Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.581
Filter
1.
J Environ Sci (China) ; 148: 502-514, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095184

ABSTRACT

Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns (SWPs), however, the consistency of different classification methods is rarely examined. In this study, we apply two widely-used objective methods, the self-organizing map (SOM) and K-means clustering analysis, to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022. We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities. In the case of classifying six SWPs, the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods, and the difference in the mean frequency of each SWP is less than 7%. The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature, lower cloud cover, relative humidity, and wind speed, and stronger subsidence compared to climatology mean. We find that during 2015-2022, the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 day/year, faster than the increases in the ozone exceedance days (3.0 day/year). The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6. In particular, the significant increase in ozone-favorable SWPs in 2022, especially the Subtropical High type which typically occurs in September, is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022. Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Weather , Ozone/analysis , China , Air Pollutants/analysis , Air Pollution/statistics & numerical data
2.
Lancet Planet Health ; 8(9): e684-e694, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243784

ABSTRACT

Weather and climate patterns play an intrinsic role in societal health, yet a comprehensive synthesis of specific hazard-mortality causes does not currently exist. Country-level health burdens are thus highly uncertain, but harnessing collective expert knowledge can reduce this uncertainty, and help assess diverse mortality causes beyond what is explicitly quantified. Here, surveying 30 experts, we provide the first structured expert judgement of how weather and climate directly impact mortality, using the UK as an example. Current weather-related mortality is dominated by short-term exposure to hot and cold temperatures leading to cardiovascular and respiratory failure. We find additional underappreciated health outcomes, especially related to long-exposure hazards, including heat-related renal disease, cold-related musculoskeletal health, and infectious diseases from compound hazards. We show potential future worsening of cause-specific mortality, including mental health from flooding or heat, and changes in infectious diseases. Ultimately, this work could serve to develop an expert-based understanding of the climate-related health burden in other countries.


Subject(s)
Climate Change , United Kingdom/epidemiology , Humans , Mortality/trends , Weather , Climate , Expert Testimony
3.
Environ Monit Assess ; 196(10): 891, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230583

ABSTRACT

In this study, spatiotemporal analysis of forest fires in Turkiye was undertaken, with a specific focus on the large-scale atmospheric systems responsible for causing these fires. For this purpose, long-term variations in forest fires were classified based on the occurrence types (i.e. natural/lightning, negligence/inattention, arson, accident, unknown). The role of large-scale atmospheric circulations causing natural originated forest fires was investigated using NCEP/NCAR Reanalysis sea level pressure, and surface wind products for the selected episodes. According to the main results, Mediterranean (MeR), Aegean (AR), and Marmara (MR) regions of Turkiye are highly susceptible to forest fires. Statistically significant number of forest fires in the MeR and MR regions are associated with global warming trend of the Eastern Mediterranean Basin. In monthly distribution, forest fires frequently occur in the MeR part of Turkiye during September, August, and June months, respectively, and heat waves are responsible for forest fires in 2021. As a consequence of the extending summer Asiatic monsoon to the inner parts of Turkiye and the location of Azores surface high over Balkan Peninsula result in atmospheric blocking and associated calm weather conditions in the MeR (e.g. Mugla and Antalya provinces). When this blocking continues for a long time, southerly winds on the back slopes of the Taurus Mountains create a foehn effect, calm weather conditions and lack of moisture in the soil of Antalya and Mugla settlements trigger the formation of forest fires.


Subject(s)
Environmental Monitoring , Forests , Spatio-Temporal Analysis , Wildfires , Turkey , Atmosphere/chemistry , Fires , Weather
4.
PLoS One ; 19(9): e0307742, 2024.
Article in English | MEDLINE | ID: mdl-39231141

ABSTRACT

Major power outages have risen over the last two decades, largely due to more extreme weather conditions. However, there is a lack of knowledge on the distribution of power outages and its relationship to social vulnerability and co-occurring hazards. We examined the associations between localized outages and social vulnerability factors (demographic characteristics), controlling for environmental factors (weather), in Washington State between 2018-2021. We additionally analyzed the validity of PowerOutage.us data compared to federal datasets. The population included 27 counties served by 14 electric utilities. We developed a continuous measure of daily outage burden using PowerOutage.us data and operationalized social vulnerability using four factors: poverty level, unemployment, disability, and limited English proficiency. We applied zero-altered lognormal generalized additive mixed-effects models to characterize the relationship between social vulnerability and daily power outage burden, controlling for daily minimum temperature, maximum wind speed, and precipitation, from 2018 to 2021 in Washington State. We found that social vulnerability factors have non-linear relationships with outages. Wind and precipitation are consistent drivers of outage occurrence and duration. There are seasonal effects that vary by county-utility area. Both PowerOutage.us and federal datasets have missing and inaccurate outage data. This is the first study evaluating differential exposure to localized outages as related to social vulnerability that has accounted for weather and temporal correlation. There is a lack of transparency into power outage distribution for those most vulnerable to climate impacts, despite known contributions by electric utilities to climate change. For effective public health surveillance of power outages and transparency, outage data should be made available at finer spatial resolution and temporal scales and/or utilities should be required to report differential exposure to power outages for socially vulnerable populations.


Subject(s)
Weather , Washington , Humans , Poverty , Electric Power Supplies/statistics & numerical data , Vulnerable Populations/statistics & numerical data
5.
PLoS One ; 19(9): e0309953, 2024.
Article in English | MEDLINE | ID: mdl-39250487

ABSTRACT

Shared E-scooter (SE) travel is a low-carbon transportation method that can be further enhanced by integrating with metro systems. This study aims to quantify the impact of the built environment, attitude preferences, weather perception, and other factors on the evaluation and intention to use the "SE-metro transfer" travel mode, as well as how to efficiently and concisely measure and model these effects. Empirical analysis was conducted using questionnaire data from Changsha, China, with 683 participants surveyed. Three satisfaction models were established and compared based on the Technology Acceptance Model (TAM), and an optimal M2 model was expanded to incorporate users' subjective perceptions of weather, proposing a method to simplify questionnaire length. The study found that well-designed vehicles and infrastructure, along with necessary supporting facilities, play important roles in enhancing SE usage. However, there are still many areas for optimization in Changsha's SE policies. Despite the advantages of SE in terrain and physical fitness, which have significantly expanded and changed their user base compared to traditional shared bicycles, there is still much potential to adapt to the middle-aged and older user groups. The results of this study can provide valuable insights for professionals and government officials in designing systems, constructing infrastructure, and formulating policies.


Subject(s)
Transportation , Weather , Humans , China , Adult , Female , Middle Aged , Male , Surveys and Questionnaires , Transportation/methods , Intention , Aged , Young Adult , Built Environment , Perception
6.
PLoS Negl Trop Dis ; 18(9): e0012397, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39264869

ABSTRACT

BACKGROUND: Seasonal fluctuations in weather are recognized as factors that affect both Aedes (Ae.) aegypti mosquitoes and the diseases they carry, such as dengue fever. The El Niño-Southern Oscillation (ENSO) is widely regarded as one of the most impactful atmospheric phenomena on Earth, characterized by the interplay of shifting ocean temperatures, trade wind intensity, and atmospheric pressure, resulting in extensive alterations in climate conditions. In this study, we investigate the influence of ENSO and local weather conditions on the spatio-temporal variability of Ae. aegypti infestation index. METHODS: We collected seasonal entomological survey data of immature forms of Ae. aegypti mosquitoes (Breteau index), as well as data on temperature, rainfall and the Oceanic Niño Index (ONI) for the period 2008-2018 over the 645 municipalities of the subtropical State of São Paulo (Brazil). We grounded our analytical approach on a Bayesian framework and we used a hierarchical spatio-temporal model to study the relationship between ENSO tracked by ONI, seasonal weather fluctuations and the larval index, while adjusting for population density and wealth inequalities. RESULTS: Our results showed a relevant positive effect for El Niño on the Ae. aegypti larval index. In particular, we found that the number of positive containers would be expected to increase by 1.30-unit (95% Credible Intervals (CI): 1.23 to 1.37) with El Niño events (i.e., ≥ 1°C, moderate to strong) respect to neutral (and weak) events. We also found that seasonal rainfall exceeding 153.12 mm appears to have a notable impact on vector index, leading potentially to the accumulation of ample water in outdoor discarded receptacles, supporting the aquatic phase of mosquito development. Additionally, seasonal temperature above 23.30°C was found positively associated to the larval index. Although the State of São Paulo as a whole has characteristics favourable to proliferation of the vector, there were specific areas with a greater tendency for mosquito infestation, since the most vulnerable areas are predominantly situated in the central and northern regions of the state, with hot spots of abundance in the south, especially during El Niño events. Our findings also indicate that social disparities present in the municipalities contributes to Ae. aegypti proliferation. CONCLUSIONS: Considering the anticipated rise in both the frequency and intensity of El Niño events in the forthcoming decades as a consequence of climate change, the urgency to enhance our ability to track and diminish arbovirus outbreaks is crucial.


Subject(s)
Aedes , Bayes Theorem , Dengue , El Nino-Southern Oscillation , Mosquito Vectors , Seasons , Weather , Animals , Aedes/physiology , Aedes/growth & development , Brazil/epidemiology , Dengue/epidemiology , Dengue/transmission , Mosquito Vectors/physiology , Larva/physiology , Larva/growth & development , Spatio-Temporal Analysis , Temperature
7.
PLoS One ; 19(9): e0310018, 2024.
Article in English | MEDLINE | ID: mdl-39259726

ABSTRACT

MOTIVATION: The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes. METHODS: Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston's method. RESULTS: For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston's method. Notably, Croston's method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy. CONCLUSIONS: The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.


Subject(s)
Forecasting , Ischemic Stroke , Weather , Humans , Incidence , Forecasting/methods , Ischemic Stroke/epidemiology , Male , Slovakia/epidemiology , Female , Meteorological Concepts , Logistic Models , Aged
8.
Accid Anal Prev ; 207: 107767, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39236442

ABSTRACT

Yellow dilemma, at which a driver can neither stop nor go safely after the onset of yellow signals, is one of the major crash contributory factors at the signal junctions. Studies have visited the yellow dilemma problem using observation surveys. Factors including road environment, traffic conditions, and driver characteristics that affect the driver behaviours are revealed. However, it is rare that the joint effects of situational and attitudinal factors on the driver behaviours at the yellow dilemma zone are considered. In this study, drivers' propensity to stop after the onset of yellow signals is examined using the driving simulator approach. For instances, the association between driver propensity, socio-demographics, safety perception, traffic signals, and traffic and weather conditions are measured using a binary logit model. Additionally, variations in the effect of influencing factors on driver behaviours are accommodated by adding the interaction terms for driver characteristics, traffic flow characteristics, traffic signals, and weather conditions. Results indicate that weather conditions, traffic volume, position of yellow dilemma in the sequence, driver age and safety perception significantly affect the drivers' propensity to stop after the onset of yellow signals. Furthermore, there are remarkable interactions for the effects of driver gender and location of yellow dilemma.


Subject(s)
Accidents, Traffic , Automobile Driving , Computer Simulation , Weather , Humans , Automobile Driving/psychology , Hong Kong , Male , Female , Adult , Middle Aged , Accidents, Traffic/prevention & control , Young Adult , Safety , Decision Making , Adolescent , Age Factors , Logistic Models , Sex Factors , Aged
9.
J Int Adv Otol ; 20(3): 203-209, 2024 May 23.
Article in English | MEDLINE | ID: mdl-39158215

ABSTRACT

It is reported that sudden sensorineural hearing loss (SSNHL) is closely related to diabetes, hypertension, and hyperlipidemia. While the metabolic syndrome (MetS) is a multifactorial disease that includes diabetes, hypertension, dyslipidemia, and obesity, which are known to be associated with SSNHL. Weather conditions have long been known to affect the SSNHL. This study aimed to make a clear connection between MetS, or weather conditions, and the severity and prognosis of SSNHL. 127 SSNHL patients have been divided into the MetS group and the non-MetS group, and the demographic and clinical characteristics of the 2 groups have been analyzed retrospectively. There were 52 (40.9%) patients in the MetS group, while there were 75 (59.1%) patients in the non-MetS group. The rate of vertigo, hypertension, diabetes, lower high-density lipoprotein cholesterol (HDL-C) levels, high triglyceride (TG), and body mass index (BMI) ≥25 (kg/m2 ) were significantly higher in the MetS group than those in non-MetS group. Vertigo, hypertension, and Mets were linked to the severity of hearing loss. The rate of complete recovery and partial recovery in the MetS group was clearly lower than that in non-MetS group. According to the multivariate analysis, MetS was significantly associated with a poorer prognosis of SSNHL; a high ambient temperature difference at onset and hypertension were correlated with a poor prognosis. These results demonstrate that the severity and prognosis of SSNHL can be influenced by the MetS. High ambient temperature differences at onset and hypertension were indicators of a poor prognosis for SSNHL.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss, Sudden , Metabolic Syndrome , Severity of Illness Index , Humans , Male , Female , Middle Aged , Metabolic Syndrome/epidemiology , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/etiology , Prognosis , Hearing Loss, Sudden/diagnosis , Hearing Loss, Sudden/epidemiology , Retrospective Studies , Adult , Weather , Aged , Hypertension/epidemiology , Hypertension/complications , Hypertension/diagnosis , Risk Factors , Vertigo/epidemiology , Vertigo/diagnosis , Vertigo/etiology
10.
Mar Pollut Bull ; 206: 116788, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39126996

ABSTRACT

Single-use plastics make up 60-95 % of marine plastic pollution, including common commodity films used for packaging and bags. Plastic film breaks down as a function of environmental variables like wave action, wind, temperature, and UV radiation. Here, we focus on how films degrade in cold waters across depths, time, and simulated mammal digestion. Five types of single-use film plastics (HDPE thin & thick, LDPE, PP, PE) were weathered for eight months in temperate waters at surface and depth in the Salish Sea, WA, USA, and subsequently exposed to a laboratory-simulated gray whale stomach. None of the types of plastics examined here fully degraded during the course of this 8 months study. Weathering time and depth significantly impacted many of the physical attributes of plastics, while exposure to a simulated whale gut did not. If unable to degrade plastics through digestion, whales risk long-term exposure to physical and chemical attributes of plastics.


Subject(s)
Plastics , Seawater , Water Pollutants, Chemical , Whales , Animals , Plastics/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Environmental Monitoring , Weather
11.
Malar J ; 23(1): 231, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098946

ABSTRACT

BACKGROUND: The government of Lao PDR has increased efforts to control malaria transmission in order to reach its national elimination goal by 2030. Weather can influence malaria transmission dynamics and should be considered when assessing the impact of elimination interventions but this relationship has not been well characterized in Lao PDR. This study examined the space-time association between climate variables and Plasmodium falciparum and Plasmodium vivax malaria incidence from 2010 to 2022. METHODS: Spatiotemporal Bayesian modelling was used to investigate the monthly relationship, and model selection criteria were used to evaluate the performance of the models and weather variable specifications. As the malaria control and elimination situation was spatially and temporally dynamic during the study period, the association was examined annually at the provincial level. RESULTS: Malaria incidence decreased from 2010 to 2022 and was concentrated in the southern regions for both P. falciparum and P. vivax. Rainfall and maximum humidity were identified as most strongly associated with malaria during the study period. Rainfall was associated with P. falciparum incidence in the north and central regions during 2010-2011, and with P. vivax incidence in the north and central regions during 2012-2015. Maximum humidity was persistently associated with P. falciparum and P. vivax incidence in the south. CONCLUSIONS: Malaria remains prevalent in Lao PDR, particularly in the south, and the relationship with weather varies between regions but was strongest for rainfall and maximum humidity for both species. During peak periods with suitable weather conditions, vector control activities and raising public health awareness on the proper usage of intervention measures, such as indoor residual spraying and personal protection, should be prioritized.


Subject(s)
Bayes Theorem , Climate , Malaria, Falciparum , Malaria, Vivax , Spatio-Temporal Analysis , Laos/epidemiology , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Incidence , Humans , Plasmodium vivax/physiology , Weather , Disease Eradication/statistics & numerical data
12.
Sud Med Ekspert ; 67(4): 65-68, 2024.
Article in Russian | MEDLINE | ID: mdl-39189498

ABSTRACT

Arterial hypertension is a disease that significantly increases the risk of sudden death in different age groups. It is of high scientific interest to study the relationship of arterial hypertension manifestations with different weather conditions. The article provides a review of literature data on the variability of arterial hypertension course depending on meteorological conditions as a risk factor for sudden death.


Subject(s)
Death, Sudden , Hypertension , Humans , Hypertension/complications , Risk Factors , Death, Sudden/etiology , Death, Sudden/pathology , Death, Sudden/epidemiology , Weather , Meteorological Concepts
13.
J Emerg Manag ; 22(4): 351-367, 2024.
Article in English | MEDLINE | ID: mdl-39205596

ABSTRACT

Publicly accessible weather radar data have significant capabilities for meteorological measurements and predictions and, further, have the potential to measure nonmeteorological events that include smoke, ash, and debris plumes as well as explosions. The ability to identify and track nonmeteorological events can be of assistance in emergency response, hazard mitigation, and related activities in locations where radar coverage both exists and is recorded and accessible to the user. In this study, events from multiple locations in the United States that are reported in news outlets are assessed using a manual inspection process of Level 2 weather radar data to identify anthropogenic and nonbiological returns. Explosive events are also identified, and a large high-altitude debris cloud from the intentional destruction of the SpaceX Starship is tracked across a wide area. Finally, future efforts using a machine learning model are discussed as a means of automating the process and potentially enabling near-real-time nonmeteorological event identification in the same areas where the data are accessible. Using weather radar data can be a valuable new tool for Department of Defense systems to aid in military awareness, and for interagency emergency response and forensic mission experts to consider national weather service data in their mission profiles. Radar data can be effective in detecting several common types of emergencies and inform and aid response personnel.


Subject(s)
Radar , Weather , Humans , United States , Disaster Planning , Machine Learning , Emergencies
14.
BMC Infect Dis ; 24(1): 878, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198754

ABSTRACT

OBJECTIVE: At different times, public health faces various challenges and the degree of intervention measures varies. The research on the impact and prediction of meteorology factors on influenza is increasing gradually, however, there is currently no evidence on whether its research results are affected by different periods. This study aims to provide limited evidence to reveal this issue. METHODS: Daily data on influencing factors and influenza in Xiamen were divided into three parts: overall period (phase AB), non-COVID-19 epidemic period (phase A), and COVID-19 epidemic period (phase B). The association between influencing factors and influenza was analysed using generalized additive models (GAMs). The excess risk (ER) was used to represent the percentage change in influenza as the interquartile interval (IQR) of meteorology factors increases. The 7-day average daily influenza cases were predicted using the combination of bi-directional long short memory (Bi-LSTM) and random forest (RF) through multi-step rolling input of the daily multifactor values of the previous 7-day. RESULTS: In periods A and AB, air temperature below 22 °C was a risk factor for influenza. However, in phase B, temperature showed a U-shaped effect on it. Relative humidity had a more significant cumulative effect on influenza in phase AB than in phase A (peak: accumulate 14d, AB: ER = 281.54, 95% CI = 245.47 ~ 321.37; A: ER = 120.48, 95% CI = 100.37 ~ 142.60). Compared to other age groups, children aged 4-12 were more affected by pressure, precipitation, sunshine, and day light, while those aged ≥ 13 were more affected by the accumulation of humidity over multiple days. The accuracy of predicting influenza was highest in phase A and lowest in phase B. CONCLUSIONS: The varying degrees of intervention measures adopted during different phases led to significant differences in the impact of meteorology factors on influenza and in the influenza prediction. In association studies of respiratory infectious diseases, especially influenza, and environmental factors, it is advisable to exclude periods with more external interventions to reduce interference with environmental factors and influenza related research, or to refine the model to accommodate the alterations brought about by intervention measures. In addition, the RF-Bi-LSTM model has good predictive performance for influenza.


Subject(s)
Algorithms , COVID-19 , Influenza, Human , Meteorological Concepts , Humans , COVID-19/epidemiology , Influenza, Human/epidemiology , SARS-CoV-2 , Artificial Intelligence , China/epidemiology , Temperature , Risk Factors , Weather , Child
15.
Environ Int ; 190: 108944, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39151269

ABSTRACT

Increasing global demands for oils are fueling the production of diluted bitumen (DB) from Canada's oil sands region. More weathered than conventional crude (CC) oils, Alberta bitumen is often diluted with lighter petroleum oils to reduce density and viscosity to meet pipeline specifications for transportation. Being a heavy oil product that is transported in large volumes across Canada and the USA, there has been interest to compare its behavior and toxicity characteristics when spilled to those of CC. To determine the influence of environmental weathering upon DB following a freshwater spill, we conducted separate controlled spills of Cold Lake Blend DB and Mixed Sweet Blend light CC oil in a mesocosm spill-tank system at 24 °C with wave-action for 56 days. DB-contaminated waters remained acutely lethal for a period of 14 days to early life stage fathead minnows (Pimephales promelas) exposed during embryologic development, while CC was lethal for 1 day. However, concentrations of mono- and polycyclic aromatic compounds, often claimed to be principally responsible for the acute and chronic toxicity of crude oils, were consistently higher in CC water compared to DB. Elevated aromatic concentrations in CC water correlated with higher prevalences of developmental malformations, reduced heart and growth rates, and impacts on the aryl hydrocarbon receptor pathway. Organic acids were measured over the course of the studies and O2 containing naphthenic acids were present at greater relative abundances in DB- compared to CC-contaminated water, with their attenuation correlating with reduced acute and sublethal toxicity. Furthermore, organic acid degradation products accumulated with time and likely contributed to the consistently sublethal toxicity of the weathered oils throughout the experiment. Improved characterization of the fractions including organic acids and those organic compounds found within the unresolved complex mixture of fresh and weathered crude oils is necessary to adequately understand and prepare for the risks that accidental petroleum spills pose to aquatic resources.


Subject(s)
Fresh Water , Hydrocarbons , Petroleum , Water Pollutants, Chemical , Hydrocarbons/toxicity , Hydrocarbons/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Animals , Fresh Water/chemistry , Petroleum/toxicity , Petroleum Pollution/analysis , Alberta , Cyprinidae , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Weather , Canada
16.
Front Public Health ; 12: 1183706, 2024.
Article in English | MEDLINE | ID: mdl-39091528

ABSTRACT

Background: Many respiratory viruses and their associated diseases are sensitive to meteorological factors. For SARS-CoV-2 and COVID-19, evidence on this sensitivity is inconsistent. Understanding the influence of meteorological factors on SARS-CoV-2 transmission and COVID-19 epidemiology can help to improve pandemic preparedness. Objectives: This review aimed to examine the recent evidence about the relation between meteorological factors and SARS-CoV-2/COVID-19. Methods: We conducted a global scoping review of peer-reviewed studies published from January 2020 up to January 2023 about the associations between temperature, solar radiation, precipitation, humidity, wind speed, and atmospheric pressure and SARS-CoV-2/COVID-19. Results: From 9,156 initial records, we included 474 relevant studies. Experimental studies on SARS-CoV-2 provided consistent evidence that higher temperatures and solar radiation negatively affect virus viability. Studies on COVID-19 (epidemiology) were mostly observational and provided less consistent evidence. Several studies considered interactions between meteorological factors or other variables such as demographics or air pollution. None of the publications included all determinants holistically. Discussion: The association between short-term meteorological factors and SARS-CoV-2/COVID-19 dynamics is complex. Interactions between environmental and social components need further consideration. A more integrated research approach can provide valuable insights to predict the dynamics of respiratory viruses with pandemic potential.


Subject(s)
COVID-19 , Meteorological Concepts , SARS-CoV-2 , Humans , COVID-19/epidemiology , Pandemics , Weather , Temperature
17.
Environ Sci Pollut Res Int ; 31(40): 53315-53328, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39183255

ABSTRACT

The purpose of this study is to explore the effects of accumulated dust and weather conditions on the energy generated by solar photovoltaic panels in Ouargla, Algeria, between May 3 and August 3, 2023. For this experiment, two monocrystalline panels with a power output of 390 W manufactured by Zergoune Green Energy Company, as well as data-logging equipment, were used. The first panel was perfectly cleaned before starting every test and the second panel remained uncleaned. On day 90, the cleaned panel maintained an average power of 193 W, while the dusty panel exhibited a lower average power of 139 W. The greatest average reduction in efficiency, approximately 36.32%, occurred after 3 months of exposure to weather conditions. The scanning electron microscope (SEM) analysis demonstrates the existence of microscopic dust particles which prevent part of solar radiation away instead of being absorbed by the photovoltaic cells, leading to a drop in the efficiency of the PV module. The primary chemical elements found in dust are oxygen, silicon, aluminum, and magnesium.


Subject(s)
Dust , Solar Energy , Algeria , Weather , Sunlight
18.
Environ Sci Pollut Res Int ; 31(39): 51774-51789, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39122971

ABSTRACT

In recent years, the concentrations of ozone and the pollution days with ozone as the primary pollutant have been increasing year by year. The sources of regional ozone mainly depend on local photochemical formation and transboundary transport. The latter is influenced by different weather circulations. How to effectively reduce the inter-regional emission to control ozone pollution under different atmospheric circulation is rarely reported. In this study, we classify the atmospheric circulation of ozone pollution days from 2014 to 2019 over Central China based on the Lamb-Jenkinson method and the global analysis data of the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5) operation. The effectiveness of emission control to alleviate ozone pollution under different atmospheric circulation is simulated by the WRF-Chem model. Among the 26 types of circulation patterns, 9 types of pollution days account for 79.5% of the total pollution days and further classified into 5 types. The local types (A and C type) are characterized by low surface wind speed and stable weather conditions over Central China due to a high-pressure system or a southwest vortex low-pressure system, blocking the diffusion of pollutants. Sensitivity simulations of A-type show that this heavy pollution process is mainly contributed by local emission sources. Removing the anthropogenic emission of pollutants over Central China would reduce the ozone concentration by 39.1%. The other three circulation patterns show pollution of transport characteristics affected by easterly, northerly, or southerly winds (N-EC, EC, S-EC-type). Under the EC-type, removing anthropogenic pollutants of East China would reduce the ozone concentration by 22.7% in Central China.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Air Pollutants/analysis , China , Air Pollution/prevention & control , Weather , Wind
19.
Environ Monit Assess ; 196(9): 811, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141150

ABSTRACT

Expanding road networks to accommodate various activities has significantly increased urban noise pollution, adversely affecting human health and quality of life. Numerous factors influence the noise level in urban areas, including road characteristics, traffic characteristics, surrounding buildings, and weather conditions. While previous studies have considered many of these factors individually, this study aims to integrate all relevant variables to comprehensively monitor and analyze their combined effects on noise levels. The objective is to determine the most influential factors that could be incorporated into effective noise reduction strategies. This research focuses on Cairo, one of the most densely populated cities in the world, where high noise levels are a persistent issue. A detailed case study of Tahrir Street in Dokki, Cairo, provides the basis for this investigation. One of the most crowded areas is El-Tahrir Street in Al-Dokki, which was selected as a case study in this research. This area experiences high traffic volume, with up to 1700 vehicles passing through within a 15-min interval. This significant traffic volume is the primary driver of the elevated noise levels in the area. Traffic and noise level monitoring was conducted using a field survey using the sound level meter. Consequently, a statistical analysis was conducted to investigate the correlation between different factors and the noise level and determine the most influential factors. The study revealed that traffic volume and congestion are the most significant factors influencing noise levels on Tahrir Street, exhibiting strong positive correlations (R = 0.38). Additionally, the study found an inverse relationship between vehicle speed and noise level due to high traffic volumes and identified that building characteristics and wind direction also play roles, albeit to a lesser extent.


Subject(s)
Cities , Environmental Monitoring , Noise, Transportation , Egypt , Environmental Monitoring/methods , Humans , Noise , Weather
20.
Accid Anal Prev ; 207: 107753, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39208515

ABSTRACT

The existence of internal and external heterogeneity has been established by numerous studies across various fields, including transportation and safety analysis. The findings from these studies underscore the complexity of crash data and the multifaceted nature of risk factors involved in accidents. However, most studies consider the effects of unobserved heterogeneity from one perspective -- either within clusters (internal) or between clusters (external) -- and do not investigate the biases from both simultaneously on crash frequency analysis. To fill this gap, this study proposes a hybrid approach combining latent class cluster analysis with the random parameter negative binomial regression model (LCA-RPNB) to explore the association between risk factors and bicycle crash frequency. First, the bicycle crash data is categorized into three clusters using LCA based on crash features such as gender, trip purposes, weather, and light conditions. Then, the separated crash frequency models for different clusters and the overall model are developed based on RPNB using regional factors of crash locations as independent variables and the crash frequency of different clusters respectively as dependent variables. The hybrid approach enables a comprehensive examination of internal and external heterogeneities among bicycle crash frequency factors simultaneously. Results suggest that the proposed hybrid approach exhibits superior fitting and predictive performance compared to the model only considers the effects of unobserved heterogeneity from one perspective with the lower values of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). This approach can help policymakers and urban planners to design more effective safety interventions by understanding the distinct needs of different bicyclist clusters and the specific factors that contribute to crash risk in each group.


Subject(s)
Accidents, Traffic , Bicycling , Models, Statistical , Humans , Bicycling/statistics & numerical data , Bicycling/injuries , Accidents, Traffic/statistics & numerical data , Cluster Analysis , Risk Factors , Female , Male , Weather , Latent Class Analysis , Sex Factors , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL