Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 729
Filter
1.
Microb Ecol ; 87(1): 111, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39231820

ABSTRACT

In this study, we investigated the effect of detoxifying substances on U(VI) removal by bacteria isolated from mine soil. The results demonstrated that the highest U(VI) removal efficiency (85.6%) was achieved at pH 6.0 and a temperature of 35 °C, with an initial U(VI) concentration of 10 mg/L. For detoxifying substances, signaling molecules acyl homoserine lactone (AHLs, 0.1 µmol/L), anthraquinone-2, 6-disulfonic acid (AQDS, 1 mmol/L), reduced glutathione (GSH, 0.1 mmol/L), selenium (Se, 1 mg/L), montmorillonite (MT, 1 g/L), and ethylenediaminetetraacetic acid (EDTA, 0.1 mmol/L) substantially enhanced the bacterial U(VI) removal by 34.9%, 37.4%, 54.5%, 35.1%, 32.8%, and 47.8% after 12 h, respectively. This was due to the alleviation of U(VI) toxicity in bacteria through detoxifying substances, as evidenced by lower malondialdehyde (MDA) content and higher superoxide dismutase (SOD) and catalase (CAT) activities for bacteria exposed to U(VI) and detoxifying substances, compared to those exposed to U(VI) alone. FTIR results showed that hydroxyl, carboxyl, phosphorus, and amide groups participated in the U(VI) removal. After exposure to U(VI), the relative abundances of Chryseobacterium and Stenotrophomonas increased by 48.5% and 12.5%, respectively, suggesting their tolerance ability to U(VI). Gene function prediction further demonstrated that the detoxifying substances AHLs alleviate U(VI) toxicity by influencing bacterial metabolism. This study suggests the potential application of detoxifying substances in the U(VI)-containing wastewater treatment through bioremediation.


Subject(s)
Bacteria , Biodegradation, Environmental , Mining , Soil Microbiology , Uranium , Uranium/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Acyl-Butyrolactones/metabolism , Glutathione/metabolism , Soil Pollutants, Radioactive/metabolism
2.
J Environ Radioact ; 279: 107523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39222598

ABSTRACT

Coal fly ash (CFA) is an essential raw material in brickmaking industry worldwide. There are some coal mines with a relatively high content of uranium (U) in the Xinjiang region of China that are yet understudied. The CFA from these coal mines poses substantial environmental risks due to the concentrated uranium amount after coal burning. In this paper, we demonstrated a calcifying ureolytic bacterium Halomonas sp. SBC20 for its biocementation of U in CFA based on microbially induced calcite precipitation (MICP). Rectangle-shaped CFA bricks were made from CFA using bacterial cells, and an electric testing machine tested their compressive strength. U distribution pattern and immobility against rainfall runoff were carefully examined by a five-stage U sequential extraction method and a leaching column test. The microstructural changes in CFA bricks were characterized by FTIR and SEM-EDS methods. The results showed that the compressive strength of CFA bricks after being cultivated by bacterial cells increased considerably compared to control specimens. U mobility was significantly decreased in the exchangeable fraction, while the U content was markedly increased in the carbonate-bound fraction after biocementation. Much less U was released in the leaching column test after the treatment with bacterial cells. The FTIR and SEM-EDX methods confirmed the formation of carbonate precipitates and the incorporation of U into the calcite surfaces, obstructing the release of U into the surrounding environments. The technology provides an effective and economical treatment of U-contaminated CFA, which comes from coal mines with high uranium content in the Xinjiang region, even globally.


Subject(s)
Biodegradation, Environmental , Calcium Carbonate , Coal Ash , Uranium , Uranium/metabolism , Coal Ash/chemistry , Calcium Carbonate/chemistry , China , Halomonas/metabolism , Soil Pollutants, Radioactive/analysis , Soil Pollutants, Radioactive/metabolism
3.
Chemosphere ; 363: 142982, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089338

ABSTRACT

The shift towards a circular economy, where waste generation is minimized through waste re-use and the development of valorization strategies, is crucial for the establishment of a low carbon, sustainable, and resource-efficient economy. However, there is a lack of strategies for re-using and valorizing specific types of waste, particularly those containing naturally occurring radioactive materials (NORM), despite the prevalence of industrial activities that produce such waste due to their chemical and radiological hazards. Living organisms, including fungi, are valuable sources of bioactive compounds with various industrial applications. In this study, we assessed the growth and metabolic profile changes of three white rot fungi species in response to low concentrations of a uranium mine effluent containing NORM and metals to explore their potential for producing biotechnologically relevant bioactive compounds. The growth rate was assessed in three different culture media, with and without the uranium mine effluent (1% V/V)), and the metabolic profile was analyzed using FTIR-ATR spectroscopy. Results suggested an improvement in growth rates in media containing the uranium mine effluent, although not statistically significant. T. versicolor showed promise in terms of bioactive compound production. The production of droplets during growth experiments and significant metabolic changes, associated with the production of bioactive compounds like laccase, melanin, and oxalic acid, were observed in T. versicolor grown in mYEPDA with the uranium mine effluent. These findings present new research opportunities for utilizing waste to enhance the biotechnological production of industrially relevant bioactive compounds and promote the development of circular economy strategies for re-using and valorizing NORM-containing waste.


Subject(s)
Industrial Waste , Mining , Uranium , Uranium/metabolism , Biodegradation, Environmental , Laccase/metabolism
4.
J Hazard Mater ; 478: 135499, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39141939

ABSTRACT

Uranium pollution in aquatic ecosystems poses a threat to organisms. However, the metabolism and toxicity of uranium along aquatic food chains remain unknown. Here, we established an artificial aquatic ecosystem to investigate the fate of uranium along the food chain and reveal its potential toxicity. The results displayed a dose- and time-dependent toxicity of uranium on algae, leading to cell deformation and impeding cell proliferation. When uranium-exposed algae are ingested by fish, uranium tends to concentrate in the intestinal system and bones of fish. Comparatively, direct water uranium exposure resulted in a remarkable uranium accumulation in the head, skin, and muscles of fish, suggesting different toxicity depending on distinct exposure pathways. High-level uranium pollution (20 mg L-1) intensifies the toxicity to fish through food intake compared to direct water exposure. It has also revealed that approximately 25 % and 20 % of U(VI) were reduced to lower valence forms during its accumulation in algae and fish, respectively, and over 10 % of U(IV, VI) converted to U(0) ultimately, through which uranium toxicity was mitigated due to the lower solubility and bioavailability. Overall, this study provides new insights into the fate of uranium during its delivery along the aquatic food chain and highlights the risks associated with consuming uranium-contaminated aquatic products.


Subject(s)
Fishes , Food Chain , Uranium , Water Pollutants, Radioactive , Uranium/toxicity , Uranium/metabolism , Animals , Water Pollutants, Radioactive/toxicity , Fishes/metabolism
5.
J Hazard Mater ; 478: 135433, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39146584

ABSTRACT

Sunflower (Helianthus annuus) can potentially be used for uranium (U) phytoremediation. However, the factors influencing the absorption of U and its subsequent distribution within plant tissues remain unclear, including the effect of silicon (Si) which is known to increase metal tolerance. Here, using hydroponics, the effect of Si on the distribution and speciation of U in sunflower was examined using synchrotron-based X-ray fluorescence and fluorescence-X-ray absorption near-edge spectroscopy. It was found that ∼88 % of U accumulates within the root regardless of treatments. Without the addition of Si, most of the U appeared to bind to epidermis within the roots, whereas in the leaves, U primarily accumulated in the veins. The addition of Si alleviated U phytotoxicity and decreased U concentration in sunflower by an average of 60 %. In the roots, Si enhanced U distribution in cell walls and impeded its entry into cells, likely due to increased callose deposition. In the leaves, Si induced the sequestration of U in trichomes. However, Si did not alter U speciation and U remained in the hexavalent form. These results provide information on U accumulation and distribution within sunflower, and suggest that Si could enhance plant growth under high U stress.


Subject(s)
Biodegradation, Environmental , Helianthus , Plant Leaves , Plant Roots , Silicon , Uranium , Helianthus/metabolism , Helianthus/drug effects , Helianthus/growth & development , Silicon/metabolism , Silicon/pharmacology , Silicon/chemistry , Uranium/metabolism , Uranium/toxicity , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects
6.
Sci Total Environ ; 946: 174406, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964395

ABSTRACT

The remediation of groundwater subject to in situ leaching (ISL) for uranium mining has raised extensive concerns in uranium mill and milling. This study conducted bioremediation through biostimulation and bioaugmentation to the groundwater in an area in northern China that was contaminated due to uranium mining using the CO2 + O2 neutral ISL (NISL) technology. It identified the dominant controlling factors and mechanisms driving bioremediation. Findings indicate that microorganisms can reduce the uranium concentration in groundwater subject to NISL uranium mining to its normal level. After 120 days of bioaugmentation, the uranium concentration in the contaminated groundwater fell to 0.36 mg/L, achieving a remediation efficiency of 91.26 %. Compared with biostimulation, bioaugmentation shortened the remediation timeframe by 30 to 60 days while maintaining roughly the same remediation efficiency. For groundwater remediation using indigenous microbial inoculants, initial uranium concentration and low temperatures (below 15 °C) emerge as the dominant factors influencing the bioremediation performance and duration. In settings with high carbonate concentrations, bioremediation involved the coupling of multiple processes including bioreduction, biotransformation, biomineralization, and biosorption, with bioreduction assuming a predominant role. Post-bioremediation, the relative abundances of reducing microbes Desulfosporosinus and Sulfurospirillum in groundwater increased significantly by 10.56 % and 6.91 %, respectively, offering a sustainable, stable biological foundation for further bioremediation of groundwater.


Subject(s)
Biodegradation, Environmental , Groundwater , Uranium , Water Pollutants, Radioactive , Groundwater/chemistry , Uranium/metabolism , China , Water Pollutants, Radioactive/metabolism , Water Pollutants, Radioactive/analysis , Mining
7.
Environ Pollut ; 356: 124307, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38830528

ABSTRACT

Prokaryotes are effective biosorbents for the recovery of uranium and other heavy metals. However, the potential mechanism of uranium bioaccumulation by filamentous strain (actinobacteria) remains unclear. This study demonstrates the potential for and mechanism of uranium bioaccumulation by living (L-SS) and inactivated (I-SS) Streptomyces sp. HX-1 isolated from uranium mine waste streams. Uranium accumulation experiments showed that L-SS and I-SS had efficient uranium adsorption potentials, with removal rates of 92.93 and 97.42%, respectively. Kinetic and equilibrium data indicated that the bioaccumulation process was consistent with the pseudo-second-order kinetic, Langmuir, and Sips isotherm models. FTIR indicated that the main functional groups of L-SS and I-SS binding uranium were uranyl, carboxyl, and phosphate groups. Moreover, the results of XRD, XPS, SEM-EDS, and TEM-EDS analyses revealed for the first time that L-SS has biomineralization and bioreduction capacity against uranium. L-SS mineralize U(VI) into NH4UO2PO4 and [Formula: see text] through the metabolic activity of biological enzymes (phosphatases). In summary, Streptomyces sp. HX-1 is a novel and efficient uranium-fixing biosorbent for the treatment of uranium-contaminated wastewater.


Subject(s)
Biodegradation, Environmental , Streptomyces , Uranium , Wastewater , Uranium/metabolism , Streptomyces/metabolism , Wastewater/chemistry , Adsorption , Mining , Water Pollutants, Radioactive/metabolism , Kinetics
8.
J Hazard Mater ; 476: 134975, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38908177

ABSTRACT

Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.


Subject(s)
Mining , Phosphorus , Streptomyces , Uranium , Phosphorus/metabolism , Phosphorus/chemistry , Uranium/metabolism , Streptomyces/metabolism , Streptomyces/genetics , Soil Microbiology , Soil Pollutants, Radioactive/metabolism , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/chemistry
9.
J Hazard Mater ; 476: 135044, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38943881

ABSTRACT

Deep geological repositories (DGRs) stand out as one of the optimal options for managing high-level radioactive waste (HLW) such as uranium (U) in the near future. Here, we provide novel insights into microbial behavior in the DGR bentonite barrier, addressing potential worst-case scenarios such as waste leakage (e.g., U) and groundwater infiltration of electron rich donors in the bentonite. After a three-year anaerobic incubation, Illumina sequencing results revealed a bacterial diversity dominated by anaerobic and spore-forming microorganisms mainly from the phylum Firmicutes. Highly U tolerant and viable bacterial isolates from the genera Peribacillus, Bacillus, and some SRB such as Desulfovibrio and Desulfosporosinus, were enriched from U-amended bentonite. The results obtained by XPS and XRD showed that U was present as U(VI) and as U(IV) species. Regarding U(VI), we have identified biogenic U(VI) phosphates, U(UO2)·(PO4)2, located in the inner part of the bacterial cell membranes in addition to U(VI)-adsorbed to clays such as montmorillonite. Biogenic U(IV) species as uraninite may be produced as result of bacterial enzymatic U(VI) reduction. These findings suggest that under electron donor-rich water-saturation conditions, bentonite microbial community can control U speciation, immobilizing it, and thus enhancing future DGR safety if container rupture and waste leakage occurs.


Subject(s)
Bentonite , Uranium , Bentonite/chemistry , Uranium/metabolism , Bacteria/genetics , Bacteria/metabolism , Radioactive Waste , Water Pollutants, Radioactive/metabolism , Groundwater/microbiology
10.
World J Microbiol Biotechnol ; 40(7): 232, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834810

ABSTRACT

Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.


Subject(s)
Bacillaceae , Calcium Carbonate , Extracellular Polymeric Substance Matrix , Metals, Heavy , Thorium , Uranium , Uranium/chemistry , Uranium/metabolism , Calcium Carbonate/chemistry , Thorium/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Bacillaceae/metabolism , Metals, Rare Earth/chemistry , Adsorption , Chemical Precipitation
11.
J Environ Radioact ; 277: 107463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815432

ABSTRACT

Seepage of uranium tailings has become a focus of attention in the uranium mining and metallurgy industry, and in-situ microbial remediation is considered an effective way to treat uranium pollution. However, this method has the drawbacks of easy biomass loss and unstable remediation effect. To overcome these issues, spare red soil around the uranium mine was used to enhance the efficiency and stability of bioremediation. Furthermore, the bioremediation mechanism was revealed by employing XRD, FTIR, XPS, and 16S rRNA. The results showed that red soil, as a barrier material, had the adsorption potential of 8.21-148.00 mg U/kg soil, but the adsorption is accompanied by the release of certain acidic and oxidative substances. During the dynamic microbial remediation, red soil was used as a cover material to neutralize acidity, provide a higher reduction potential (<-200 mV), and increase the retention rate of microbial agent (19.06 mL/d) compared to the remediation group without red soil. In the presence of red soil, the anaerobic system could maintain the uranium concentration in the solution below 0.3 mg/L for more than 70 days. Moreover, the generation of new clay minerals driven by microorganisms was more conducive to the stability of uranium tailings. Through alcohol and amino acid metabolism of microorganisms, a reducing environment with reduced valence states of multiple elements (such as S2-, Fe2+, and U4+) was formed. At the same time, the relative abundance of functional microbial communities in uranium tailings improved in presence of red soil and Desulfovirobo, Desulfocapsa, Desulfosporosinus, and other active microbial communities reconstructed the anaerobic environment. The study provides a new two-in-one solution for treatment of uranium tailings and resource utilization of red soil through in-situ microbial remediation.


Subject(s)
Biodegradation, Environmental , Mining , Soil Microbiology , Soil Pollutants, Radioactive , Uranium , Uranium/metabolism , Soil Pollutants, Radioactive/metabolism , Soil/chemistry , Environmental Restoration and Remediation/methods
12.
Inorg Chem ; 63(16): 7464-7472, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38598182

ABSTRACT

Uranium accumulation in the kidneys and bones following internal contamination results in severe damage, emphasizing the pressing need for the discovery of actinide decorporation agents with efficient removal of uranium and low toxicity. In this work, cinnamic acid (3-phenyl-2-propenoic acid, CD), a natural aromatic carboxylic acid, is investigated as a potential uranium decorporation ligand. CD demonstrates markedly lower cytotoxicity than that of diethylenetriaminepentaacetic acid (DTPA), an actinide decorporation agent approved by the FDA, and effectively removes approximately 44.5% of uranyl from NRK-52E cells. More importantly, the results of the prompt administration of the CD solution remove 48.2 and 27.3% of uranyl from the kidneys and femurs of mice, respectively. Assessments of serum renal function reveal the potential of CD to ameliorate uranyl-induced renal injury. Furthermore, the single crystal of CD and uranyl compound (C9H7O2)2·UO2 (denoted as UO2-CD) reveals the formation of uranyl dimers as secondary building units. Thermodynamic analysis of the solution shows that CD coordinates with uranyl to form a 2:1 molar ratio complex at a physiological pH of 7.4. Density functional theory (DFT) calculations further show that CD exhibits a significant 7-fold heightened affinity for uranyl binding in comparison to DTPA.


Subject(s)
Cinnamates , Uranium , Cinnamates/chemistry , Cinnamates/pharmacology , Animals , Ligands , Mice , Uranium/chemistry , Uranium/metabolism , Uranium/toxicity , Kidney/drug effects , Kidney/metabolism , Cell Line , Density Functional Theory , Rats , Molecular Structure , Cell Survival/drug effects , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis
13.
BMC Pharmacol Toxicol ; 25(1): 14, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308341

ABSTRACT

OBJECTIVE: Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS: Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS: TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION: The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.


Subject(s)
Uranium , Rats , Male , Animals , Lipocalin-2/metabolism , Uranium/toxicity , Uranium/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Rats, Sprague-Dawley , Oxidative Stress , Antioxidants/pharmacology , Kidney/pathology , Inflammation/metabolism , Urea
14.
Sci Total Environ ; 912: 168954, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38042188

ABSTRACT

To investigate the strengthening effects and mechanisms of bioaugmentation on the microbial remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization, two exogenous microbial consortia with reducing and phosphate-solubilizing functions were screened and added to uranium-contaminated groundwater as the experimental groups (group B, reducing consortium added; group C, phosphate-solubilizing consortium added). ß-glycerophosphate (GP) was selected to stimulate the microbial community as the sole electron donor and phosphorus source. The results showed that bioaugmentation accelerated the consumption of GP and the proliferation of key functional microbes in groups B and C. In group B, Dysgonomonas, Clostridium_sensu_stricto_11 and Clostridium_sensu_stricto_13 were the main reducing bacteria, and Paenibacillus was the main phosphate-solubilizing bacteria. In group C, the microorganisms that solubilized phosphate were mainly unclassified_f_Enterobacteriaceae. Additionally, bioaugmentation promoted the formation of unattached precipitates and alleviated the inhibitory effect of cell surface precipitation on microbial metabolism. As a result, the formation rate of U-phosphate precipitates and the removal rates of aqueous U(VI) in both groups B and C were elevated significantly after bioaugmentation. The U(VI) removal rate was poor in the control group (group A, with only an indigenous consortium). Propionispora, Sporomusa and Clostridium_sensu_stricto_11 may have played an important role in the removal of uranium in group A. Furthermore, the addition of a reducing consortium promoted the reduction of U(VI) to U(IV), and immobilized uranium existed in the form of U(IV)-phosphate and U(VI)-phosphate precipitates in group B. In contrast, U was present mainly as U(VI)-phosphate precipitates in groups A and C. Overall, bioaugmentation with an exogenous consortium resulted in the rapid removal of uranium from groundwater and the formation of U-phosphate minerals and served as an effective strategy for improving the treatment of uranium-contaminated groundwater in situ.


Subject(s)
Groundwater , Uranium , Phosphates/metabolism , Uranium/metabolism , Oxidation-Reduction , Bacteria/metabolism , Biodegradation, Environmental
15.
J Hazard Mater ; 465: 133334, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38154188

ABSTRACT

Microorganisms inhabiting uranium (U)-rich environments have specific physiological and biochemical coping mechanisms to deal with U toxicity, and thereby play a crucial role in the U biogeochemical cycling as well as associated heavy metals. We investigated the diversity and functional capabilities of indigenous bacterial communities inhabiting historic U- and Rare-Earth-Elements-rich polymetallic tailings from the Mount Painter Inlier, Northern Flinders Ranges, South Australia. Bacterial diversity profiling identified Actinobacteria as the predominant phylum in all samples. GeoChip analyses revealed the presence of diverse functional genes associated with biogenic element cycling, metal homeostasis/resistance, stress response, and secondary metabolism. The high abundance of metal-resistance and stress-tolerance genes indicates the adaptation of bacterial communities to the "harsh" environmental (metal-rich and semi-arid) conditions of the Northern Flinders Ranges. Additionally, a viable bacterial consortium was enriched from polymetallic tailings. Laboratory experiments demonstrated that the consortium scrubbed uranyl from solution by precipitating a uranyl phosphate biomineral (chernikovite), thus contributing to U biogeochemical cycling. These specialised microbial communities reflect the high specificity of the mineralogy/geochemistry, and biogeography of these U-rich settings. This study provides the fundamental knowledge to develop future applications in securing long-term stability of polymetallic mine waste, and for reprocessing this "waste" to further extract critical minerals.


Subject(s)
Microbiota , Uranium , Uranium/metabolism , Bacteria/metabolism
16.
Ecotoxicol Environ Saf ; 265: 115501, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37774545

ABSTRACT

The contamination of uranium in aquatic ecosystems has raised growing global concern. However, the understanding of its chronic effects on aquatic organisms is limited, particularly with regards to transgenerational toxicity. In this study, we evaluated the maternal transfer risk of uranium using zebrafish. Sexually mature female zebrafish were exposed to 2 and 20 ng/g of uranium-spiked food for 28 days. The induced bioconcentration, thyroid disruption, and oxidative stress in both the adults (F0) and their embryos (F1) were further investigated. Element analysis showed that uranium was present in both F0 and F1, with higher concentrations observed in F1, indicating significant maternal offloading to the offspring. Meanwhile, an increased malformation and decreased swim speed were observed in the F1. Thyroid hormone analysis revealed significant decreases in the levels of triiodothyronine (T3) in both the F0 adults and F1 embryos, but thyroxine (T4) was not significantly affected. Additionally, the activities of antioxidant defenses, including catalase (CAT) and superoxide dismutase (SOD), and the expression of glutathione (GSH) and malondialdehyde (MDA) were significantly altered in the F0 and F1 larvae at 120 hpf. The hypothalamic-pituitary-thyroid (HPT) axis, oxidative stress, and apoptosis-related gene transcription expression were also significantly affected in both generations. Taken together, these findings highlight the importance of considering maternal transfer in uranium risk assessments.


Subject(s)
Endocrine Disruptors , Uranium , Water Pollutants, Chemical , Animals , Humans , Female , Thyroid Gland , Zebrafish/metabolism , Uranium/toxicity , Uranium/metabolism , Maternal Exposure/adverse effects , Ecosystem , Water Pollutants, Chemical/metabolism , Endocrine Disruptors/toxicity , Oxidative Stress , Larva
17.
Environ Pollut ; 335: 122296, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37536476

ABSTRACT

Uranium is a contaminate in the underground water in many regions of the world, which poses health risks to the local populations through drinking water. Although the health hazards of natural uranium have been concerned for decades, the controversies about its detrimental effects continue at present since it is still unclear how uranium interacts with molecular regulatory networks to generate toxicity. Here, we integrate transcriptomic and metabolomic methods to unveil the molecular mechanism of lipid metabolism disorder induced by uranium. Following exposure to uranium in drinking water for twenty-eight days, aberrant lipid metabolism and lipogenesis were found in the liver, accompanied with aggravated lipid peroxidation and an increase in dead cells. Multi-omics analysis reveals that uranium can promote the biosynthesis of unsaturated fatty acids through dysregulating the metabolism of arachidonic acid (AA), linoleic acid, and glycerophospholipid. Most notably, the disordered metabolism of polyunsaturated fatty acids (PUFAs) like AA may contribute to lipid peroxidation induced by uranium, which in turn triggers ferroptosis in hepatocytes. Our findings highlight disorder of lipid metabolism as an essential toxicological mechanism of uranium in the liver, offering insight into the health risks of uranium in drinking water.


Subject(s)
Drinking Water , Uranium , Mice , Animals , Uranium/toxicity , Uranium/metabolism , Transcriptome , Liver/metabolism , Fatty Acids, Unsaturated/metabolism , Metabolomics
18.
Nat Commun ; 14(1): 3997, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414766

ABSTRACT

Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.


Subject(s)
Transient Receptor Potential Channels , Uranium , Male , Mice , Animals , Uranium/toxicity , Uranium/metabolism , Lysosomes/metabolism , Exocytosis , Transient Receptor Potential Channels/metabolism , Calcium/metabolism
19.
Environ Pollut ; 329: 121674, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37085104

ABSTRACT

Understanding the biogeochemical U redox processes is crucial for controlling U mobility and toxicity under conditions relevant to deep geological repositories (DGRs). In this study, we examined the microbial reduction of aqueous hexavalent uranium U(VI) [U(VI)aq] by indigenous bacteria in U-contaminated groundwater. Three indigenous bacteria obtained from granitic groundwater at depths of 44-60 m (S1), 92-116 m (S2), and 234-244 m (S3) were used in U(VI)aq bioreduction experiments. The concentration of U(VI)aq was monitored to evaluate its removal efficiency for 24 weeks under anaerobic conditions with the addition of 20 mM sodium acetate. During the anaerobic reaction, U(VI)aq was precipitated in the form of U(IV)-silicate with a particle size >100 nm. The final U(VI)aq removal efficiencies were 37.7%, 43.1%, and 57.8% in S1, S2, and S3 sample, respectively. Incomplete U(VI)aq removal was attributed to the presence of a thermodynamically stable calcium uranyl carbonate complex in the U-contaminated groundwater. High-throughput 16S rRNA gene sequencing analysis revealed the differences in indigenous bacterial communities in response to the depth, which affected to the U(VI)aq removal efficiency. Pseudomonas peli was found to be a common bacterium related to U(VI)aq bioreduction in S1 and S2 samples, while two SRB species, Thermodesulfovibrio yellowstonii and Desulfatirhabdium butyrativorans, played key roles in the bioreduction of U(VI)aq in S3 sample. These results indicate that remediation of U(VI)aq is possible by stimulating the activity of indigenous bacteria in the DGR environment.


Subject(s)
Biodegradation, Environmental , Uranium , Bacteria/genetics , Groundwater/microbiology , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Uranium/analysis , Uranium/metabolism , Water Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/metabolism
20.
J Environ Radioact ; 263: 107185, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094505

ABSTRACT

The intricate dynamics of inorganic polyphosphate (polyP) in response to phosphorus (P) limitation and metal exposure typical of contaminated aquatic environments is poorly understood. Cyanobacteria are important primary producers in aquatic environments that are exposed to P stringency as well as metal contamination. There is a growing concern regarding migration of uranium, generated as a result of anthropogenic activities, into the aquatic environments owing to high mobility and solubility of stable aqueous complexes of uranyl ions. The polyP metabolism in cyanobacteria in context of uranium (U) exposure under P limitation has hardly been explored. In this study, we analyzed the polyP dynamics in a marine, filamentous cyanobacterium Anabaena torulosa under combination of variable phosphate concentrations (overplus and deficient) and uranyl exposure conditions typical of marine environments. Polyphosphate accumulation (polyP+) or deficient (polyP-) conditions were physiologically synthesized in the A. torulosa cultures and were ascertained by (a) toulidine blue staining followed by their visualization using bright field microscopy and (b) scanning electron microscopy in combination with energy dispersive X-ray spectroscopy (SEM/EDX). On exposure to 100 µM of uranyl carbonate at pH 7.8, it was observed that the growth of polyP+ cells under phosphate limitation was hardly affected and these cells exhibited larger amounts of uranium binding as compared to polyP- cells of A. torulosa. In contrast, the polyP- cells displayed extensive lysis when exposed to similar U exposure. Our findings suggest that polyP accumulation played an important role in conferring uranium tolerance in the marine cyanobacterium, A. torulosa. The polyP-mediated uranium tolerance and binding could serve as a suitable strategy for remediation of uranium contamination in aquatic environments.


Subject(s)
Cyanobacteria , Radiation Monitoring , Uranium , Polyphosphates/metabolism , Uranium/toxicity , Uranium/metabolism , Cyanobacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL