/genetics , Female , Autism Spectrum Disorder/genetics , Chromosome Duplication/genetics , Chromatin/genetics , Chromatin/metabolism , Trisomy/genetics , Child , Neurons/metabolism , Neurons/pathology , Chromosome Aberrations , Intellectual Disability
7.
J Neurodev Disord ; 16(1): 39, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014349

ABSTRACT

BACKGROUND: Sleep disturbances are a prevalent and complex comorbidity in neurodevelopmental disorders (NDDs). Dup15q syndrome (duplications of 15q11.2-13.1) is a genetic disorder highly penetrant for NDDs such as autism and intellectual disability and it is frequently accompanied by significant disruptions in sleep patterns. The 15q critical region harbors genes crucial for brain development, notably UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We previously described an electrophysiological biomarker of the syndrome, marked by heightened beta oscillations (12-30 Hz) in individuals with Dup15q syndrome, akin to electroencephalogram (EEG) alterations induced by allosteric modulation of GABAARs. Those with Dup15q syndrome exhibited increased beta oscillations during the awake resting state and during sleep, and they showed profoundly abnormal NREM sleep. This study aims to assess the translational validity of these EEG signatures and to delve into their neurobiological underpinnings by quantifying sleep physiology in chromosome-engineered mice with maternal (matDp/ + mice) or paternal (patDp/ + mice) inheritance of the full 15q11.2-13.1-equivalent duplication, and mice with duplication of just the UBE3A gene (Ube3a overexpression mice; Ube3a OE mice) and comparing the sleep metrics with their respective wildtype (WT) littermate controls. METHODS: We collected 48-h EEG/EMG recordings from 35 (23 male, 12 female) 12-24-week-old matDp/ + , patDp/ + , Ube3a OE mice, and their WT littermate controls. We quantified baseline sleep, sleep fragmentation, spectral power dynamics during sleep states, and recovery following sleep deprivation. Within each group, distinctions between Dup15q mutant mice and WT littermate controls were evaluated using analysis of variance (ANOVA) and student's t-test. The impact of genotype and time was discerned through repeated measures ANOVA, and significance was established at p < 0.05. RESULTS: Our study revealed that across brain states, matDp/ + mice mirrored the elevated beta oscillation phenotype observed in clinical EEGs from individuals with Dup15q syndrome. Time to sleep onset after light onset was significantly reduced in matDp/ + and Ube3a OE mice. However, NREM sleep between Dup15q mutant and WT littermate mice remained unaltered, suggesting a divergence from the clinical presentation in humans. Additionally, while increased beta oscillations persisted in matDp/ + mice after 6-h of sleep deprivation, recovery NREM sleep remained unaltered in all groups, thus suggesting that these mice exhibit resilience in the fundamental processes governing sleep-wake regulation. CONCLUSIONS: Quantification of mechanistic and translatable EEG biomarkers is essential for advancing our understanding of NDDs and their underlying pathophysiology. Our study of sleep physiology in the Dup15q mice underscores that the beta EEG biomarker has strong translational validity, thus opening the door for pre-clinical studies of putative drug targets, using the biomarker as a translational measure of drug-target engagement. The unaltered NREM sleep may be due to inherent differences in neurobiology between mice and humans. These nuanced distinctions highlight the complexity of sleep disruptions in Dup15q syndrome and emphasize the need for a comprehensive understanding that encompasses both shared and distinct features between murine models and clinical populations.


Subject(s)
Chromosomes, Human, Pair 15 , Disease Models, Animal , Electroencephalography , Animals , Mice , Chromosomes, Human, Pair 15/genetics , Male , Female , Sleep Wake Disorders/genetics , Sleep Wake Disorders/physiopathology , Sleep/physiology , Sleep/genetics , Trisomy/physiopathology , Trisomy/genetics , Chromosome Aberrations , Intellectual Disability
8.
Mol Genet Genomic Med ; 12(6): e2479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860502

ABSTRACT

BACKGROUND: As a screening method, inaccuracies in noninvasive prenatal screening (NIPS) exist, which are often attributable to biological factors. One such factor is the history of transplantation. However, there are still limited reports on such NIPS cases. METHODS: We report an NIPS case of a pregnant woman who had received a stem cell transplant from a male donor. To determine the karyotype in the woman's original cell, we performed chromosome microarray analysis (CMA) on her postnatal blood and oral mucosa. To comprehensively estimate the cell-free DNA (cfDNA) composition, we further performed standard NIPS procedures on the postnatal plasma. Moreover, we reviewed all published relevant NIPS case reports about pregnant women with transplantation history. RESULTS: NIPS showed a low-risk result for common trisomies with a fetal fraction of 65.80%. CMA on maternal white blood cells showed a nonmosaic male karyotype, while the oral mucosa showed a nonmosaic female karyotype. The proportion of donor's cfDNA in postnatal plasma was 94.73% based on the Y-chromosome reads ratio. The composition of cfDNA in maternal plasma was estimated as follows: prenatally, 13.60% maternal, 65.80% donor, and 20.60% fetal/placental, whereas postnatally, 5.27% maternal and 94.73% donor. CONCLUSIONS: This study expanded our understanding of the influence of stem cell transplantation on NIPS, allowing us to optimize NIPS management for these women.


Subject(s)
Cell-Free Nucleic Acids , Noninvasive Prenatal Testing , Humans , Female , Pregnancy , Male , Adult , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Noninvasive Prenatal Testing/methods , Stem Cell Transplantation , Tissue Donors , Trisomy/genetics
9.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927714

ABSTRACT

Mosaicism for autosomal trisomy is uncommon in clinical practice. However, despite its rarity among both prenatally and postnatally diagnoses, there are a large number of characterized and published cases. Surprisingly, in contrast to regular trisomies, no attempts at systematic analyses of mosaic carriers' demographics were undertaken. This is the first study aimed to address this gap. For that, we have screened more than eight hundred publications on mosaic trisomies, reviewing data including gender and clinical status of mosaic carriers, maternal age and reproductive history. In total, 596 publications were eligible for analysis, containing data on 948 prenatal diagnoses, including true fetal mosaicism (TFM) and confined placental mosaicism (CPM), and on 318 cases of postnatally detected mosaicism (PNM). No difference was found in maternal age between normal pregnancy outcomes with appropriate birth weight and those with intrauterine growth restriction. Unexpectedly, a higher proportion of advanced maternal ages (AMA) was found in normal outcomes compared to abnormal ones (abnormal fetus or newborn) and fetal losses, 73% vs. 56% and 50%, p = 0.0015 and p = 0.0011, correspondingly. Another intriguing finding was a higher AMA proportion in mosaic carriers with concomitant uniparental disomy (UPD) for chromosomes 7, 14, 15, and 16 compared to carriers with biparental disomy (BPD) (72% vs. 58%, 92% vs. 55%, 87% vs. 78%, and 65% vs. 24%, correspondingly); overall figures were 78% vs. 48%, p = 0.0026. Analysis of reproductive histories showed a very poor reporting but almost two-fold higher rate of mothers reporting a previous fetal loss from PNM cohort (in which almost all patients were clinically abnormal) compared to mothers from the TFM and CPM cohorts (with a large proportion of normal outcomes), 30% vs. 16%, p = 0.0072. The occurrence of a previous pregnancy with a chromosome abnormality was 1 in 13 in the prenatal cohort and 1 in 16 in the postnatal cohort, which are five-fold higher compared to published studies on non-mosaic trisomies. We consider the data obtained in this study to be preliminary despite the magnitude of the literature reviewed since reporting of detailed data was mostly poor, and therefore, the studied cohorts do not represent "big data". Nevertheless, the information obtained is useful both for clinical genetic counseling and for modeling further studies.


Subject(s)
Mosaicism , Trisomy , Chromosomes, Human , Maternal Age , Humans , Female , Young Adult , Adult , Middle Aged , Male , Pregnancy , Pregnancy Outcome , Diploidy
10.
Pathology ; 56(5): 671-680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852040

ABSTRACT

Flow cytometry can be applied in the detection of fluorescence in situ hybridisation (FISH) signals to efficiently analyse chromosomal aberrations. However, such interphase chromosome (IC) Flow-FISH protocols are currently limited to detecting a single colour. Furthermore, combining IC Flow-FISH with conventional multicolour flow cytometry is difficult because the DNA-denaturation step in FISH assay also disrupts cellular integrity and protein structures, precluding subsequent antigen-antibody binding and hindering concurrent labeling of surface antigens and FISH signals. We developed a working protocol for concurrent multicolour flow cytometry detection of nuclear IC FISH signals and cell surface markers. The protocol was validated by assaying sex chromosome content of blood cells, which was indicative of chimerism status in patients who had received sex-mismatched allogeneic haematopoietic stem cell transplants (allo-HSCT). The method was also adapted to detect trisomy 12 in chronic lymphocytic leukaemia (CLL) subjects. We first demonstrated the feasibility of this protocol in detecting multiple colours and concurrent nuclear and surface signals with high agreement. In clinical validation experiments, chimerism status was identified in clinical samples (n=56) using the optimised IC Flow-FISH method; the results tightly corresponded to those of conventional slide-based FISH (R2=0.9649 for XX cells and 0.9786 for XY cells). In samples from patients who received sex-mismatched allo-HSCT, individual chimeric statuses in different lineages could be clearly distinguished with high flexibility in gating strategies. Furthermore, in CLL samples with trisomy 12, this method could demonstrate that enriched trisomy 12 FISH signal was present in B cells rather than in T cells. Finally, by performing combined labelling of chromosome 12, X chromosome, and surface markers, we could detect rare residual recipient CLL cells with trisomy 12 after allo-HSCT. This adaptable protocol for multicolour and lineage-specific IC Flow-FISH advances the technique to allow for its potential application in various clinical contexts where conventional FISH assays are currently being utilised.


Subject(s)
Flow Cytometry , In Situ Hybridization, Fluorescence , Interphase , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , In Situ Hybridization, Fluorescence/methods , Flow Cytometry/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Female , Male , Hematopoietic Stem Cell Transplantation , Trisomy/diagnosis , Trisomy/genetics , Middle Aged , Chromosomes, Human, Pair 12/genetics
11.
Mol Genet Genomic Med ; 12(5): e2436, 2024 May.
Article in English | MEDLINE | ID: mdl-38738460

ABSTRACT

BACKGROUND: Trisomy 20p is a rare genetic condition caused by a duplication of the short arm of chromosome 20. METHODS: We employed clinical observation and molecular genetic testing (SNP microarray), to study identical twin males with an unknown dysmorphic syndrome. We conducted a literature review of trisomy 20p and collated the clinical and molecular genetic findings on 20 affected subjects reported since 2000. RESULTS: Identical twin males, whose prenatal course was complicated by a twin-to-twin transfusion, manifested profound language and neurocognitive delays as well as distinctive facial dysmorphisms when evaluated at 2 years of age. SNP microarray identified identical duplications of 20p13 with no other chromosomal aberrations. A literature survey of 20p trisomy syndrome identified 20 other examples of this condition reported since 2000, which we collated with 33 summarized by Sidwell et al. (2000). Within the combined total of 55 affected individuals, we found a distinctive clinical phenotype that provides insight on the effects of abnormal dosage of genes in 20p13. These loci include FAM110A (OMIM 611393), ANGPT4 (OMIM 603705), RSPO4 (OMIM 610573), PSMF1 (OMIM 617858), SNPH (OMIM 604942), SDCBP2 (OMIM 617358), FKBP1A (OMIM 186945), TMEM74B, C20orf202, and RAD21L1 (OMIM 619533). Gene profiling highlighted that syntaphilin (SNPH) is highly expressed in mammalian brain, where it is considered critical for mitochondrial transport in neuronal axons, and to directly influence axonal morphogenesis and function. CONCLUSION: We propose that abnormal activity of syntaphilin engendered by the trisomy is primarily responsible for the language, neurocognitive, and gross motor delays reported in individuals with 20p trisomy. Additional studies, for example, characterization of cerebral organoids generated from affected patients may help to better understand this condition, and potentially suggest rational remedies to improve the lives of affected individuals and their families.


Subject(s)
Trisomy , Humans , Male , Trisomy/genetics , Chromosome Duplication , Child, Preschool , Twins, Monozygotic/genetics , Polymorphism, Single Nucleotide
12.
Genes (Basel) ; 15(5)2024 04 28.
Article in English | MEDLINE | ID: mdl-38790198

ABSTRACT

Genome-wide prenatal cell-free DNA (cfDNA) screening can be used to screen for a wide range of fetal chromosomal anomalies in pregnant patients. In this study, we describe our clinical experience with a genome-wide cfDNA assay in screening for common trisomies, sex chromosomal aneuploidies (SCAs), rare autosomal aneuploidies (RAAs), and copy-number variations (CNVs) in about 6000 patients over a three-year period at our hospital's Prenatal Diagnostic Unit in Spain. Overall, 204 (3.3%) patients had a high-risk call, which included 76 trisomy 21, 21 trisomy 18, 7 trisomy 13, 29 SCAs, 31 RAAs, 31 CNVs, and 9 cases with multiple anomalies. The diagnostic outcomes were obtained for the high-risk cases when available, allowing for the calculation of positive predictive values (PPVs). Calculated PPVs were 95.9% for trisomy 21, 77.8% for trisomy 18, 66.7% for trisomy 13, 10.7% for RAAs, and 10.7% for CNVs. Pregnancy and birth outcomes were also collected for the majority of RAA and CNV cases. Adverse perinatal outcomes for some of these cases included preeclampsia, fetal growth restriction, preterm birth, reduced birth weight, and major congenital structural abnormalities. In conclusion, our study showed strong performance for genome-wide cfDNA screening in a large cohort of pregnancy patients in Spain.


Subject(s)
Cell-Free Nucleic Acids , DNA Copy Number Variations , Humans , Female , Pregnancy , Spain , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Adult , Prenatal Diagnosis/methods , Trisomy/genetics , Trisomy/diagnosis , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Aneuploidy , Noninvasive Prenatal Testing/methods
13.
Eur J Obstet Gynecol Reprod Biol ; 298: 31-34, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705011

ABSTRACT

OBJECTIVE: This study evaluated the BACs-on-Beads™ (BoBs) efficiency assay in detecting chromosomal anomalies in products of conception (POC) specimens associated with anembryonic pregnancy (AP) among Thai pregnant women. METHOD: Retrospective analysis applied the BoBs™ assay to examine AP samples from 2010 to 2022. The incidences of AP with chromosomal abnormalities were reported. RESULT: Assessment of villi from anembryonic pregnancy samples found normal chromosome complement in 50% of the cases, while the remainder showed chromosomal abnormalities. Trisomy 16 was found in 15% of the cases and trisomies 22, 15, and 19 in 9.6%, 3.8%, and 3.8%, respectively. Advanced maternal age was associated with a higher incidence of aneuploidy. CONCLUSION: The BoBs™ assay effectively detected diverse chromosomal abnormalities in villi samples from POC. The diagnostic utility of the BoBs™ assay was highlighted in identifying chromosomal irregularities in AP cases. Trisomy 16 possessed the most chromosomal abnormalities in the AP samples.


Subject(s)
Chromosome Aberrations , Humans , Female , Pregnancy , Retrospective Studies , Adult , Thailand/epidemiology , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Trisomy/diagnosis , Trisomy/genetics , Young Adult
14.
Taiwan J Obstet Gynecol ; 63(3): 293-296, 2024 May.
Article in English | MEDLINE | ID: mdl-38802190

ABSTRACT

Trisomy 7 is the most common observed type of rare autosomal trisomies (RATs) detected at expanded genome-wide non-invasive prenatal testing (NIPT). Genetic counseling of NIPT trisomy 7-positive pregnancies remains to be not easy because the parents may worry about the likelihood of adverse pregnancy outcomes, fetal abnormality and the necessity of invasive procedures for confirmation of fetal mosaic trisomy 7 and uniparental disomy (UPD) 7. This review provides a comprehensive information on the update issues concerning genetic counseling of NIPT trisomy 7-positive pregnancies.


Subject(s)
Chromosomes, Human, Pair 7 , Genetic Counseling , Noninvasive Prenatal Testing , Trisomy , Humans , Female , Pregnancy , Trisomy/diagnosis , Trisomy/genetics , Noninvasive Prenatal Testing/methods , Chromosomes, Human, Pair 7/genetics , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Genetic Testing/methods , Prenatal Diagnosis/methods
15.
Taiwan J Obstet Gynecol ; 63(3): 418-421, 2024 May.
Article in English | MEDLINE | ID: mdl-38802211

ABSTRACT

OBJECTIVE: Herein, we present a case of mosaic trisomy 6 detected by amniocentesis. CASE REPORT: Amniocentesis (G-banding) was performed at 17 weeks of gestation; the results were 47,XY,+6[3]/46,XY[12]. Fetal screening ultrasonography showed no morphological abnormalities, and the parents desired to continue the pregnancy. The infant was delivered vaginally at 39 weeks' gestation. The male infant weighed 3002 g at birth with no morphological abnormalities. G-banding karyotype analysis performed on the infant's peripheral blood revealed 46,XY[20]. FISH analysis revealed trisomy signals on chromosome 6 in 1-4 out of 100 cells from the placenta. The single nucleotide polymorphism microarray of the umbilical cord blood revealed no abnormalities. Methylation analysis of umbilical cord blood revealed no abnormalities in PLAGL1. No disorders were observed at one year of age. CONCLUSION: When amniocentesis reveals chromosomal mosaicism, it is essential to provide a thorough fetal ultrasound examination and careful genetic counseling to support the couples' decision-making.


Subject(s)
Amniocentesis , Chromosomes, Human, Pair 6 , Mosaicism , Trisomy , Humans , Mosaicism/embryology , Female , Pregnancy , Trisomy/genetics , Trisomy/diagnosis , Male , Adult , Chromosomes, Human, Pair 6/genetics , Infant, Newborn , Ultrasonography, Prenatal , Karyotyping , In Situ Hybridization, Fluorescence
16.
Blood Cancer Discov ; 5(4): 276-297, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38713018

ABSTRACT

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.


Subject(s)
Calgranulin B , Chromosomes, Human, Pair 8 , Myeloproliferative Disorders , Proto-Oncogene Proteins c-myc , Trisomy , Chromosomes, Human, Pair 8/genetics , Humans , Trisomy/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Animals , Mice , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Primary Myelofibrosis/metabolism , Signal Transduction/genetics
17.
Prenat Diagn ; 44(8): 953-958, 2024 07.
Article in English | MEDLINE | ID: mdl-38801227

ABSTRACT

OBJECTIVE: To evaluate the performance of prenatal screening for common autosomal trisomies in twin pregnancies through the use of rolling-circle replication (RCR)-cfDNA as a first-tier test. METHOD: Prospective multicenter study. Women who underwent prenatal screening for trisomy (T) 21, 18 and 13 between January 2019 and March 2022 in twin pregnancies were included. Patients were included in two centers. The primary endpoint was the rate of no-call results in women who received prenatal screening for common autosomal trisomies by RCR-cfDNA at the first attempt, compared to that in prospectively collected samples from 16,382 singleton pregnancies. The secondary endpoints were the performance indices of the RCR-cfDNA. RESULTS: 862 twin pregnancies underwent screening for T21, T18 and T13 by RCR-cfDNA testing at 10-33 weeks' gestation. The RCR-cfDNA tests provided a no-call result from the first sample obtained from the patients in 107 (0.7%) singleton and 17 (2.0%) twin pregnancies. Multivariable regression analysis demonstrated that significant independent predictors of test failure were twin pregnancy and in vitro fertilization conception. All cases of T21 (n = 20/862; 2.3%), T18 (n = 4/862; 0.5%) and T13 (n = 1/862; 0.1%) were correctly detected by RCR-cfDNA (respectively, 20, 4 and 1 cases). Sensitivity was 100% (95% CI, 83.1%-100%), 100% (95% CI 39.8%-100%) and 100% (95% CI 2.5%-100%) for T21, T18 and T13, respectively, in twin pregnancies. CONCLUSION: The RCR-cfDNA test appears to have good accuracy with a low rate of no-call results in a cohort of twin pregnancies for the detection of the most frequent autosomal trisomies.


Subject(s)
Cell-Free Nucleic Acids , Pregnancy, Twin , Humans , Female , Pregnancy , Pregnancy, Twin/blood , Pregnancy, Twin/genetics , Adult , Prospective Studies , Cell-Free Nucleic Acids/analysis , Cell-Free Nucleic Acids/blood , Trisomy/diagnosis , Trisomy/genetics
19.
BMC Pregnancy Childbirth ; 24(1): 338, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702634

ABSTRACT

OBJECTIVE: This study aims to perform a prenatal genetic diagnosis of a high-risk fetus with trisomy 7 identified by noninvasive prenatal testing (NIPT) and to evaluate the efficacy of different genetic testing techniques for prenatal diagnosis of trisomy mosaicism. METHODS: For prenatal diagnosis of a pregnant woman with a high risk of trisomy 7 suggested by NIPT, karyotyping and chromosomal microarray analysis (CMA) were performed on an amniotic fluid sample. Low-depth whole-genome copy number variation sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were used to clarify the results further. In addition, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed to analyze the possibility of uniparental disomy(UPD). RESULTS: Amniotic fluid karyotype analysis revealed a 46, XX result. Approximately 20% mosaic trisomy 7 was detected according to the CMA result. About 16% and 4% of mosaicism was detected by CNV-seq and FISH, respectively. MS-MLPA showed no methylation abnormalities. The fetal ultrasound did not show any detectable abnormalities except for mild intrauterine growth retardation seen at 39 weeks of gestation. After receiving genetic counseling, the expectant mother decided to continue the pregnancy, and follow-up within three months of delivery was normal. CONCLUSION: In high-risk NIPT diagnosis, a combination of cytogenetic and molecular genetic techniques proves fruitful in detecting low-level mosaicism. Furthermore, the exclusion of UPD on chromosome 7 remains crucial when NIPT indicates a positive prenatal diagnosis of trisomy 7.


Subject(s)
Chromosomes, Human, Pair 7 , DNA Copy Number Variations , In Situ Hybridization, Fluorescence , Karyotyping , Mosaicism , Trisomy , Uniparental Disomy , Humans , Female , Mosaicism/embryology , Pregnancy , In Situ Hybridization, Fluorescence/methods , Chromosomes, Human, Pair 7/genetics , Trisomy/diagnosis , Trisomy/genetics , Karyotyping/methods , Adult , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Prenatal Diagnosis/methods , Microarray Analysis/methods , Noninvasive Prenatal Testing/methods , Multiplex Polymerase Chain Reaction/methods , Amniotic Fluid
20.
Yonsei Med J ; 65(5): 265-275, 2024 May.
Article in English | MEDLINE | ID: mdl-38653565

ABSTRACT

PURPOSE: Studies on intestinal Behçet's disease (BD) complicated by myelodysplastic syndrome (MDS) are rare, and no established therapeutic guidelines exist. This study aimed to evaluate the clinical presentation and outcomes of patients with intestinal BD complicated by MDS (intestinal BD-MDS) and suggest a treatment strategy. MATERIALS AND METHODS: Data from patients with intestinal BD-MDS from four referral centers in Korea who were diagnosed between December 2000 and December 2022 were retrospectively analyzed. Clinical features and prognosis of intestinal BD-MDS compared with age-, sex-matched intestinal BD without MDS were investigated. RESULTS: Thirty-five patients with intestinal BD-MDS were included, and 24 (70.6%) had trisomy 8. Among the 35 patients, 23 (65.7%) were female, and the median age at diagnosis for intestinal BD was 46.0 years (range, 37.0-56.0 years). Medical treatments only benefited eight of the 32 patients, and half of the patients underwent surgery due to complications. Compared to 70 matched patients with intestinal BD alone, patients with intestinal BD-MDS underwent surgery more frequently (51.4% vs. 24.3%; p=0.010), showed a poorer response to medical and/or surgical treatment (75.0% vs. 11.4%; p<0.001), and had a higher mortality (28.6% vs. 0%; p<0.001). Seven out of 35 patients with intestinal BD-MDS underwent hematopoietic stem cell transplantation (HSCT), and four out of the seven patients had a poor response to medical treatment prior to HSCT, resulting in complete remission of both diseases. CONCLUSION: Patients with intestinal BD-MDS frequently have refractory diseases with high mortalities. HSCT can be an effective treatment modality for medically refractory patients with intestinal BD-MDS.


Subject(s)
Behcet Syndrome , Intestinal Diseases , Myelodysplastic Syndromes , Humans , Behcet Syndrome/complications , Behcet Syndrome/therapy , Female , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/complications , Male , Adult , Middle Aged , Retrospective Studies , Intestinal Diseases/therapy , Intestinal Diseases/complications , Intestinal Diseases/etiology , Republic of Korea/epidemiology , Treatment Outcome , Trisomy , Prognosis , Chromosomes, Human, Pair 8/genetics
SELECTION OF CITATIONS
SEARCH DETAIL