Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.046
Filter
1.
Biomacromolecules ; 25(10): 6611-6623, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39283997

ABSTRACT

Native lipid bilayer mimetics, including those that use amphiphilic polymers, are important for the effective study of membrane-bound peptides and proteins. Copolymers of vinyl ether monomers and maleic anhydride were developed with controlled molecular weights and hydrophobicity through reversible addition-fragmentation chain-transfer polymerization. After polymerization, the maleic anhydride units can be hydrolyzed, giving dicarboxylates. The vinyl ether and maleic anhydride copolymerized in a close to alternating manner, giving essentially alternating hydrophilic maleic acid units and hydrophobic vinyl ether units along the backbone after hydrolysis. The vinyl ether monomers and maleic acid polymers self-assembled with lipids, giving vinyl ether maleic acid lipid particles (VEMALPs) with tunable sizes controlled by either the vinyl ether hydrophobicity or the polymer molecular weight. These VEMALPs were able to support membrane-bound proteins and peptides, creating a new class of lipid bilayer mimetics.


Subject(s)
Lipid Bilayers , Maleates , Membrane Proteins , Polymers , Maleates/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Polymers/chemistry , Vinyl Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Polymerization
2.
J Med Chem ; 67(19): 17866-17892, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39323296

ABSTRACT

Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease of the central nervous system (CNS), which leads to demyelination, axonal loss, and neurodegeneration. Increased oxidative stress and neurodegeneration have been implicated in all stages of MS, making neuroprotective therapeutics a promising strategy for its treatment. We previously have reported vinyl sulfones with antioxidative and anti-inflammatory properties that activate nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces the expression of cytoprotective genes against oxidative stress. In this study, we synthesized vinyl sulfoximine derivatives by modifying the core structure and determined therapeutic potential as Nrf2 activators. Among them, 10v effectively activated Nrf2 (EC50 = 83.5 nM) and exhibited favorable drug-like properties. 10v successfully induced expression of Nrf2-dependent antioxidant enzymes and suppressed lipopolysaccharide (LPS)-induced inflammatory responses in BV-2 microglial cells. We also confirmed that 10v effectively reversed disease progression and attenuated demyelination in an experimental autoimmune encephalitis (EAE) mouse model of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/agonists , Animals , Multiple Sclerosis/drug therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Humans , Mice, Inbred C57BL , Structure-Activity Relationship , Cell Line , Sulfones/pharmacology , Sulfones/chemical synthesis , Sulfones/chemistry , Sulfones/therapeutic use , Drug Discovery , Female , Lipopolysaccharides/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Antioxidants/therapeutic use , Vinyl Compounds/pharmacology , Vinyl Compounds/chemistry , Vinyl Compounds/chemical synthesis , Vinyl Compounds/therapeutic use , Microglia/drug effects , Microglia/metabolism , Oxidative Stress/drug effects , Imines/chemistry , Imines/pharmacology , Imines/therapeutic use , Imines/chemical synthesis
3.
Org Biomol Chem ; 22(39): 7989-7995, 2024 10 09.
Article in English | MEDLINE | ID: mdl-39233652

ABSTRACT

Plasmalogens are glycerophospholipids distinguished by their O-(Z)-vinyl ether at the sn-1 position. These lipids are implicated in several disease states requiring analytical, diagnostic and therapeutic interventions, which demand synthetic availability for a variety of structural types. By deploying the new O-protecting group 1,4-dimethoxynaphthyl-2-methyl ('DIMON') and a new stereospecific method for accessing Z-vinyl ethers, a reproducible, versatile synthetic route to plasmalogens [plasmenyl phosphocholines] has been developed. A key intermediate is (S,Z)-1-((1,4-dimethoxynaphthalen-2-yl)methoxy)-3-(hexadec-1-en-1-yloxy)propan-2-ol, which in principle, permits plasmalogen synthesis 'à la carte' at scale. The methodology compares favourably with all previous synthetic routes by virtue of the very high configurational (>99% Z) and optical purity (>99% ee), including the ability to incorporate polyunsaturated fatty acyl chains (e.g. all Z docosahexaenoic acid) reliably at the sn-2 position.


Subject(s)
Antioxidants , Plasmalogens , Plasmalogens/chemistry , Plasmalogens/chemical synthesis , Antioxidants/chemistry , Antioxidants/chemical synthesis , Vinyl Compounds/chemistry , Vinyl Compounds/chemical synthesis , Molecular Structure , Stereoisomerism
4.
AAPS J ; 26(5): 89, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39150583

ABSTRACT

A non-invasive capacitance instrument was embedded in the base of a vacuum-drying tray to monitor continuously the residual amount of solvent left in a pharmaceutical powder. Proof of concept was validated with Microcrystalline Cellulose laced with water, as well as water/acetone mixtures absorbed in a spray-dried Copovidone powder. To illustrate the role of impermeability of the base, we derive a model of vapor sorption that reveals the existence of a kinetic limit when solids are thinly spread, and a diffusion limit with greatly diminished effective diffusivity at large powder thickness. By monitoring the residual solvent content of powders, this new in situ technique offers advantages over indirect methods like mass spectrometry of vapor effluents, but without complications associated with probe fouling. To prescribe design guidelines and interpret signals, we model the electric field shed by the probe when a powder holds variable solvent mass fraction in the vertical direction.


Subject(s)
Cellulose , Powders , Solvents , Solvents/chemistry , Vacuum , Cellulose/chemistry , Cellulose/analysis , Pyrrolidines/chemistry , Pyrrolidines/analysis , Vinyl Compounds/chemistry , Water/chemistry , Desiccation/methods , Acetone/analysis , Acetone/chemistry , Diffusion , Kinetics
5.
Biomacromolecules ; 25(9): 6017-6025, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39166922

ABSTRACT

Chemical linkages that respond to biological stimuli are important for many pharmaceutical and biotechnological applications, making it relevant to explore new variants with different responsivity profiles. This work explores the responsiveness of a TAT peptide-based sulfonium vinyl sulfide probe that responds to nucleophilic thiols, radical thiol species (RTS), and reactive nitrogen species (RNS). Under model conditions, response to nucleophilic thiols was very slow (hours/days), though fast with down to molar equivalents of either RTS or RNS (minutes). These reactions led to the traceless release of a methionine-containing peptide in the first two cases and to a hydroxy nitration adduct in the third case. Despite the sensitive nature of the probe, it remained stable for at least ∼2 h in the presence of cells during TAT-mediated trafficking, even under pro-inflammatory stimulation. The thiol-responsiveness is intermediate to that observed for disulfide linkers and conventional cysteine-maleimide linkers, presenting opportunities for biotechnological applications.


Subject(s)
Reactive Nitrogen Species , Sulfhydryl Compounds , Sulfhydryl Compounds/chemistry , Reactive Nitrogen Species/metabolism , Reactive Nitrogen Species/chemistry , Humans , Sulfonium Compounds/chemistry , Vinyl Compounds/chemistry
6.
Biomacromolecules ; 25(9): 6060-6071, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39172158

ABSTRACT

This work aims at synthesizing tailor-made poly(vinyl alcohol-co-vinyl acetate) (PVA) amphiphilic copolymers, obtained by alcoholysis of poly(vinyl acetate) (PVAc) that could display improved properties as stabilizers compared to commercially available PVAs. Well-defined PVAs with different alcoholysis degrees were produced from a library of PVAc homopolymers synthesized by macromolecular design via interchange of xanthate polymerization and exhibiting different degrees of polymerization degrees. Subsequently, these PVAs were evaluated as stabilizers in the emulsion copolymerization of VAc and vinyl neodecanoate (VERSA 10, referred to as V10) and compared to a commercially available reference PVA obtained by alcoholysis of PVAc formed by conventional radical polymerization. In all cases, stable latexes were obtained and compared in terms of their colloidal characteristics. To identify the best stabilizer candidate, the amount of PVA remaining in water and not participating to the particle stabilization was evaluated in each case.


Subject(s)
Emulsions , Polymerization , Polyvinyl Alcohol , Vinyl Compounds , Emulsions/chemistry , Vinyl Compounds/chemistry , Polyvinyl Alcohol/chemistry , Polyvinyls/chemistry , Polyvinyls/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis
7.
Chembiochem ; 25(20): e202400394, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39031858

ABSTRACT

The reported chemoenzymatic strategy involves the employment of vinyl 3-(dimethylamino)propanoate as an irreversible acyl donor in a chromatography-free lipase-catalyzed kinetic resolution (KR) of racemic sec-alcohols. This biotransformation is achieved in a sequential manner using CAL-B to affect the kinetic resolution, followed by a simple acidic extractive work-up furnishing both KR products with excellent enantioselectivity (E>200; up to 98 % ee). The elaborated method eliminates a single-use silica gel chromatographic separation and significantly reduces organic solvent consumption to foster a more environmentally friendly chemical industry.


Subject(s)
Alcohols , Biocatalysis , Lipase , Lipase/metabolism , Lipase/chemistry , Kinetics , Alcohols/chemistry , Alcohols/metabolism , Stereoisomerism , Propionates/chemistry , Propionates/metabolism , Vinyl Compounds/chemistry
8.
Eur J Pharm Sci ; 200: 106850, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38996850

ABSTRACT

Additive manufacturing (AM) enables the production of complex, lightweight, and customized components with superior quality. Selecting the right materials considering their thermal properties, printability, and layer adhesion is crucial in melting-based AM techniques. This study investigates Droplet Deposition Modelling (DDM), an innovative material extrusion process that utilizes thermoplastic granules. DDM is distinguished by its shorter manufacturing times and a wider range of materials, setting it apart from traditional material extrusion methods such as fused filament fabrication. We investigated the printability and part quality in DDM using two common pharmaceutical excipients: Polyvinylpyrrolidone/vinyl acetate 6:4 (PVP/VA), which is highly brittle, and Polycaprolactone (PCL), known for its low solubility and role in controlled drug release. Different ratios of PVP/VA and PCL were compounded via hot melt extrusion (HME) and used in DDM to study the impact of ingredient content on printability and part quality, employing geometrical models to assess material compatibility and printability. The study revealed that increasing PVP/VA content leads to higher viscosity, reduced flowability, and uneven deposition, with formulations of 80 % and 100 % PVP/VA showing poor processability. In contrast, formulations with 60 % and 40 % PVP/VA exhibited smooth processing and compatibility with DDM. We identified processing temperature and Drop Aspect Ratio (DAR) as key factors influencing material printability and part quality. Elevated processing temperatures and reduced DAR were found to increase interface temperatures, reduce diffusion, and potentially cause the 'elephant feet' issue. Additionally, smaller droplet sizes and material characteristics, such as higher interfacial tension in PCL, could lead to coalescence. Our findings highlight the complexities in optimizing DDM processing parameters and material blends, underscoring the need for careful formulation design to achieve high-quality 3D printed products.


Subject(s)
Excipients , Polyesters , Povidone , Polyesters/chemistry , Excipients/chemistry , Povidone/chemistry , Vinyl Compounds/chemistry , Drug Compounding/methods
9.
Pharm Dev Technol ; 29(7): 684-690, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38995216

ABSTRACT

The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.


Subject(s)
Calorimetry, Differential Scanning , Polysorbates , Surface-Active Agents , Polysorbates/chemistry , Surface-Active Agents/chemistry , Pyrrolidines/chemistry , Hot Melt Extrusion Technology/methods , Vinyl Compounds/chemistry , Excipients/chemistry , Transition Temperature , Chemistry, Pharmaceutical/methods
10.
Ann Med ; 56(1): 2380798, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39061117

ABSTRACT

PURPOSE: This study aimed to evaluate the pressure distribution and comfort of transtibial prosthesis wearers using an affordable ethyl-vinyl acetate (EVA) roll-on (AERO) liner. METHOD: Fifteen unilateral transtibial prosthesis users wore patella tendon bearing (PTB) sockets with a polyethylene foam (PE-lite) liner were enrolled this study. AERO liners were provided to all participants. Six force sensors were applied to the residual limb to evaluate pressure distribution during treadmill walking, and the socket comfort score (SCS) was used to evaluate comfortability. Fourier transform infrared (FT-IR) spectroscopy was performed on the EVA and PE-lite liners. RESULTS: Eleven participants used prefabricated AERO liners and four participants used custom-made AERO liners. The pressure distribution was analysed by the coefficient of variation (CV): PE-lite was 75.7 ± 6.0 and AERO liner 83.3 ± 4.1. Residual limb pressure was significantly decreased when using the AERO liner (p = .0007), with a large effect size (r = 0.87). Mean SCS was 7.5 ± 1.3 and 8.9 ± 1.1 for PE-lite and AERO liner respectively. CONCLUSION: Better pressure distribution and comfort were observed when the participants used the AERO liner. AERO had a greater proportion of calcium carbonate (CaCO3). These findings suggest that the AERO liner is a better off-the-shelf option for persons using traditional prosthetic sockets and liners.


Subject(s)
Artificial Limbs , Pressure , Prosthesis Design , Humans , Male , Middle Aged , Female , Aged , Vinyl Compounds/chemistry , Adult , Polyethylene , Spectroscopy, Fourier Transform Infrared/methods , Patient Comfort , Walking/physiology , Tibia/surgery
11.
J Chromatogr A ; 1730: 465124, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38959657

ABSTRACT

Polymer monoliths can be polymerised within different molds, but limited options are available for the preparation of free-standing polymer monoliths for analytical sample preparation, and in particular, solid-phase extraction (SPE). Commercial melamine-formaldehyde sponges can be used as supports for the preparation of polymer monoliths, due its flexibility, giving various shapes to monoliths. Herein, the crosslinker/porogen ratio of highly porous sponge-nested divinylbenzene (DVB) polymer monoliths has been evaluated. Monoliths prepared using different crosslinker/porogen ratios were applied to the extraction of bisphenol F, bisphenol A, bisphenol AF, and bisphenol B. Monoliths containing 50 wt % DVB and 50 wt % porogens presented the highest recovery of bisphenols. Under the optimised conditions, the developed method showed a linear range between 2.5 µg L-1 and 150 µg L-1 for BPA and BPAF, and between 5 µg L-1 and 150 µg L-1 for BPB and BPF. The limits of detection (LOD, S/N = 3) and limits of quantification (LOQ, S/N = 10) ranged from 0.36 µg L-1 to 1.09 µg L-1, and from 1.20 µg L-1 to 3.65 µg L-1, respectively. The recoveries for spiked bisphenols (10 µg L-1) in tap water and water contained in a polycarbonate containers were between 82 % and 114 %.


Subject(s)
Benzhydryl Compounds , Limit of Detection , Phenols , Solid Phase Extraction , Triazines , Solid Phase Extraction/methods , Benzhydryl Compounds/analysis , Benzhydryl Compounds/isolation & purification , Phenols/analysis , Phenols/isolation & purification , Triazines/analysis , Triazines/isolation & purification , Triazines/chemistry , Polymers/chemistry , Porosity , Cross-Linking Reagents/chemistry , Vinyl Compounds/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
12.
Int J Pharm ; 661: 124438, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38972518

ABSTRACT

Drug-polymer intermolecular interactions, and H-bonds specifically, play an important role in the stabilization process of a compound in an amorphous solid dispersion (ASD). However, it is still difficult to predict whether or not interactions will form and what the strength of those interactions would be, based on the structure of drug and polymer. Therefore, in this study, structural analogues of diflunisal (DIF) were synthesized and incorporated in ASDs with poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) as a stabilizing polymer. The respective DIF derivatives contained different types and numbers of H-bond donor groups, which allowed to assess the influence of these structural differences on the phase behavior and the actual interactions formed in the ASDs. The highest possible drug loading of these derivatives in PVPVA were evaluated through film casting. Subsequently, a lower drug loading of each compound was spray dried. These spray dried ASDs were subjected to an in-depth solid-state nuclear magnetic resonance (ssNMR) study, including 1D spectroscopy and relaxometry, as well as 2D dipolar HETCOR experiments. The drug loading study revealed the highest possible loading of 50 wt% for the native DIF in PVPVA. The methoxy DIF derivative reached the second highest drug loading of 35 wt%, while methylation of the carboxyl group of DIF led to a sharp decrease in the maximum loading, to around 10 wt% only. Unexpectedly, the maximum loading increased again when both the COOH and OH groups of diflunisal were methylated in the dimethyl DIF derivative, to around 30 wt%. The ssNMR study on the spray dried ASD samples confirmed intermolecular H-bonding with PVPVA for native DIF and methoxy DIF. Studies of the proton relaxation decay times and 2D 1H-13C dipolar HETCOR experiments indicated that the ASDs with native DIF and methoxy DIF were homogenously mixed, while the ASDs containing DIF methyl ester and dimethyl DIF were phase separated at the nm level. It was established that, for these systems, the availability of the carboxyl group was imperative in the formation of intermolecular H-bonds with PVPVA and in the generation of homogenously mixed ASDs.


Subject(s)
Diflunisal , Hydrogen Bonding , Diflunisal/chemistry , Magnetic Resonance Spectroscopy , Vinyl Compounds/chemistry , Polymers/chemistry , Pyrrolidines/chemistry , Excipients/chemistry
13.
Macromol Rapid Commun ; 45(17): e2400200, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38875712

ABSTRACT

Thermosets having low dielectric constant (Dk < 3) and low dielectric dissipation factor (Df < 0.003), high glass transition temperature (Tg > 150 °C), and good adhesion to copper are desirable for the low loss layers of the copper clad laminates (CCL) in next generation printed circuit boards. Three different difunctional diazirines are evaluated for both thermal and photochemical crosslinking of a high Tg vinyl-addition polynorbornene resin: poly(5-hexyl-1-norbornene) (poly(HNB)). The substrate polymer, crosslinked by the carbenes generated from the activated diazirines, forms thermosets with Dk < 2.3 and Df < 0.001 at 10 GHz depending on the identity of the diazirine and the loading. The Dk and Df values for one composition are stable for 1600 h at 125 °C in air and for 1400 h at 85 °C and 85% relative humidity, suggesting good long-term reliability of this thermoset. Adhesion of poly(HNB) to copper can be enhanced by priming the copper surface with a diazirine prior to high temperature lamination; peel strength values of greater than 7.5 N cm-1 are achieved. Negative-tone photopatterning of poly(HNB) with diazirines upon exposure to 365 nm light is demonstrated.


Subject(s)
Diazomethane , Diazomethane/chemistry , Copper/chemistry , Temperature , Polymers/chemistry , Polymers/chemical synthesis , Norbornanes/chemistry , Molecular Structure , Vinyl Compounds/chemistry , Cross-Linking Reagents/chemistry , Plastics/chemistry
14.
Macromol Rapid Commun ; 45(15): e2400147, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875713

ABSTRACT

Hydrophilicity is one important drawback of bio-based aerogels. To overcome this issue, a novel approach for the preparation of mesoporous, water repellent aerogels is introduced, which combines synthesis of cross-linked bio-based copolymers from methacrylate copolymerizations, followed by solvent exchange and supercritical drying steps. The influence of monomers with different nonpolar ester groups (methyl, vanillin, tetrahydrofurfuryl) on textural properties and water contact angles of the dry products is assessed. Final aerogels show generally high overall porosities (≈96%), low densities (0.07-0.11 g cm-3) as well as fine, mainly mesoporous networks, and specific surface areas in the range of 120-240 m2 g-1. Hereby, choice of the methacrylate ester groups results in differences of the resulting pore-size distributions. Water repellency tests show stable static water contact angles in the hydrophobic range (≈100°) achieved for the substrate containing the vanillin ester group. On the contrary the other substrates absorb water quickly, which indicates a decisive role of the ester group. The presented approach opens up a new pathway to bio-based aerogels with intrinsic hydrophobicity. It is suggested that the properties are tailored by the choice of the monomer structure, hence enabling further adaption and optimization of the products.


Subject(s)
Gels , Hydrophobic and Hydrophilic Interactions , Polymerization , Polymers , Gels/chemistry , Gels/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Porosity , Water/chemistry , Vinyl Compounds/chemistry , Molecular Structure , Benzaldehydes/chemistry
15.
Bioorg Med Chem Lett ; 109: 129855, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38908766

ABSTRACT

The role of G-quadruplex (G4) in cellular processes can be investigated by the covalent modification of G4-DNA using alkylating reagents. Controllable alkylating reagents activated by external stimuli can react elegantly and selectively. Herein, we report a chemical activation system that can significantly boost the reaction rate of methylamine-protected vinyl-quinazolinone (VQ) derivative for the alkylation of G4-DNA. The two screened activators can transform low-reactive VQ-NHR' to highly reactive intermediates following the Michael addition mechanism. This approach expands the toolbox of activable G4 alkylating reagents.


Subject(s)
G-Quadruplexes , Methylamines , Quinazolinones , Alkylation , G-Quadruplexes/drug effects , Methylamines/chemistry , Methylamines/pharmacology , Methylamines/chemical synthesis , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/chemical synthesis , Humans , Molecular Structure , DNA/chemistry , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
16.
Pharm Res ; 41(6): 1233-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744732

ABSTRACT

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.


Subject(s)
Delayed-Action Preparations , Drug Compounding , Drug Liberation , Ibuprofen , Polymers , Delayed-Action Preparations/chemistry , Ibuprofen/chemistry , Ibuprofen/administration & dosage , Polymers/chemistry , Drug Compounding/methods , Hydrophobic and Hydrophilic Interactions , Solubility , Hot Melt Extrusion Technology/methods , Vinyl Compounds/chemistry , Pyrrolidines/chemistry , Chemistry, Pharmaceutical/methods , Povidone/chemistry
17.
Mol Pharm ; 21(6): 3017-3026, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38758116

ABSTRACT

Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.


Subject(s)
Drug Stability , Excipients , Freeze Drying , Polymers , Povidone , Transition Temperature , Trehalose , Freeze Drying/methods , Povidone/chemistry , Trehalose/chemistry , Excipients/chemistry , Polymers/chemistry , Sucrose/chemistry , Sugars/chemistry , Hydrogen Bonding , Drug Storage , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning , Humidity , Pyrrolidines/chemistry , Vinyl Compounds/chemistry
18.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38743928

ABSTRACT

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Subject(s)
Crystallization , Water , Crystallization/methods , Water/chemistry , Kinetics , Drug Stability , Nifedipine/chemistry , Vinyl Compounds/chemistry , Thermodynamics , Pyrrolidines/chemistry , Viscosity , Chemistry, Pharmaceutical/methods , Humidity , Temperature , Solubility , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives
19.
Biomacromolecules ; 25(6): 3823-3830, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38773865

ABSTRACT

Sustainability and circularity are key issues facing the global polymer industry. The search for biodegradable and environmentally-friendly polymers that can replace conventional materials is a difficult challenge that has been met with limited success. Alternatives must be cost-effective, scalable, and provide equivalent performance. We report that latexes made by the conventional emulsion polymerization of vinyl acetate and functional vinyl ester monomers are efficient thickeners for consumer products and biodegrade in wastewater. This approach uses readily-available starting materials and polymerization is carried out in water at room temperature, in one pot, and generates negligible waste. Moreover, the knowledge that poly(vinyl ester)s are biodegradable will lead to the design of new green polymer materials.


Subject(s)
Emulsions , Emulsions/chemistry , Polymerization , Polymers/chemistry , Alkalies/chemistry , Biodegradation, Environmental , Latex/chemistry , Vinyl Compounds/chemistry , Wastewater/chemistry
20.
J Pharm Biomed Anal ; 246: 116228, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38781726

ABSTRACT

Patiromer (Veltassa®) is a crosslinked, insoluble co-polymer drug used as a nonabsorbent potassium binder, approved for treatment of hyperkalemia. Quantitative solid-state 13C nuclear magnetic resonance (NMR) analysis with comprehensive peak assignment, component quantification, and calculation of mole and weight fractions of monomer units was performed on three doses of patiromer. The workflow is documented in detail. Spectrally edited solid-state 13C NMR spectra of patiromer show =CHn peaks of matching intensity at 116 and 141 ppm, characteristic of -CH=CH2 vinyl groups. Similar spectral features can be observed in earlier studies but were previously ignored. In this study, the vinyl signals are well-resolved in a 2-s direct polarization (DP) spectrum without and with dipolar dephasing, which confirms that these sp2-hybridized carbons are bonded to hydrogen and partially mobile, consistent with vinyl side groups from incompletely reacted divinyl crosslinkers. The vinyl groups account for 1.6% of all carbon, 3% of the monomer units, and nearly 1/3 of the crosslinkers. Furthermore, an unexpected OCH3 moiety accounting for ∼1.2% of all carbons was identified by spectral editing; its chemical shift of 54 ppm is more consistent with a methyl ester than with a methyl ether. It can originate from incomplete hydrolysis of ∼6% of methyl-2-fluoroacrylate, the main monomer of patiromer. Characteristic cross peaks in two-dimensional 1H-13C heteronuclear correlation NMR confirm the presence of the vinyl and OCH3 groups. Trace amounts of xanthan gum are also detected. The quantitative 13C NMR spectrum of patiromer has been matched in a simulation using a model with five monomer units.


Subject(s)
Esters , Magnetic Resonance Spectroscopy , Polymers , Polymers/chemistry , Esters/chemistry , Magnetic Resonance Spectroscopy/methods , Vinyl Compounds/chemistry , Solubility , Carbon-13 Magnetic Resonance Spectroscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL