Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Cardiovasc Pathol ; 72: 107653, 2024.
Article in English | MEDLINE | ID: mdl-38740356

ABSTRACT

By uncoupling oxidative phosphorylation, 2,4-dinitrophenol (DNP) attenuates reactive oxygen species (ROS) biosynthesis, which are known to aggravate infectious myocarditis in Chagas disease. Thus, the impact of DNP-based chemotherapy on Trypanosoma cruzi-induced acute myocarditis was investigated. C56BL/6 mice uninfected and infected untreated and treated daily with 100 mg/kg benznidazole (Bz, reference drug), 5 and 10 mg/kg DNP by gavage for 11 days after confirmation of T. cruzi infection were investigated. Twenty-four hours ​after the last treatment, the animals were euthanized and the heart was collected for microstructural, immunological and biochemical analyses. T. cruzi inoculation induced systemic inflammation (e.g., cytokines and anti-T. cruzi IgG upregulation), cardiac infection (T. cruzi DNA), oxidative stress, inflammatory infiltrate and microstructural myocardial damage in untreated mice. DNP treatment aggravated heart infection and microstructural damage, which were markedly attenuated by Bz. DNP (10 mg/kg) was also effective in attenuating ROS (total ROS, H2O2, and O2-), nitric oxide (NO), lipid (malondialdehyde - MDA) and protein (protein carbonyl - PCn) oxidation, TNF, IFN-γ, IL-10, and MCP-1/CCL2, anti-T. cruzi IgG, cardiac troponin I levels, as well as inflammatory infiltrate and cardiac damage in T. cruzi-infected mice. Our findings indicate that DNP aggravated heart infection and microstructural cardiomyocytes damage in infected mice. These responses were related to the antioxidant and anti-inflammatory properties of DNP, which favors infection by weakening the pro-oxidant and pro-inflammatory protective mechanisms of the infected host. Conversely, Bz-induced cardioprotective effects combined effective anti-inflammatory and antiparasitic responses, which protect against heart infection, oxidative stress, and microstructural damage in Chagas disease.


Subject(s)
2,4-Dinitrophenol , Chagas Cardiomyopathy , Disease Models, Animal , Mice, Inbred C57BL , Oxidative Stress , Trypanosoma cruzi , Animals , 2,4-Dinitrophenol/pharmacology , Oxidative Stress/drug effects , Chagas Cardiomyopathy/drug therapy , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/pathology , Trypanosoma cruzi/drug effects , Male , Reactive Oxygen Species/metabolism , Uncoupling Agents/pharmacology , Uncoupling Agents/toxicity , Mice , Myocardium/pathology , Myocardium/metabolism , Nitroimidazoles/pharmacology , Acute Disease , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation Mediators/metabolism , Myocarditis/parasitology , Myocarditis/metabolism , Myocarditis/drug therapy , Myocarditis/pathology , Myocarditis/chemically induced , Chagas Disease/drug therapy , Chagas Disease/metabolism , Chagas Disease/pathology , Chagas Disease/parasitology
2.
Toxicol In Vitro ; 80: 105325, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35121064

ABSTRACT

Mitochondria are at the core of cellular energy metabolism and are also involved in the oxidative stress response and programmed cell death pathways. Mitochondrial dysfunction is found to be associated with many disease conditions like metabolic syndrome, neurodegenerative disorders, coronary artery diseases, cancer, etc. This has generated considerable interest in the scientific community over the assessment of mitochondrial function and mitochondrial damage. One of the most common methodologies in these studies is by analysing the mitochondrial activity in the presence of mitochondrial substrates, inhibitors and uncouplers. Apart from the specific effects of these molecules on mitochondria, their interactions with the components of the experimental system could interfere with the results derived. Therefore, the role some specific experimental conditions would have on the outcome should be carefully elucidated. Fetal Bovine Serum or Bovine Serum Albumin (BSA); routinely used in in vitro experiments for their growth promoting and surfactant properties; can have profound impact on the pharmacokinetics of chemical compounds as albumin residue can bind to and affect their bioavailability. In the present study, we demonstrate that Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) induced mitochondrial depolarization is hindered in the presence of albumin due to the molecular interaction between CCCP and albumin.


Subject(s)
Carbonyl Cyanide m-Chlorophenyl Hydrazone/toxicity , Mitochondria/drug effects , Uncoupling Agents/toxicity , Animals , Cell Line , Humans , Membrane Potential, Mitochondrial/drug effects , Rats , Serum Albumin, Bovine/metabolism
3.
Neurochem Int ; 148: 105120, 2021 09.
Article in English | MEDLINE | ID: mdl-34197898

ABSTRACT

Oxidative stress and mitochondrial dysfunction are now widely accepted as the major factors involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a commonly used environmental toxin also reproduces these principle pathological features of PD. Hence, it is used frequently to induce experimental PD in cells and animals. In this study, we evaluated the neuroprotective effects of metformin against rotenone-induced toxicity in SH-SY5Y cells. Metformin treatment clearly rescued these cells from rotenone-mediated cell death via the reduction of the cytosolic and mitochondrial levels of reactive oxygen species and restoration of mitochondrial function. Furthermore, metformin upregulated PGC-1α, the master regulator of mitochondrial biogenesis and key antioxidant molecules, including glutathione and superoxide dismutase. We demonstrated that the drug exerted its cytoprotective effects by activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase (HO)-1 pathway, which in turn, is dependent on AKT activation by metformin. Thus, our results implicate that metformin provides neuroprotection against rotenone by inhibiting oxidative stress in the cells by inducing antioxidant system via upregulation of transcription mediated by Nrf2, thereby restoring the rotenone-induced mitochondrial dysfunction and energy deficit in the cells.


Subject(s)
Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Mitochondrial Diseases/prevention & control , NF-E2-Related Factor 2/genetics , Oncogene Protein v-akt/genetics , Oxidative Stress/drug effects , Rotenone/antagonists & inhibitors , Rotenone/toxicity , Signal Transduction/drug effects , Uncoupling Agents/toxicity , Cell Line , Cell Survival/drug effects , Humans , Reactive Oxygen Species/metabolism
4.
Toxicol Appl Pharmacol ; 414: 115426, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33524445

ABSTRACT

Activation of NLRP3 inflammasome is implicated in varieties of pathologies, the aim of the present study is to characterize the effect and mechanism of mitochondrial uncouplers on NLRP3 inflammasome activation by using three types of uncouplers, niclosamide, CCCP and BAM15. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increases of NLRP3 protein and IL-1ß mRNA levels in RAW264.7 macrophages and THP-1 derived macrophages. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increase of NFκB (P65) phosphorylation, and inhibited NFκB (P65) nuclear translocation in RAW264.7 macrophages. Niclosamide and BAM15 inhibited LPS-induced increase of IκBα phosphorylation in RAW264.7 macrophages, and the inhibitory effect was dependent on increased intracellular [Ca2+]i; however, CCCP showed no significant effect on IκBα phosphorylation in RAW264.7 macrophages stimulated with LPS. In conclusion, chemical mitochondrial uncouplers niclosamide, CCCP and BAM15 share common inhibitory effect on NLRP3 inflammasome activation through inhibiting NFκB nuclear translocation.


Subject(s)
Inflammasomes/agonists , Macrophages/drug effects , Mitochondria/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/agonists , Uncoupling Agents/toxicity , AMP-Activated Protein Kinases/metabolism , Active Transport, Cell Nucleus , Animals , Calcium/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/toxicity , Cytokines/genetics , Cytokines/metabolism , Diamines/toxicity , Humans , Inflammasomes/metabolism , Macrophages/metabolism , Macrophages/pathology , Mice , Mitochondria/metabolism , Mitochondria/pathology , NF-KappaB Inhibitor alpha/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Niclosamide/toxicity , Oxadiazoles/toxicity , Phosphorylation , Pyrazines/toxicity , RAW 264.7 Cells , THP-1 Cells
5.
J Mol Neurosci ; 71(11): 2336-2352, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33515431

ABSTRACT

Mitochondria harbor small circular genomes (mtDNA) that encode 13 oxidative phosphorylation (OXPHOS) proteins, and types of damage to mtDNA may contribute to neuronal damage. Recent studies suggested that regulation of mtDNA repair proteins may be a potential strategy for treating neuronal damage. The mtDNA repair system contains its own repair enzymes and is independent from the nuclear DNA repair system. Endo/exonuclease G-like(EXOG) is a mitochondria-specific 5-exo/endonuclease required for repairing endogenous single-strand breaks (SSBs) in mtDNA. However, whether EXOG plays a key role in neuronal damage induced by rotenone remains unknown. Thus, in this study, we aimed to investigate the effect of EXOG on mtDNA repair and mitochondrial functional maintenance in rotenone-induced neurotoxicity. Our results indicated that rotenone influenced the expression and location of EXOG in PC12 cells. Meanwhile, after rotenone exposure, the expression was reduced for proteins responsible for mtDNA repair, including DNA polymerase γ (POLG), high-temperature requirement protease A2 (HtrA2), and the heat-shock factor 1-single-stranded DNA-binding protein 1 (HSF1-SSBP1) complex. Further analysis demonstrated that EXOG knockdown led to reduced mtDNA copy number and mtDNA transcript level and increased mtDNA deletion, which further aggravated the mtDNA damage and mitochondrial dysfunction under rotenone stress. In turn, EXOG overexpression protected PC12 cells from mtDNA damage and mitochondrial dysfunction induced by rotenone. As a result, EXOG knockdown reduced cell viability and tyrosine hydroxylase expression, while EXOG overexpression alleviated rotenone's effect on cell viability and tyrosine hydroxylase expression in PC12 cells. Further, we observed that EXOG influenced mtDNA repair by regulating protein expression of the HSF1-SSBP1 complex and POLG. Furthermore, our study showed that PGC-1α upregulation with ZLN005 led to increased protein levels of EXOG, POLG, HSF1, and SSBP1, all of which contribute to mtDNA homeostasis. Therefore, PGC-1α may be involved in mtDNA repair through interacting with multiple mtDNA repair proteins, especially with the help of EXOG. In summary, EXOG regulation by PGC-1α plays an essential role in rotenone-induced neurotoxicity in PC12 cells. EXOG represents a protective effect strategy in PC12 cells exposed to rotenone.


Subject(s)
DNA Repair , Endonucleases/metabolism , Mitochondria/metabolism , Rotenone/toxicity , Uncoupling Agents/toxicity , Animals , DNA Damage , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/genetics , DNA-Binding Proteins/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , PC12 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Serine-Arginine Splicing Factors/metabolism
6.
Toxicology ; 447: 152630, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33188857

ABSTRACT

Rotenone, a mitochondrial complex I inhibitor, has been widely used to study the effects of mitochondrial dysfunction on dopaminergic neurons in the context of Parkinson's disease. Although the deleterious effects of rotenone are well documented, we found that young adult Caenorhabditis elegans showed resistance to 24 and 48 h rotenone exposures. To better understand the response to rotenone in C. elegans, we evaluated mitochondrial bioenergetic parameters after 24 and 48 h exposures to 1 µM or 5 µM rotenone. Results suggested upregulation of mitochondrial complexes II and V following rotenone exposure, without major changes in oxygen consumption or steady-state ATP levels after rotenone treatment at the tested concentrations. We found evidence that the glyoxylate pathway (an alternate pathway not present in higher metazoans) was induced by rotenone exposure; gene expression measurements showed increases in mRNA levels for two complex II subunits and for isocitrate lyase, the key glyoxylate pathway enzyme. Targeted metabolomics analyses showed alterations in the levels of organic acids, amino acids, and acylcarnitines, consistent with the metabolic restructuring of cellular bioenergetic pathways including activation of complex II, the glyoxylate pathway, glycolysis, and fatty acid oxidation. This expanded understanding of how C. elegans responds metabolically to complex I inhibition via multiple bioenergetic adaptations, including the glyoxylate pathway, will be useful in interrogating the effects of mitochondrial and bioenergetic stressors and toxicants.


Subject(s)
Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Energy Metabolism/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Rotenone/toxicity , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Dose-Response Relationship, Drug , Energy Metabolism/physiology , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Uncoupling Agents/toxicity
7.
Article in English | MEDLINE | ID: mdl-33278594

ABSTRACT

2,4-Dinitrophenol (DNP), a molecule uncoupling mitochondrial oxidative phosphorylation from oxygen consumption, is illegally used by humans as a diet pill, but is nonetheless investigated as a potential human medicine against 'metabesity'. Due to its proven acute toxicity and the scarceness of long-term studies on DNP administration in vertebrates, we determined the impact of a long-term DNP treatment (~4 mg.kg-1.day-1, i.e. within the range taken illegally by humans) on body mass, metabolism, ageing and lifespan in a captive bird model, the zebra finch. The chronic absorption of DNP over life (>4 years) led to a mild increase in energy expenditure (ca. +11% compared to control group), without significantly altering the normal slight increase in body mass with age. DNP did not significantly influence the alteration of physical performance, the rise in oxidative damage, or the progressive shortening of telomeres with age. However, DNP-treated individuals had a significantly shorter lifespan (ca. -21% in median lifespan compared to control group), thereby raising potential concerns about DNP use as a diet pill or medicine.


Subject(s)
2,4-Dinitrophenol/toxicity , Finches/physiology , Animals , Birds , Diet , Energy Metabolism , Female , Finches/metabolism , Longevity/drug effects , Male , Oxidative Phosphorylation/drug effects , Oxygen Consumption , Uncoupling Agents/toxicity
8.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081327

ABSTRACT

Parkinson's disease, the second common neurodegenerative disease is clinically characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with upregulation of neuroinflammatory markers and oxidative stress. Autophagy lysosome pathway (ALP) plays a major role in degradation of damaged organelles and proteins for energy balance and intracellular homeostasis. However, dysfunction of ALP results in impairment of α-synuclein clearance which hastens dopaminergic neurons loss. In this study, we wanted to understand the neuroprotective efficacy of Val in rotenone induced PD rat model. Animals received intraperitoneal injections (2.5 mg/kg) of rotenone daily followed by Val (40 mg/kg, i.p) for four weeks. Valeric acid, a straight chain alkyl carboxylic acid found naturally in Valeriana officianilis have been used in the treatment of neurological disorders. However, their neuroprotective efficacy has not yet been studied. In our study, we found that Val prevented rotenone induced upregulation of pro-inflammatory cytokine oxidative stress, and α-synuclein expression with subsequent increase in vital antioxidant enzymes. Moreover, Val mitigated rotenone induced hyperactivation of microglia and astrocytes. These protective mechanisms prevented rotenone induced dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Additionally, Val treatment prevented rotenone blocked mTOR-mediated p70S6K pathway as well as apoptosis. Moreover, Val prevented rotenone mediated autophagic vacuole accumulation and increased lysosomal degradation. Hence, Val could be further developed as a potential therapeutic candidate for treatment of PD.


Subject(s)
Antioxidants/pharmacology , Antiparkinson Agents/pharmacology , Autophagy , Dopaminergic Neurons/drug effects , Oxidative Stress , Parkinson Disease/drug therapy , Pentanoic Acids/pharmacology , Animals , Antioxidants/therapeutic use , Antiparkinson Agents/therapeutic use , Apoptosis , Astrocytes/drug effects , Astrocytes/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Dopaminergic Neurons/metabolism , Male , Parkinson Disease/etiology , Pentanoic Acids/therapeutic use , Rats , Rats, Wistar , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Rotenone/toxicity , TOR Serine-Threonine Kinases/metabolism , Uncoupling Agents/toxicity , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
9.
J Neurosci ; 40(45): 8734-8745, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33046555

ABSTRACT

Decline of protein quality control in neurons contributes to age-related neurodegenerative disorders caused by misfolded proteins. 4E-BP1 is a key node in the regulation of protein synthesis, as activated 4E-BP1 represses global protein translation. Overexpression of 4E-BP1 mediates the benefits of dietary restriction and can counter metabolic stress, and 4E-BP1 disinhibition on mTORC1 repression may be neuroprotective; however, whether 4E-BP1 overexpression is neuroprotective in mammalian neurons is yet to be fully explored. To address this question, we generated 4E-BP1-overexpressing transgenic mice and confirmed marked reductions in protein translation in 4E-BP1-overexpressing primary neurons. After documenting that 4E-BP1-overexpressing neurons are resistant to proteotoxic stress elicited by brefeldin A treatment, we exposed primary neurons to three different Parkinson's disease (PD)-linked toxins (rotenone, maneb, or paraquat) and documented significant protection in neurons from newborn male and female 4E-BP1-OE transgenic mice. We observed 4E-BP1-dependent upregulation of genes encoding proteins that comprise the mitochondrial unfolded protein response, and noted 4E-BP1 overexpression required activation of the mitochondrial unfolded protein response for neuroprotection against rotenone toxicity. We also tested whether 4E-BP1 could prevent α-synuclein neurotoxicity by treating 4E-BP1-overexpressing primary neurons with α-synuclein preformed fibrils, and we observed marked reductions in α-synuclein aggregation and neurotoxicity, thus validating that 4E-BP1 is a powerful suppressor of PD-linked pathogenic insults. Our results indicate that increasing 4E-BP1 expression or enhancing 4E-BP1 activation can robustly induce the mitochondrial unfolded protein response and thus could be an appealing strategy for treating a variety of neurodegenerative diseases, including especially PD.SIGNIFICANCE STATEMENT In neurodegenerative disease, misfolded proteins accumulate and overwhelm normal systems of homeostasis and quality control. One mechanism for improving protein quality control is to reduce protein translation. Here we investigated whether neuronal overexpression of 4E-BP1, a key repressor of protein translation, can protect against misfolded protein stress and toxicities linked to Parkinson's disease, and found that 4E-BP1 overexpression prevented cell death in neurons treated with brefeldin A, rotenone, maneb, paraquat, or preformed fibrils of α-synuclein. When we sought the basis for 4E-BP1 neuroprotection, we discovered that 4E-BP1 activation promoted the mitochondrial unfolded protein response. Our findings highlight 4E-BP1 as a therapeutic target in neurodegenerative disease and underscore the importance of the mitochondrial unfolded protein response in neuroprotection against various insults.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Mitochondria/metabolism , Neurons/pathology , Parkinson Disease, Secondary/genetics , Protein Unfolding , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology , Animals , Animals, Newborn , Brefeldin A/pharmacology , Female , Male , Mice , Mice, Transgenic , Parkinson Disease, Secondary/chemically induced , Primary Cell Culture , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Rotenone/toxicity , Uncoupling Agents/toxicity , alpha-Synuclein/biosynthesis
10.
Arch Toxicol ; 94(8): 2707-2729, 2020 08.
Article in English | MEDLINE | ID: mdl-32607615

ABSTRACT

Evidence is mounting for the central role of mitochondrial dysfunction in several pathologies including metabolic diseases, accelerated ageing, neurodegenerative diseases and in certain xenobiotic-induced organ toxicity. Assessing mitochondrial perturbations is not trivial and the outcomes of such investigations are dependent on the cell types used and assays employed. Here we systematically investigated the effect of electron transport chain (ETC) inhibitors on multiple mitochondrial-related parameters in two human cell types, HepG2 and RPTEC/TERT1. Cells were exposed to a broad range of concentrations of 20 ETC-inhibiting agrochemicals and capsaicin, consisting of inhibitors of NADH dehydrogenase (Complex I, CI), succinate dehydrogenase (Complex II, CII) and cytochrome bc1 complex (Complex III, CIII). A battery of tests was utilised, including viability assays, lactate production, mitochondrial membrane potential (MMP) and the Seahorse bioanalyser, which simultaneously measures extracellular acidification rate [ECAR] and oxygen consumption rate [OCR]. CI inhibitors caused a potent decrease in OCR, decreased mitochondrial membrane potential, increased ECAR and increased lactate production in both cell types. Twenty-fourhour exposure to CI inhibitors decreased viability of RPTEC/TERT1 cells and 3D spheroid-cultured HepG2 cells in the presence of glucose. CI inhibitors decreased 2D HepG2 viability only in the absence of glucose. CII inhibitors had no notable effects in intact cells up to 10 µM. CIII inhibitors had similar effects to the CI inhibitors. Antimycin A was the most potent CIII inhibitor, with activity in the nanomolar range. The proposed CIII inhibitor cyazofamid demonstrated a mitochondrial uncoupling signal in both cell types. The study presents a comprehensive example of a mitochondrial assessment workflow and establishes measurable key events of ETC inhibition.


Subject(s)
Agrochemicals/toxicity , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Energy Metabolism/drug effects , Hepatocytes/drug effects , Kidney Tubules, Proximal/drug effects , Mitochondria, Liver/drug effects , Uncoupling Agents/toxicity , Cell Survival/drug effects , Dose-Response Relationship, Drug , Electron Transport Chain Complex Proteins/metabolism , Hep G2 Cells , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Kidney Tubules, Proximal/enzymology , Kidney Tubules, Proximal/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/enzymology , Mitochondria, Liver/pathology , Oxygen Consumption/drug effects
11.
Toxicol In Vitro ; 67: 104907, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32502624

ABSTRACT

Oligomycin is a classical mitochondrial reagent that binds to the proton channel on the Fo component of ATP synthase. As a result, oligomycin blocks mitochondrial ATP synthesis, proton translocation, and O2 uptake. Here we show that oligomycin induces proton uncoupling subsequent to inhibition of ATP synthesis, as evidenced by recovery of O2 uptake to near baseline levels. Uncoupling is uniquely rapid and readily observed in HepG2 cells but is also observed at longer times in the unrelated H1299 cell line. Proton fluxes plateau at oligomycin concentrations in the region 0.25-5 µM. At the plateau, fluxes are lower than expected for the classical mitochondrial permeability transition pore, although in H1229 cells, fluxes increase to levels consistent with pore opening at higher oligomycin concentrations. Uncoupling is observed in cells metabolizing either pyruvate or lactate and reversed by addition of glucose to restore ATP synthesis. Uncoupling is not sensitive to cyclosporin A and is not reversed by the ANT inhibitor bongkrekic acid. However, bongkrekic acid inhibits uncoupling if added before oligomycin, which we interpret in terms of maintenance of mitochondrial ATP levels.


Subject(s)
Mitochondria/drug effects , Oligomycins/toxicity , Protons , Uncoupling Agents/toxicity , Adenosine Triphosphate/metabolism , Cell Line , Humans , L-Lactate Dehydrogenase/metabolism , Mitochondria/physiology , Oxygen/metabolism
12.
Chem Res Toxicol ; 33(7): 1835-1844, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32462864

ABSTRACT

We present a purely mechanistic model to predict protonophoric uncoupling activity ECw of organic acids. All required input information can be derived from their chemical structure. This makes it a convenient predictive model to gain valuable information on the toxicity of organic chemicals already at an early stage of development of new commercial chemicals (e.g., in agriculture or pharmaceutical industries). A critical component of the model is the consideration of the possible formation of heterodimers from the neutral and anionic monomer, and its permeation through the membrane. The model was tested against literature data measured in chromatophores, submitochondrial particles, isolated mitochondria, and intact green algae cells with good success. It was also possible to reproduce pH-dependencies in isolated mitochondria and intact cells. Besides the prediction of the ECw, the mechanistic nature of the model allows researchers to draw direct conclusions on the impact of single input factors such as pH- and voltage-gradients across the membrane, the anionic and neutral membrane permeability, and the heterodimerization constant. These insights are of importance in drug design or chemical regulation.


Subject(s)
Acids/toxicity , Models, Theoretical , Organic Chemicals/toxicity , Uncoupling Agents/toxicity , Acids/chemistry , Biophysical Phenomena , Chlorophyta/drug effects , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Molecular Structure , Organic Chemicals/chemistry , Uncoupling Agents/chemistry
13.
J Neurochem ; 155(1): 81-97, 2020 10.
Article in English | MEDLINE | ID: mdl-32128811

ABSTRACT

Bilirubin, the end product of heme redox metabolism, has cytoprotective properties and is an essential metabolite associated with cardiovascular disease, inflammatory bowel disease, type 2 diabetes, and neurodegenerative diseases including Parkinson's disease (PD). PD is characterized by progressive degeneration of nigral dopaminergic neurons and is associated with elevated oxidative stress due to mitochondrial dysfunction. In this study, using a ratiometric bilirubin probe, we revealed that the mitochondrial inhibitor, rotenone, which is widely used to create a PD model, significantly decreased intracellular bilirubin levels in HepG2 cells. Chemical screening showed that BRUP-1 was a top hit that restored cellular bilirubin levels that were lowered by rotenone. We found that BRUP-1 up-regulated the expression level of heme oxygenase-1 (HO-1), one of the rate-limiting enzyme of bilirubin production via nuclear factor erythroid 2-related factor 2 (Nrf2) activation. In addition, we demonstrated that this Nrf2 activation was due to a direct inhibition of the interaction between Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) by BRUP-1. Both HO-1 up-regulation and bilirubin restoration by BRUP-1 treatment were significantly abrogated by Nrf2 silencing. In neuronal PC12D cells, BRUP-1 also activated the Nrf2-HO-1 axis and increased bilirubin production, resulted in the suppression of neurotoxin-induced cell death, reactive oxygen species production, and protein aggregation, which are hallmarks of PD. Furthermore, BRUP-1 showed neuroprotective activity against rotenone-treated neurons derived from induced pluripotent stem cells. These findings provide a new member of Keap1-Nrf2 direct inhibitors and suggest that chemical modulation of heme metabolism using BRUP-1 may be beneficial for PD treatment.


Subject(s)
Bilirubin/metabolism , Neuroprotective Agents/pharmacology , Parkinson Disease, Secondary/prevention & control , Animals , Gene Silencing , Heme Oxygenase-1/metabolism , Hep G2 Cells , Humans , Induced Pluripotent Stem Cells , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neurotoxins/toxicity , PC12 Cells , Parkinson Disease, Secondary/chemically induced , RNA, Small Interfering/pharmacology , Rats , Reactive Oxygen Species/metabolism , Rotenone/toxicity , Uncoupling Agents/toxicity
14.
Toxicol Lett ; 325: 1-13, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32088201

ABSTRACT

Olfaction is often affected in parkinsonian patients and its disturbances precede the classical cognitive and locomotor dysfunction. The olfactory bulb might be the region of onset in Parkinson's disease (PD) pathogenesis, evidenced by the presence of disease-related protein aggregates and disturbed olfactory information processing. However, the underlying molecular mechanism that governs the olfactory bulb impairments remains unclear. This study was designed to investigate the relationship between olfactory bulb and inflammatory pathological alterations and the potential mechanisms. Here we found that rotenone led to typical parkinsonian symptoms and decreased tyrosine hydroxylase (TH)-positive neurons in the olfactory bulb. Additionally, increased NF-κB nuclear translocation and NLRP3 inflammasome components expressions caused by rotenone injection were observed accompanied by the activation of microglia and astrocytes in the olfactory bulb. Rotenone also triggered Drp1-mediated mitochondrial fission and this in turn caused mitochondrial damage. Furthermore, Mdivi-1(a selective Drp1 inhibitor) markedly ameliorated the morphologic disruptions of mitochondria and Drp1 translocation, inhibited the nuclear translocation of NF-κB, eventually blocked the downstream pathway of the NLRP3/caspase-1/IL-1ß axis and expression of iNOS. Overall, these findings suggest that Drp1-dependent mitochondrial fission induces NF-κB nuclear translocation and NLRP3 inflammasome activation that may further contribute to olfactory bulb disturbances.


Subject(s)
Dynamins/genetics , Olfactory Bulb/pathology , Parkinson Disease, Secondary/genetics , Parkinson Disease, Secondary/pathology , Rotenone/toxicity , Uncoupling Agents/toxicity , Animals , Dynamins/drug effects , Inflammasomes/genetics , Male , Mitochondria/drug effects , Mitochondria/pathology , Movement Disorders/pathology , Movement Disorders/psychology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurons/pathology , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Sprague-Dawley , Smell/genetics , Tyrosine 3-Monooxygenase/metabolism
15.
Neuroreport ; 31(1): 41-47, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31688419

ABSTRACT

Berberine, an isoquinoline alkaloid isolated from traditional Chinese medicine, has been widely studied for its efficacy in the treatment of neurodegenerative diseases. However, berberine-mediated neuroprotection in the pathogenesis of Parkinson's disease is still uncertain. In this study, the effects of berberine on rotenone-induced neurotoxicity in SH-SY5Y cells were investigated. The results showed that berberine treatment significantly alleviated rotenone-induced decrease in the cell viability in SH-SY5Y cells. Further studies demonstrated that berberine suppressed the production of intracellular reactive oxygen species, restored the mitochondrial transmembrane potential, increased Bcl-2/Bax ratio, and decreased caspase-3 activation that induced by rotenone. Furthermore, berberine also restored the phosphorylation of Akt, which was downregulated by rotenone in SH-SY5Y cells. These results suggest that berberine protects rotenone-treated SH-SY5Y cells by antioxidation and activation of PI3K/Akt signaling pathway.


Subject(s)
Antioxidants/pharmacology , Berberine/pharmacology , Neurons/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Cell Line, Tumor , Enzyme Activation/drug effects , Humans , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rotenone/toxicity , Signal Transduction/drug effects , Uncoupling Agents/toxicity
16.
Neurosci Lett ; 716: 134652, 2020 01 18.
Article in English | MEDLINE | ID: mdl-31778768

ABSTRACT

Parkinson's disease (PD) is a progressive, late-onset, and degenerative disorder that affects the central nervous system with an unknown etiology. Due to its incredible complexity in disease nature, many of the existing treatment approaches show a vain recovery in Parkinson's patients. Therefore, an in search of disease-modifying therapeutics for an effective recovery is essential. Alpha mangostin is an important polyphenolic xanthone reported for its neuroprotective effect against rotenone-induced α-synuclein aggregation and loss of tyrosine hydroxylase positive (TH+)-neurons in SH-SY5Y cells. Hence, the current study aims to test its protective effect in managing the in-vivo rat model of PD. To justify this aim, adult male Sprague Dawley rats (250 ± 20 g) were subjected to chronic treatment of rotenone (2 mg/kg/day, s.c.) for 21 days. In parallel alpha mangostin treatment (10 mg/kg, i.p) was administered along with rotenone for 21 days. Chronic rotenone treatment for 21 days increased lipid peroxidation, nitrite concentration, and decreased glutathione levels. Further, depletion of TH+-dopaminergic neuron expression in substantia nigra pars compacta (SNc), and the development of motor and behavioral deficits in rotenone treated animals like cognitive impairment, muscle incoordination, and neuromuscular weakness were observed. Moreover, western blot studies ascertained the reduced normal alpha-synuclein levels and increased phosphorylated α-synuclein levels in comparison to the vehicle-treated group. Treatment with alpha mangostin significantly restored the locomotor activity, memory deficits, and improved the levels of antioxidant enzymes. It also significantly reduced the levels of phosphorylated α-synuclein which in turn gave protection against TH+-dopaminergic neuronal loss in SNc, suggesting it's anti-oxidant and anti-aggregatory potential against α-synuclein. In conclusion through our current results, we could suggest that alpha mangostin has a potential neuroprotective effect against rotenone-induced PD and might be used as a neuroprotective agent. Further mechanistic studies on preclinical and clinical levels are required to be conducted with alpha mangostin to avail and foresee it as a potential agent in the treatment and management of PD.


Subject(s)
Brain/drug effects , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/pathology , Xanthones/pharmacology , Animals , Brain/pathology , Dopaminergic Neurons/pathology , Male , Oxidative Stress/drug effects , Parkinsonian Disorders/chemically induced , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Rotenone/toxicity , Uncoupling Agents/toxicity
17.
Neurosci Lett ; 711: 134438, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31422100

ABSTRACT

Restoration of cellular microenvironment is important in the treatment of neurodegenerative diseases for optimal functioning and survival of neurons. Oxidative stress has been proposed as one of the major pathogenic drivers in Parkinson's disease. Parkinson's model was developed by chronic administration of a pesticide rotenone that inhibits mitochondrial complex I resulting in generation of reactive oxygen species. In this study, our aim was to evaluate neuroprotective effect rendered by edaravone, a potent free radical scavenger in combination with caffeine, an effective inhibitor of adenosine A2A receptor as well as a proven antioxidant. Here we demonstrate that a three-week treatment with edaravone-caffeine combination was able to significantly diminish rotenone induced oxidative damage at the cellular level as well as muscle weakness and cognitive impairment generally associated with Parkinson's disease. This effect is attributable to edaravone's capability of scavenging the perxoynitrite free radical. Herein, we have assessed the levels of protein nitroxidation marker 3-nitrotyrosine in the striatum and lipid peroxidation marker malondialdehyde in striatum, cerebrospinal fluid, plasma and urine of rats. On the 21st day, statistical difference was observed in the striatal biomarker levels (p = 0.001) between the controls, treated and untreated groups. We discovered that when edaravone was co-administered with caffeine, the effect was more significant compared to the group solely treated with edaravone demonstrating a synergistic effect. Simultaneous therapeutic intervention with drug combination showed a pronounced decrease in oxidative damage markers as well as better muscle strength and cognition compared to the untreated groups.


Subject(s)
Caffeine/pharmacology , Edaravone/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Parkinsonian Disorders , Animals , Antioxidants/pharmacology , Behavior, Animal/drug effects , Biomarkers/metabolism , Brain/drug effects , Brain/metabolism , Drug Synergism , Lipid Peroxidation/drug effects , Male , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Rats , Rats, Sprague-Dawley , Rotenone/toxicity , Uncoupling Agents/toxicity
18.
Neurotoxicology ; 74: 172-183, 2019 09.
Article in English | MEDLINE | ID: mdl-31336111

ABSTRACT

Oxidative stress and neuroinflammation play key roles in the initiation and progression of Parkinson's disease (PD), a neurodegenerative disorder, associated with the loss of nigrostriatal dopaminergic pathway. Thus, compounds that can mitigate oxidative stress and neuroinflammation are being investigated as promising agents for the treatment of PD. This study was designed to evaluate the effects of methyl jasmonate (MJ), a potent antioxidant and anti-inflammatory compound on parkinsonian-like symptoms and the underlying biochemical changes induced by rotenone (Rot) in mice. To this end, the effects of graded doses of MJ (25, 50 and100 mg/kg, i.p.) on motor dysfunctions, cognitive and depressive-like disorders induced by Rot (2.5 mg/kg, i.p.) were evaluated. The specific brain regions (striatum, prefrontal cortex and hippocampus) of the animals were processed for various biochemical studies. Rot-treated mice showed reduced motor activity, postural instability, cognitive and depressive-like disorders. Rot also increased brain levels of malondialdehyde (MDA), nitrite, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and acetyl-cholinesterase (AChE) activity. Moreover, Rot reduced the concentration of glutathione (GSH) and increased immnopositive cells of NF-κB and α-synuclein expressions in these brain regions. However, pretreatment with MJ, attenuated the parkinsonian-like symptoms and reduced the brain levels of MDA/nitrite, TNF-α and IL-6 induced by Rot. MJ also reduced AChE activity and down-regulate the expressions of NF-κB and α-synuclein in the brain of Rot-treated mice. These findings suggest that MJ has anti-parkinsonian-like activity, which may be related to the inhibition of oxidative stress, release of pro-inflammatory cytokines, and down regulation of NF-κB and α-synuclein expressions.


Subject(s)
Acetates/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Cyclopentanes/pharmacology , Cytokines/metabolism , NF-kappa B/antagonists & inhibitors , Oxidative Stress/drug effects , Oxylipins/pharmacology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/prevention & control , Rotenone/antagonists & inhibitors , Uncoupling Agents/toxicity , alpha-Synuclein/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Male , Mice , NF-kappa B/biosynthesis , Parkinson Disease, Secondary/psychology , Psychomotor Performance/drug effects , Rotenone/toxicity , alpha-Synuclein/biosynthesis
19.
Arch Toxicol ; 93(6): 1585-1608, 2019 06.
Article in English | MEDLINE | ID: mdl-31190196

ABSTRACT

Many neurotoxicants affect energy metabolism in man, but currently available test methods may still fail to predict mito- and neurotoxicity. We addressed this issue using LUHMES cells, i.e., human neuronal precursors that easily differentiate into mature neurons. Within the NeuriTox assay, they have been used to screen for neurotoxicants. Our new approach is based on culturing the cells in either glucose or galactose (Glc-Gal-NeuriTox) as the main carbohydrate source during toxicity testing. Using this Glc-Gal-NeuriTox assay, 52 mitochondrial and non-mitochondrial toxicants were tested. The panel of chemicals comprised 11 inhibitors of mitochondrial respiratory chain complex I (cI), 4 inhibitors of cII, 8 of cIII, and 2 of cIV; 8 toxicants were included as they are assumed to be mitochondrial uncouplers. In galactose, cells became more dependent on mitochondrial function, which made them 2-3 orders of magnitude more sensitive to various mitotoxicants. Moreover, galactose enhanced the specific neurotoxicity (destruction of neurites) compared to a general cytotoxicity (plasma membrane lysis) of the toxicants. The Glc-Gal-NeuriTox assay worked particularly well for inhibitors of cI and cIII, while the toxicity of uncouplers and non-mitochondrial toxicants did not differ significantly upon glucose ↔ galactose exchange. As a secondary assay, we developed a method to quantify the inhibition of all mitochondrial respiratory chain functions/complexes in LUHMES cells. The combination of the Glc-Gal-NeuriTox neurotoxicity screening assay with the mechanistic follow up of target site identification allowed both, a more sensitive detection of neurotoxicants and a sharper definition of the mode of action of mitochondrial toxicants.


Subject(s)
Mitochondria/drug effects , Mitochondrial Diseases/chemically induced , Neural Stem Cells/drug effects , Neurotoxicity Syndromes/diagnosis , Toxicity Tests/methods , Carbohydrate Metabolism , Culture Media , Electron Transport/drug effects , Electron Transport Complex I/antagonists & inhibitors , Galactose/metabolism , Galactose/pharmacology , Glucose/metabolism , Glucose/pharmacology , Humans , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Neural Stem Cells/ultrastructure , Neurites/drug effects , Uncoupling Agents/toxicity
20.
J Chem Neuroanat ; 97: 23-32, 2019 04.
Article in English | MEDLINE | ID: mdl-30690135

ABSTRACT

Loss of dopaminergic neurons in the substantia nigra (SN) is one of the pathological hallmarks in Parkinson's disease (PD). This neuron loss is accompanied by reduced protein and activity levels of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. Reduced nigral brain-derived neurotrophic factor (BDNF) has been postulated to contribute to the loss of nigral dopaminergic neurons in PD by causing a lack of trophic support. Prior to this nigral cell loss many patients develop non-motor symptoms such as hyposmia, constipation and orthostatic hypotension. We investigated how TH, BDNF and BDNF related receptors are altered in the SN, olfactory bulb, adrenal glands and colon (which are known to be affected in PD) using rotenone-treated rats. Rotenone was administered to Sprague-Dawley rats at a dose of 2.75 mg/kg, 5 days/week for 4 weeks, via intraperitoneal injections. Rats underwent behavioural testing, and tissues were collected for western blot and ELISA analysis. This rotenone treatment induced reduced rears and distance travelled in the rearing and open field test, respectively but caused no impairments in forced movement (rotarod test). The SN had changes consistent with a pro-apoptotic state, such as increased proBDNF but no change in TH; whereas, the colon had significantly reduced TH and increased sortilin. Thus, our results indicate further investigation is warranted for this rotenone-dosing paradigm's capacity for reproducing the early stage of PD, as we observed impairments in voluntary movement and pathology in the colon without overt motor symptoms or nigral dopaminergic loss.


Subject(s)
Adrenal Glands/drug effects , Colon/drug effects , Olfactory Bulb/drug effects , Parkinson Disease , Rotenone/toxicity , Substantia Nigra/drug effects , Adaptor Proteins, Vesicular Transport/drug effects , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Colon/metabolism , Rats , Rats, Sprague-Dawley , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/drug effects , Tyrosine 3-Monooxygenase/metabolism , Uncoupling Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL