Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.008
Filter
2.
Toxins (Basel) ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38922149

ABSTRACT

The genus Vipera encompasses most species of medically significant venomous snakes of Europe, with Italy harbouring four of them. Envenomation by European vipers can result in severe consequences, but underreporting and the absence of standardised clinical protocols hinder effective snakebite management. This study provides an updated, detailed set of guidelines for the management and treatment of Vipera snakebite tailored for Italian clinicians. It includes taxonomic keys for snake identification, insights into viper venom composition, and recommendations for clinical management. Emphasis is placed on quick and reliable identification of medically relevant snake species, along with appropriate first aid measures. Criteria for antivenom administration are outlined, as well as indications on managing potential side effects. While the protocol is specific to Italy, its methodology can potentially be adapted for other European countries, depending on local resources. The promotion of comprehensive data collection and collaboration among Poison Control Centres is advocated to optimise envenomation management protocols and improve the reporting of epidemiological data concerning snakebite at the country level.


Subject(s)
Antivenins , Snake Bites , Viper Venoms , Viperidae , Snake Bites/epidemiology , Snake Bites/therapy , Snake Bites/drug therapy , Snake Bites/diagnosis , Italy , Animals , Antivenins/therapeutic use , Humans , Viper Venoms/toxicity , Vipera
3.
Toxins (Basel) ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38922170

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes >100,000 deaths and >400,000 cases of morbidity annually. Despite the use of mouse models, severe local envenoming, defined by morbidity-causing local tissue necrosis, remains poorly understood, and human-tissue responses are ill-defined. Here, for the first time, an ex vivo, non-perfused human skin model was used to investigate temporal histopathological and immunological changes following subcutaneous injections of venoms from medically important African vipers (Echis ocellatus and Bitis arietans) and cobras (Naja nigricollis and N. haje). Histological analysis of venom-injected ex vivo human skin biopsies revealed morphological changes in the epidermis (ballooning degeneration, erosion, and ulceration) comparable to clinical signs of local envenoming. Immunostaining of these biopsies confirmed cell apoptosis consistent with the onset of necrosis. RNA sequencing, multiplex bead arrays, and ELISAs demonstrated that venom-injected human skin biopsies exhibited higher rates of transcription and expression of chemokines (CXCL5, MIP1-ALPHA, RANTES, MCP-1, and MIG), cytokines (IL-1ß, IL-1RA, G-CSF/CSF-3, and GM-CSF), and growth factors (VEGF-A, FGF, and HGF) in comparison to non-injected biopsies. To investigate the efficacy of antivenom, SAIMR Echis monovalent or SAIMR polyvalent antivenom was injected one hour following E. ocellatus or N. nigricollis venom treatment, respectively, and although antivenom did not prevent venom-induced dermal tissue damage, it did reduce all pro-inflammatory chemokines, cytokines, and growth factors to normal levels after 48 h. This ex vivo skin model could be useful for studies evaluating the progression of local envenoming and the efficacy of snakebite treatments.


Subject(s)
Cytokines , Necrosis , Skin , Humans , Skin/pathology , Skin/drug effects , Animals , Cytokines/metabolism , Cytokines/genetics , Snake Bites/pathology , Elapid Venoms/toxicity , Viper Venoms/toxicity , Inflammation/pathology , Inflammation/chemically induced , Viperidae , Chemokines/metabolism , Chemokines/genetics
4.
Toxins (Basel) ; 16(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38787074

ABSTRACT

Snakebite envenoming and its resulting complications are serious threats to the health of vulnerable people living in rural areas of developing countries. The knowledge of the heterogeneity of symptoms associated with snakebite envenoming and their management strategies is vital to treat such life-threatening complications to save lives. Russell's viper envenomation induces a diverse range of clinical manifestations from commonly recognised haemotoxic and local effects to several rare conditions that are often not reported. The lack of awareness about these unusual manifestations can affect prompt diagnosis, appropriate therapeutic approaches, and positive outcomes for patients. Here, we report pulmonary thromboembolism that developed in three patients following Russell's viper envenomation and demonstrate their common clinical features and diagnostic and therapeutic approaches used. All patients showed clinical signs of local (oedema) and systemic (blood coagulation disturbances) envenomation, which were treated using polyvalent antivenom. They exhibited elevated heart rates, breathlessness, and reduced oxygen saturation, which are non-specific but core parameters in the diagnosis of pulmonary embolism. The recognition of pulmonary embolism was also achieved by an electrocardiogram, which showed sinus tachycardia and computed tomography and echocardiogram scans further confirmed this condition. Anti-coagulant treatment using low-molecular-weight heparin offered clinical benefits in these patients. In summary, this report reinforces the broad spectrum of previously unreported consequences of Russell's viper envenomation. The constant updating of healthcare professionals and the dissemination of major lessons learned in the clinical management of snakebite envenoming through scientific documentation and educational programs are necessary to mitigate the adverse impacts of venomous snakebites in vulnerable communities.


Subject(s)
Antivenins , Daboia , Pulmonary Embolism , Snake Bites , Snake Bites/complications , Snake Bites/drug therapy , Pulmonary Embolism/etiology , Pulmonary Embolism/drug therapy , Humans , Animals , Male , Antivenins/therapeutic use , Viper Venoms/toxicity , Adult , Female , Middle Aged , Anticoagulants/therapeutic use
5.
Res Vet Sci ; 173: 105287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718545

ABSTRACT

Envenomation of dogs by the common European adder (Vipera berus) is associated with high morbidity. The cytotoxic venom of Vipera berus contains enzymes with the potential to cause acute kidney injury, among other insults, however robust biomarkers for such effects are lacking. A prospective observational follow-up study of naturally envenomated dogs and controls was conducted to fill knowledge gaps regarding canine Vipera berus envenomation, attempt to identify novel biomarkers of envenomation and related kidney injury, and elucidate potential long-term effects. Blood and urine samples were analyzed with a global metabolomics approach using liquid chromatography-mass spectrometry, uncovering numerous features significantly different between cases and controls. After data processing and feature annotation, eight features in blood and 24 features in urine were investigated in order to elucidate their biological relevance. Several of these are associated with AKI, while some may also originate from disturbed fatty acid ß-oxidation and soft tissue damage. A metabolite found in both blood and a venom reference sample may represent identification of a venom component in case dogs. Our findings suggest that envenomated dogs treated according to current best practice are unlikely to suffer permanent injury.


Subject(s)
Dog Diseases , Metabolome , Snake Bites , Viperidae , Animals , Dogs , Snake Bites/veterinary , Snake Bites/blood , Snake Bites/urine , Dog Diseases/urine , Dog Diseases/blood , Male , Longitudinal Studies , Female , Prospective Studies , Viper Venoms/urine , Biomarkers/urine , Biomarkers/blood , Acute Kidney Injury/veterinary , Acute Kidney Injury/urine , Acute Kidney Injury/blood , Vipera
6.
PLoS Negl Trop Dis ; 18(3): e0012070, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527073

ABSTRACT

Snakebite envenomation is a significant global health issue that requires specific antivenom treatments. In Taiwan, available antivenoms target a variety of snakes, but none specifically target Trimeresurus gracilis, an endemic and protected species found in the high mountain areas of Taiwan. This study evaluated the effectiveness of existing antivenoms against T. gracilis venom, focusing on a bivalent antivenom developed for Trimeresurus stejnegeri and Protobothrops mucrosquamatus (TsPmAV), as well as monovalent antivenoms for Deinagkistrodon acutus (DaAV) and Gloydius brevicaudus (GbAV). Our research involved in vivo toxicity testing in mice and in vitro immunobinding experiments using (chaotropic) enzyme-linked immunosorbent assays, comparing venoms from four pit viper species (T. gracilis, T. stejnegeri, P. mucrosquamatus, and D. acutus) with three types of antivenoms. These findings indicate that TsPmAV partially neutralized T. gracilis venom, marginally surpassing the efficacy of DaAV. In vitro tests revealed that GbAV displayed higher binding capacities toward T. gracilis venom than TsPmAV or DaAV. Comparisons of electrophoretic profiles also reveal that T. gracilis venom has fewer snake venom C-type lectin like proteins than D. acutus, and has more P-I snake venom metalloproteases or fewer phospholipase A2 than G. brevicaudus, T. stejnegeri, or P. mucrosquamatus. This study highlights the need for antivenoms that specifically target T. gracilis, as current treatments using TsPmAV show limited effectiveness in neutralizing local effects in patients. These findings provide crucial insights into clinical treatment protocols and contribute to the understanding of the evolutionary adaptation of snake venom, aiding in the development of more effective antivenoms for human health.


Subject(s)
Crotalinae , Snake Bites , Trimeresurus , Venomous Snakes , Humans , Mice , Animals , Antivenins/therapeutic use , Snake Venoms , Snake Bites/drug therapy , Viper Venoms/toxicity
7.
Toxicon ; 241: 107679, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447765

ABSTRACT

The search for mechanism-based anti-inflammatory therapies is of fundamental importance to avoid undesired off-target effects. Phospholipase A2 (PLA2) activity is a potential molecular target for anti-inflammatory drugs because it fuels arachidonic acid needed to synthesize inflammation mediators, such as prostaglandins. Herein, we aim to investigate the molecular mechanism by which ß-keto amyrin isolated from a methanolic extract of Cryptostegia grandiflora R. Br. Leaves can inhibit inflammation caused by Daboia russellii viper (DR) venom that mainly contains PLA2. We found that ß-keto amyrin neutralizes DR venom-induced paw-edema in a mouse model. Molecular docking of PLA2 with ß-keto amyrin complex resulted in a higher binding energy score of -8.86 kcal/mol and an inhibition constant of 611.7 nM. Diclofenac had a binding energy of -7.04 kcal/mol and an IC50 value of 620 nM, which predicts a poorer binding interaction than ß-keto amyrin. The higher conformational stability of ß-keto amyrin interaction compared to diclofenac is confirmed by molecular dynamics simulation. ß-keto amyrin isolated from C. grandiflora inhibits the PLA2 activity contained in Daboia russellii viper venom. The anti-inflammatory property of ß-keto amyrin is due to its direct binding into the active site of PLA2, thus inhibiting its enzyme activity.


Subject(s)
Apocynaceae , Daboia , Inflammation , Oleanolic Acid , Viper Venoms , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Apocynaceae/chemistry , Diclofenac/pharmacology , Diclofenac/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Molecular Docking Simulation , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Phospholipases A2/drug effects , Phospholipases A2/metabolism , Viper Venoms/chemistry , Viper Venoms/toxicity
8.
Toxins (Basel) ; 16(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38393149

ABSTRACT

Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.


Subject(s)
Snake Bites , Viper Venoms , Humans , Viper Venoms/chemistry , Phospholipases A2/chemistry , Myotoxicity , Binding Sites
9.
Toxicon ; 239: 107632, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38310691

ABSTRACT

Snake venoms are known to contain toxins capable of interfering with normal physiological processes of victims. Specificity of toxins from snake venoms give scope to identify new molecules with therapeutic action and/or help to understand different cellular mechanisms. Russell's viper venom (RVV) is a mixture of many bioactive molecules with enzymatic and non-enzymatic proteins. The present article describes Daboialipase (DLP), an enzymatic phospholipase A2 with molecular mass of 14.3 kDa isolated from RVV. DLP was obtained after cation exchange chromatography followed by size-exclusion high performance liquid chromatography (SE-HPLC). The isolated DLP presented strong inhibition of adenosine di-phosphate (ADP) and collagen induced platelet aggregation. It also showed anti-thrombin properties by significantly extending thrombin time in human blood samples. Trypan blue and resazurin cell viability assays confirmed time-dependent cytotoxic and cytostatic activities of DLP on MCF7 breast cancer cells, in vitro. DLP caused morphological changes and nuclear damage in MCF7 cells. However, DLP did not cause cytotoxic effects on non-cancer HaCaT cells. Peptide sequences of DLP obtained by O-HRLCMS analysis showed similarity with a previously reported PLA2 (Uniprot ID: PA2B_DABRR/PDB ID: 1VIP_A). An active Asp at 49th position, calcium ion binding site and anticoagulant activity sites were identified in 1 VIP_A. These findings are expected to contribute to designing new anti-platelet, anticoagulant and anti-cancer molecules.


Subject(s)
Anticoagulants , Phospholipases A2 , Vipera , Animals , Humans , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Anticoagulants/pharmacology , Phospholipases A2/chemistry , Phospholipases A2/isolation & purification , Phospholipases A2/pharmacology , Thrombin/antagonists & inhibitors , Viper Venoms/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology
10.
Sci Rep ; 14(1): 3184, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326450

ABSTRACT

Local tissue damage following snakebite envenoming remains a poorly researched area. To develop better strategies to treat snakebites, it is critical to understand the mechanisms through which venom toxins induce envenomation effects including local tissue damage. Here, we demonstrate how the venoms of two medically important Indian snakes (Russell's viper and cobra) affect human skeletal muscle using a cultured human myoblast cell line. The data suggest that both venoms affect the viability of myoblasts. Russell's viper venom reduced the total number of cells, their migration, and the area of focal adhesions. It also suppressed myogenic differentiation and induced muscle atrophy. While cobra venom decreased the viability, it did not largely affect cell migration and focal adhesions. Cobra venom affected the formation of myotubes and induced atrophy. Cobra venom-induced atrophy could not be reversed by small molecule inhibitors such as varespladib (a phospholipase A2 inhibitor) and prinomastat (a metalloprotease inhibitor), and soluble activin type IIb receptor (a molecule used to promote regeneration of skeletal muscle), although the antivenom (raised against the Indian 'Big Four' snakes) has attenuated the effects. However, all these molecules rescued the myotubes from Russell's viper venom-induced atrophy. This study demonstrates key steps in the muscle regeneration process that are affected by both Indian Russell's viper and cobra venoms and offers insights into the potential causes of clinical features displayed in envenomed victims. Further research is required to investigate the molecular mechanisms of venom-induced myotoxicity under in vivo settings and develop better therapies for snakebite-induced muscle damage.


Subject(s)
Daboia , Snake Bites , Humans , Animals , Naja naja , Snake Bites/drug therapy , Viper Venoms/toxicity , Elapidae , Elapid Venoms/pharmacology , Elapid Venoms/therapeutic use , Myoblasts , Atrophy
11.
Anticancer Agents Med Chem ; 24(7): 533-543, 2024.
Article in English | MEDLINE | ID: mdl-38243949

ABSTRACT

AIMS AND BACKGROUND: Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.). OBJECTIVE: Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects. METHODS: In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay. RESULTS: The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells. CONCLUSION: It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.


Subject(s)
Antineoplastic Agents , Cell Survival , Chitosan , Drug Screening Assays, Antitumor , Nanoparticles , Chitosan/chemistry , Chitosan/pharmacology , Humans , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Viper Venoms/chemistry , Viper Venoms/pharmacology , Cell Proliferation/drug effects , Animals , Dose-Response Relationship, Drug , Structure-Activity Relationship , Particle Size , Molecular Structure , Viperidae , Cell Line, Tumor , Echis , Venomous Snakes , Polyphosphates
12.
Semin Thromb Hemost ; 50(1): 115-118, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37506733

ABSTRACT

Russell Viper Venom (RVV) is widely used as a diagnostic test for antiphospholipid syndrome (APS). But the history of how this venom came to be discovered is well known. Dr Patrick Russell is responsible for the identification of the venom during his work on snake bites in India while Dr Robert Macfarlane used it to staunch bleeding in persons with haemophilia. The ability to directly activate factor X led RVV to the laboratory diagnosis of APS. More recently, it has come back to clinical world with a potential for an engineered factor X activator from RVV to be used in the treatment of haemophilia.


Subject(s)
Hemophilia A , Snake Bites , Humans , Viper Venoms , Snake Bites/therapy , India
13.
J Neurochem ; 168(4): 428-440, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36912731

ABSTRACT

People bitten by Alpine vipers are usually treated with antivenom antisera to prevent the noxious consequences caused by the injected venom. However, this treatment suffers from a number of drawbacks and additional therapies are necessary. The venoms of Vipera ammodytes and of Vipera aspis are neurotoxic and cause muscle paralysis by inducing neurodegeneration of motor axon terminals because they contain a presynaptic acting sPLA2 neurotoxin. We have recently found that any type of damage to motor axons is followed by the expression and activation of the intercellular signaling axis consisting of the CXCR4 receptor present on the membrane of the axon stump and of its ligand, the chemokine CXCL12 released by activated terminal Schwann cells. We show here that also V. ammodytes and V. aspis venoms cause the expression of the CXCL12-CXCR4 axis. We also show that a small molecule agonist of CXCR4, dubbed NUCC-390, induces a rapid regeneration of the motor axon terminal with functional recovery of the neuromuscular junction. These findings qualify NUCC-390 as a promising novel therapeutics capable of improving the recovery from the paralysis caused by the snakebite of the two neurotoxic Alpine vipers.


Subject(s)
Indazoles , Receptors, CXCR4 , Viper Venoms , Viperidae , Animals , Paralysis/chemically induced , Receptors, CXCR4/agonists , Viper Venoms/antagonists & inhibitors , Viper Venoms/toxicity , Vipera/metabolism , Viperidae/metabolism , Mice , Indazoles/pharmacology , Indazoles/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Snake Bites/drug therapy
14.
Toxicol In Vitro ; 95: 105755, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38061605

ABSTRACT

The Caucasian viper Macrovipera lebetina obtusa (MLO) is one of the most prevalent and venomous snakes in the Caucasus and the surrounding regions, yet the effects of MLO venom on cardiac function remain largely unknown. We examined the influence of MLO venom (crude and with inhibited metalloproteinases and phospholipase A2) on attachment and metabolic activity of rat neonatal cardiomyocytes (CM) and nonmyocytes (nCM), assessed at 1 and 24 h. After exposing both CM and nCM to varying concentrations of MLO venom, we observed immediate cytotoxic effects at a concentration of 100 µg/ml, causing detachment from the culture substrate. At lower MLO venom concentrations both cell types detached in a dose-dependent manner. Inhibition of MLO venom metalloproteinases significantly improved CM and nCM attachment after 1-hour exposure. At 24-hour exposure to metalloproteinases inhibited venom statistically significant enhancement was observed only in nCM attachment. However, metabolic activity of CM and nCM did not decrease upon exposure to the lower dose of the venom. Moreover, we demonstrated that metalloproteinases and phospholipases A2 are not the components of the MLO venom that change metabolic activity of both CM and nCM. These results provide a valuable platform to study the impact of MLO venom on prey cardiac function. They also call for further exploration of individual venom components for pharmaceutical purposes.


Subject(s)
Viperidae , Rats , Animals , Viperidae/metabolism , Viper Venoms/toxicity , Myocytes, Cardiac , Phospholipases A2/metabolism , Metalloproteases
15.
Toxicon ; 237: 107528, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013057

ABSTRACT

Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.


Subject(s)
Crotalinae , Viperidae , Animals , Mice , Viperidae/metabolism , Tandem Mass Spectrometry , Phospholipases A2/chemistry , Viper Venoms/toxicity , Edema/chemically induced
16.
Toxicon ; 237: 107532, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030094

ABSTRACT

Daboia russelii is a category-I medically important snake throughout the Indian sub-continent contributing to majority of snakebite incidences in this part of the world. As such, extensive studies on its venom composition and search of efficient and appropriate interventions for its treatment become crucial. In this study, the proteome of Daboia russelii venom from Tanore, Rajshahi, Bangladesh was profiled using a combination of chromatographic and mass spectrometric techniques. A total of 37 different proteins belonging to 11 different snake venom protein families were detected. Proteomics analysis revealed the presence of major phospholipase A2 toxins. Daboiatoxin (both A and B subunits), the main lethal PLA2 toxin in the venom of Daboia siamensis (Myanmar viper) which is neurotoxic, myotoxic and cytotoxic was detected. Presence of Daboxin P, which is a major protein in the venom of Indian Daboia russelii with strong anticoagulant activity, was also observed. Inconsistent distribution of such lethal toxins in the venom of same species calls for more investigations of snake venoms from lesser explored regions and formulation of better alternatives to the current antivenom therapy for efficient treatment.


Subject(s)
Daboia , Snake Bites , Animals , Proteome , Bangladesh , Viper Venoms/toxicity , Viper Venoms/chemistry , Antivenins , Snake Bites/drug therapy
17.
Toxicon ; 238: 107563, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38141969

ABSTRACT

This case report summarizes an envenomation by the Mangshan pit viper (Protobothrops mangshanensis), a rare, endangered, venomous snake endemic to Mount Mang of China, and the first reported use of Hemato Polyvalent antivenom (HPAV) for this species. The snakebite occurred in a United States zoo to a 46-year-old male zookeeper. He presented via emergency medical services to a tertiary center after sustaining a single P. mangshanensis bite to the abdomen and was transported with antivenom from the zoo. Within 2 hours of envenomation, he developed oozing of sanguineous fluid and ecchymosis at the puncture site, and about 4 hours post-bite, was treated with HPAV. His coagulation profile fluctuated with the following pertinent peak/nadir laboratory values and corresponding hospital day (HD): undetectable fibrinogen levels, d-dimer 8.89 mg/L and 7.43 mg/L, and INR 2.97 and 1.46 on HD zero and three, respectively. Other peak/nadir values included hemoglobin 9.7 g/dL and creatinine phosphokinase 2410 U/L on HD four and platelets 81 × 109/L on HD seven. The patient received a total of 30 vials of HPAV over 5 days and 1 unit of cryoprecipitate on HD six. Upon discharge on HD eight, laboratory studies were normalizing, except for platelets, and edema stabilized. This case describes an acute, recurrent, and prolonged venom-induced consumptive coagulopathy despite prompt administration and repeated doses of HPAV.


Subject(s)
Crotalid Venoms , Crotalinae , Disseminated Intravascular Coagulation , Snake Bites , Male , Animals , Humans , Middle Aged , Antivenins/therapeutic use , Snake Bites/drug therapy , Blood Coagulation Tests , Disseminated Intravascular Coagulation/chemically induced , Disseminated Intravascular Coagulation/drug therapy , Crotalid Venoms/toxicity , Viper Venoms
18.
Acta Trop ; 250: 107099, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097152

ABSTRACT

Snakebite envenoming (SBE) is a priority Neglected Tropical Disease listed by the World Health Organization. South Asia is heavily affected, and virtually all countries in the region import polyvalent antivenom products from India for clinical use. The imported antivenoms, however, have suboptimal effectiveness due to geographical venom variation. Recently, a domestic bivalent product, named Pakistani Viper Antivenom (PVAV) has been developed specifically for Pakistani vipers, Echis carinatus sochureki and Daboia russelii. As a bivalent viperid antivenom, it is unknown yet if PVAV exhibits higher immunological binding and neutralization activities against viper venoms from distant locales compared with polyvalent antivenoms manufactured in India. This study thus examined the preclinical efficacy of PVAV against venoms of Western Russell's Vipers and Saw-scaled Viper subspecies from selected locales in the Indian subcontinent. PVAV generally outperformed the commonly used VINS polyvalent antivenom (VPAV, manufactured in India) in binding toward venoms, and showed superior or comparable neutralization efficacy against the venom procoagulant and hemorrhagic effects of Saw-scaled Vipers as well as Russell's Vipers from Pakistan and Sri Lanka. Based on normalized potency values, PVAV is far more potent than VPAV in neutralizing the lethality of all viper venoms, except that of the Indian Russell's Viper. The study shows conserved antigenicity of toxins responsible for major toxicity across these viperid venoms, and suggests the feasible production of a viper-specific antivenom with higher potency and broader geographical utility for the region.


Subject(s)
Daboia , Snake Bites , Venomous Snakes , Animals , Antivenins , Echis , Pakistan , Viper Venoms/toxicity , Snake Bites/therapy
19.
Toxins (Basel) ; 15(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37888629

ABSTRACT

A field biologist was bitten by a female Nikolsky's viper (Vipera berus nikolskii) in Kharkiv Oblast, Ukraine. Two months later, the patient began to experience cold-induced vasospasm of the affected digit diagnosed as acquired Raynaud phenomenon. The patient had more than 30 occurrences during the single winter following the bite, but the signs and symptoms of Raynaud phenomenon disappeared with the end of winter. This report describes the case and puts it into context with the literature on the topic of toxin-induced peripheral vasospastic disorders and their potential importance in snakebite envenoming.


Subject(s)
Raynaud Disease , Snake Bites , Viperidae , Animals , Humans , Female , Snake Bites/complications , Viper Venoms/toxicity , Upper Extremity , Raynaud Disease/diagnosis , Raynaud Disease/etiology , Antivenins
20.
Toxins (Basel) ; 15(10)2023 10 12.
Article in English | MEDLINE | ID: mdl-37888640

ABSTRACT

Daboia (Vipera) palaestinae (Dp), accounts for most envenomations in humans and dogs in Israel. In humans envenomed by Dp, serum cholesterol concentration (sChol) is inversely correlated with envenomation severity. This study examined the utility of sChol upon admission in dogs envenomed by Dp as an envenomation severity and outcome marker. Data upon admission, including sChol, were retrospectively collected from the medical records of dogs with proven Dp envenomation. The study included 415 dogs. The mortality rate was 11%. The heart rate upon admission was higher in non-survivors than in survivors. Signs of bleeding or hematoma and circulatory shock signs were more frequent among non-survivors compared to survivors. sChol, the platelet count, and serum albumin concentration (sAlb) were lower, while serum creatinine concentration was higher among non-survivors. sChol and sAlb were moderately, positively, and significantly correlated. sChol was significantly, negatively, albeit weakly, correlated with the length of hospitalization and the heart rate. sChol was lower in dogs admitted >12 h post-envenomation than in those admitted later. In dogs, sChol upon admission is a potential marker of severity and outcome of Dp envenomation. The platelet count, sAlb, and sCreat might also be potential markers.


Subject(s)
Dog Diseases , Snake Bites , Viperidae , Humans , Dogs , Animals , Retrospective Studies , Viper Venoms/toxicity , Snake Bites/diagnosis , Snake Bites/veterinary , Cholesterol , Creatinine , Antivenins
SELECTION OF CITATIONS
SEARCH DETAIL